
Robotics 1

September 10, 2021

Exercise #1

Consider the 3-dof planar PRR robot in Fig. 1, with the joint coordinates q = (q1, q2, q3) de-
fined therein. The second and third links have a common length L > 0. The robot performs
three-dimensional tasks that involve the position p = (px, py) of its end-effector point P and the
orientation angle α of the end-effector w.r.t. the axis x0.
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Figure 1: A planar PRR robot.

a) Determine the direct task kinematics r = f(q) between q = (q1, q2, q3) and r = (px, py, α).
Derive the task Jacobian J(q) of the map f(q) and find all singularities qs of this 3×3 matrix.

b) When the robot is in a singular configuration qs (choose one at will), determine:

– a null-space joint velocity q̇0 ∈ N {J(qs)};
– a task velocity ṙ1 ∈ R{J(qs)} and an associated joint velocity q̇ that realizes it;

– an unfeasible task velocity ṙ2 6∈ R {J(qs)};
– a generalized task force F 0 = (Fx, Fy,Mz) applied at the end effector that is statically

balanced by joint forces/torques τ = 0.

c) Find a closed-form expression for the inverse task kinematics q = f−1(rd), whenever at least
a solution exist. Compute then the numerical value of all inverse solutions for L = 0.5 [m] and
when rd = (0.3, 0.7, π/3) [m,m,rad].

d) Draw the primary and secondary workspaces for this robot, when the prismatic joint has a
finite range q1 ∈ [0, L] while the revolute joints have unlimited range.

Exercise #2

For the same PRR robot in Fig. 1 (with a generic value L for link lengths), determine a smooth,
coordinated rest-to-rest joint trajectory qd(t) that will move the robot in T seconds from the
initial value ri = (2L, 0, π/4) of the task vector to the final value rf = (2L, 0,−π/4), without ever
changing the position pd = (2L, 0) of the point P . Sketch a plot of the obtained joint trajectory
qd(t) = (q1d(t), q2d(t), q3d(t)).

[180 minutes (3 hours); open books]
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Solution
September 10, 2021

Exercise #1

The direct kinematics of the task is given by

r =

 px

py

α

 =

 q1 + L (cos q2 + cos(q2 + q3))

L (sin q2 + sin(q2 + q3))

q2 + q3

 = f(q). (1)

The task Jacobian is thus

J(q) =
∂f(q)

∂q
=

 1 −L (sin q2 + sin(q2 + q3)) −L sin(q2 + q3)

0 L (cos q2 + cos(q2 + q3)) L cos(q2 + q3)

0 1 1

. (2)

The singularities occur when

detJ(q) = L cos q2 = 0 ⇐⇒ q2 = ± π

2
. (3)

The condition (3) is easy to interpret in terms of loss of mobility. When the second link is
orthogonal to the first one, the linear motion of the prismatic joint and the rotation of the second
joint both produce linear contributions to the end-effector motion restricted to the x0 direction. If
the third joint is used to impose a desired rotation of the end effector around the z0 axis, there is
no remaining freedom for achieving instantaneously also a non-zero velocity along y0. The robot
end effector has lost its full mobility in the task space and we are thus in a singularity.

We set now qs = (∗, π/2, q3), where ∗ denotes an arbitrary value. The task Jacobian becomes

J(qs) =

 1 −L (1 + cos q3) −L cos q3

0 −L sin q3 −L sin q3

0 1 1

, (4)

with rank {J(qs)} = 2. All joint velocities in the null space of J(qs) are expressed as

q̇0 = β

 L

1

−1

 ∈ N {J(qs)} , ∀β ⇐⇒ J(qs)q̇0 = 0.

Thus, null-space motions always involve all three joints. A basis for the two-dimensional range
space of J(qs) is

R{J(qs)} = span


 1

0

0

 ,

 0

−L sin q3

1


 . (5)

The complementary space to R{J(qs)} in R3 is the one-dimensional subspace

R{J(qs)}
⊥

= N
{
JT (qs)

}
= span


 0

1

L sin q3


 . (6)
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Note that the three basis vectors in (5) and (6) are linearly independent for all q.

A task velocity vector ṙ that belongs to the subspace in (5) and an associated joint velocity q̇ that
realizes it are given by

ṙ1 =

 1

0

0

 ∈ R{J(qs)} ⇒ q̇1 = J#(qs)ṙ1 =
1

L2 + 2

 2

−L
L

 ,

where the minimum norm solution was obtained by using the pseudoinverse of J(qs). Indeed, it
is easy to verify that J(qs)q̇1 = ṙ1. We provide also a second example where, for simplicity, a
numerical value is specified also for q3. Choose, e.g., qss = (∗, π/2,−π/2). Then

J(qss) =

 1 −L 0

0 L L

0 1 1

 , rank {J(qss)} = 2, (7)

and

ṙ11 = α

 0

L

1

 ∈ R{J(qss)} , ∀α ⇒ q̇11 = J#(qss)ṙ11 =
α

L2 + 2

 L

1

L2 + 1

 .

Again, J(qss)q̇11 = ṙ11. On the other hand, a task velocity ṙ that is always unfeasible in the
configuration qss is given by

ṙ2 =

 1

0

1

 6∈ R {J(qss)} .

In this case, the minimum norm solution given by the pseudoinverse of J(qss),

q̇2 = J#(qss)ṙ2 =



2L2 + L+ 2

L4 + 3L2 + 2

− L3 + L− 1

L4 + 3L2 + 2
L+ 1

L2 + 2

 ,

does never return the original task vector:

J(qss)q̇2 =
1

L2 + 1

 1

L

1

 6= ṙ2.

As another example, consider the task velocity

ṙ22 =

 0

1

1

 6∈ R {J(qss)} , if L 6= 1.
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This velocity vector is also unfeasible at qss, unless the link lengths are unitary (L = 1). In fact,

q̇22 = J#(qss)ṙ22 =



L(L+ 1)

L4 + 3L2 + 2

− L+ 1

L4 + 3L2 + 2
L+ 1

L2 + 2

 ⇒ J(qss)q̇22 =
1

L2 + 1

 0

L(L+ 1)

L+ 1

 = ṙ2|L=1.

Finally, a generalized task force F = (Fx, Fy,Mz) that is statically balanced by τ = 0 at the joint

level belongs to the null space of JT (qs) (or of JT (qss), if we assign also a numerical value to q3).
From (6), we have

F 0 = γ

 0

1

L sin q3

 ∈ N {JT (qs)
}
, ∀γ ⇒ τ = JT (qs)F 0 = 0.

In fact, for a generic q3, the momentum Mz = L sin q3 applied to the last robot link is balanced at
joint 3 by the torque produced there by the force Fy = 1 applied at the tip, resulting in τ3 = 01.
Moreover, the force Fy produces no torque τ2 at joint 2, since the second link is vertical, and no
force τ1 at joint 1, being orthogonal to it.

Consider next the inverse kinematics problem for the PRR robot when performing the specified
three-dimensional task. Given a desired r = rd = (pxd, pyd, αd), we set in (1)

q2 + q3 = αd. (8)

By reorganizing, squaring and summing the first two equations in (1), we obtain

(pxd − q1 − L cosαd)
2

+ (pyd − L sinαd)
2

= (L cos q2)
2

+ (L sin q2)
2

= L2.

Expanding the left-hand side and simplifying, we get a second order polynomial equation in q1:

q21 − 2 (pxd − L cosαd) q1 +
(
p2xd + p2yd − 2L (pxd cosαd + pyd sinαd)

)
= 0.

The two solutions of this equation are

q1d = pxd − L cosαd ±
√
L2 cos2 αd + 2L sinαd pyd − p2yd. (9)

Indeed, a (real) solution q1d exists if and only if the argument of the square root in (9) is non-
negative. This argument vanishes for pyd = L sinαd ± L (i.e., the two solutions of a second,
auxiliary quadratic equation in pyd) and is (strictly) positive for

pyd ∈ (L sinαd − L,L sinαd + L). (10)

At the boundaries of this interval, the two values of q1d collapse into a single solution. Not
surprisingly, the existence of a solution depends on a relation between the desired orientation αd

and the y-position pyd of the end-effector. For instance, if αd = π/2, then (at least) a solution
exists for pyd ∈ [0, 2L]; if αd = −π/2, a solution exists for pyd ∈ [−2L, 0]. The value of pxd plays no
role in this analysis, as long as there is no limit to the range of the prismatic joint q1 (see also the

1For q3 ∈ (0, π),Mz is positive (counterclockwise) and the torque at joint 3 produced by Fy is negative (clockwise).
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following workspace analysis). For each solution q1d in (9), consider again the first two equations
in (1) and, by using (8), solve for q2 as

q2d = ATAN2

{
pyd
L
− sinαd,

pxd − q1d
L

− cosαd

}
. (11)

Finally,
q3d = αd − q2d. (12)

Therefore, (at most) two solutions qd are found in closed form by using eqs. (9), (11) and (12).
Evaluating the inverse kinematics with the data L = 0.5 and rd = (0.3, 0.7, π/3) provides the two
regular solutions

q
(i)
d =

 q
(i)
1d

q
(i)
2d

q
(i)
3d

 =

 0.4728

2.5783

−1.5311

 and q
(ii)
d =

 q
(ii)
1d

q
(ii)
2d

q
(ii)
3d

 =

 −0.3728

0.5633

0.4839

 [m,rad,rad].

At last, Fig. 2 shows the primary and secondary workspaces for this robot, taking into account the
finite range q1 ∈ [0, L] of the prismatic joint. As usual, the primary workspace WS1 is the set of
points in R2 that can be reached with at least one of the admissible orientations (in the plane) of
the robot end effector. A point P ∈WS1 belongs also to the secondary workspace WS2 if it can be
reached with all the admissible orientations of the end effector. In the present case, this happens
only for points on the (green) segment OD in Fig. 2. If there were no bounds on the range of q1,
both WS1 and WS2 would expand limitless along the positive and negative x0 direction (WS1

would be an infinite horizontal stripe of height 4L).

y0

x0

2L
L

2L

2L

O

D
WS2

𝝏WS1

Figure 2: The primary workspace WS1 (with boundary ∂WS1 in blue) and the secondary
workspace WS2 (the line from O to D in green) of the PRR robot in Fig. 1.

A remark is in order on the relation between the definition of the above robot workspaces and
the number of solutions to the inverse kinematics of the considered task. Although in general
these are two different problems (e.g., the task of a robot may or may not involve the end-effector
orientation), few simple observations can be made in the present setting:

• outside WS1 there is no solution for the task r = rd;
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• on the boundary ∂WS1, there is at most a single solution to the task (this happens when the
desired orientation αd takes a single special value at each pd ∈ ∂WS1);

• in the interior WS1, there are at most two solutions to the task, depending on the satisfaction
of the relation (10) between pyd and αd;

• when pd ∈WS2, there is always at least a solution to the task, for any value of αd;

• in any case, solutions may be discarded by the presence of a limited range for the prismatic joint
(i.e., if q1d 6∈ [0, L], as computed by eq. (9)), as well as by finite ranges of the revolute joints.

Exercise #2

This trajectory planning problem in the joint space of the PRR robot takes advantage of the
availability of a closed form solution for the inverse task kinematics, as obtained in Exercise #1,
but it is also greatly simplified by the particular symmetry of the data in the given problem. With
reference to Fig. 3, we shall plan first a smooth trajectory for αd(t) which, according to (8), will also
be the trajectory for the sum of the two joint angles q2d(t)+q3d(t). However, by the symmetries of
the task, q2d(t) = −αd(t) and so q3d(t) = 2αd(t). Since the robot end effector point P has to remain
at rest in the constant position pd = pi = pf , for all t ∈ [0, T ], the tip position p2 of the second
link will trace an arc of a circle (with an absolute speed equal to |α̇d(t)|). Taking into account the
obtained trajectory q2d(t), this motion is realized by an oscillatory motion of q1d(t) that will move
the base of link 2 accordingly. Note that all joint trajectories will behave symmetrically w.r.t. to
the midtime T/2. Obviously, the same behavior is obtained from the closed-form solution of the
inverse task kinematics in Exercise #1, but the previous analysis is simpler and does not presume
the availability of such expressions.

y0

x0

L

P = (2L,0)
L

2L

𝛼" = 𝜋/4 = 𝑞(" + 𝑞*"

𝑞(" = −𝛼" = −𝜋/4

𝛼, = −𝜋 4⁄ = 𝑞(, + 𝑞*,
𝑞(, = −𝑞(" = 𝜋/4

𝑞." = 𝑞., p2d(t)

Figure 3: The given trajectory planning problem has symmetries in space (in particular, w.r.t. the
axis x0) and in time.

With the above in mind, we plan a cubic2 rest-to-rest trajectory for α:

αd(t) = αi + (αf − αi)

(
3

(
t

T

)2
− 2

(
t

T

)3)
, t ∈ [0, T ],

with

α̇d(t) =
αf − αi

T

(
6

(
t

T

)
− 6

(
t

T

)2)
, α̈d(t) =

αf − αi

T 2

(
6− 12

(
t

T

))
.

2Also a quintic polynomial could have been used, wishing to start and end the motion with zero acceleration.
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Substituting the initial and final values for α, we have

αd(t) =
π

4
− π

2

(
3

(
t

T

)2
− 2

(
t

T

)3)
, t ∈ [0, T ],

The desired trajectory of the tip of the second link is

p2d(t) = pd − L
(

cosαd(t)

sinαd(t)

)
=

(
2L

0

)
− L

(
cosαd(t)

sinαd(t)

)
, t ∈ [0, T ].

Taking advantage of the symmetries, we obtain then

q2d(t) = −αd(t),

q3d(t) = αd(t)− q2d(t) = 2αd(t),

q1d(t) = pxd − L (cosαd(t) + cos q2d(t)) = 2L (1− cosαd(t)) ,

t ∈ [0, T ]. (13)

Figure 4 shows the evolution in normalized time τ = t/T ∈ [0, 1] of the components of the planned
joint trajectory qd(τ) obtained by (13) and of those of the resulting task trajectory rd(τ), as
computed by the direct kinematics (1). For these plots, a link length L = 0.5 [m] has been chosen.
Note that pxd and pyd remain constant at their initial value, as desired.
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Figure 4: Joint trajectory qd(τ) = (q1d(τ), q2d(τ), q3d(τ)) [blue, red, yellow] from (13) and associ-
ated task trajectory rd(τ) = (pxd(τ), pyd(τ), αd(τ)) [blue, red, yellow] in normalized time.

For comparison, use the given data in the closed-form expressions (9), (11) and (12) of the inverse
task kinematics. These yield:

q1d(t) = 2L− L cosαd ±
√
L2 cos2 αd =

{
2L

2L (1− cosαd(t)) ,

q2d(t) = ATAN2

{
− sinαd(t),

2L− q1d(t)

L
− cosαd(t)

}

= ATAN2
{
− sinαd(t),∓ cosαd(t)

}
=

{
αd(t)− π
−αd(t),

q3d(t) = αd(t)− q2d(t) =

{
π

2αd(t),

t ∈ [0, T ]. (14)
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It is apparent that a second, alternative solution is available: the first joint remains at rest, placing
the base of the second link in P ; the second joint rotates as αd(t), modulo an angular displacement
of −π; the third joint is also fixed, with the third link folded on the second, so that the position of
the robot end effector is always constant and equal to pd. Figure 5 shows the results when using
for qd(τ) the alternative solution in (14) (and again, with L = 0.5 [m]). Indeed, the resulting task
trajectory rd(τ) is the same.
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Figure 5: Alternative joint trajectory qd(τ) = (q1d(τ), q2d(τ), q3d(τ)) [blue, red, yellow] from (14)
and associated task trajectory rd(τ) = (pxd(τ), pyd(τ), αd(τ)) [blue, red, yellow] in normalized
time.
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