
Robotics 1

February 3, 2022

Exercise #1

Figure 1 shows two 3D views, together with top and side views with geometric data, of the Crane-
X7 robot (by RT Corporation, Japan), a 7-dof arm with all revolute joints. The base frame RF0

and the end-effector frame RFe attached to the gripper are already assigned as in the figure.

i. Define a set of Denavit-Hartenberg (D-H) frames for the robot. The origin of the last D-H
frame should coincide with the origin Oe of frame RFe.

ii. Draw clearly the relevant axes of the D-H frames and fill in the associated table of parameters.
Specify therein the signs of the variables qi, i = 1, . . . , 7, in the shown robot configuration.

iii. Provide the constant rotation matrix 7Re.

x0

z0

ze

ye

x0

z0

ze

ye

ye
ze

x0

z0

x0

y0

ye

xe

top view

side view

Figure 1: Views of the Crane-X7 robot, with geometric data (in [mm]) and frames RF0 and RFe.

Use the Extra Sheet to complete this exercise. Fill in there also the elements of the matrix 7Re.
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Exercise #2

The absolute initial orientation of the end effector of a 6R robot with a spherical wrist is specified
by the YXY sequence of Euler angles α = (α1, α2, α3) = (45◦,−45◦, 120◦). A different orientation
is expressed instead by the rotation matrix

0Rf =

 0 sinφ cosφ

0 cosφ − sinφ

−1 0 0

 , with φ =
π

3
.

Find an axis-angle representation (r, θ) of the relative rotation between these two end-effector
orientations. Further, if a motion is imposed to the end effector with constant angular velocity
ω = 1.1 · r [rad/s], what will be the time Tω needed to accomplish this change of orientation?

Exercise #3

Assume that the motion of a 3R planar robot having equal links of unitary length is commanded
by the joint acceleration q̈ ∈ R3. With reference to Fig. 2, the robot end effector should follow a

desired smooth trajectory pd(t) =
(
px,d(t) py,d(t)

)T ∈ R2 in position, while keeping constant its
angular speed at some value ωz,d ∈ R (perhaps, after an initial transient).

i. Provide the general form of the command q̈ that executes the full task in nominal conditions.

ii. Study the singularities that may be encountered during the execution of the task.

iii. Compute the numerical value of q̈ when the robot is in the nominal state xd = (qd, q̇d) ∈ R6

and for a desired p̈d ∈ R2, as given by

qd =

 π/4

π/3

−π/2

 [rad], q̇d =

 −0.8

1

0.2

 [rad/s], p̈d =

(
1

1

)
[m/s2].

What are the values of pd, ṗd, and of ωz,d in this nominal robot state?

iv. If at some time t ≥ 0, there is a position and/or a velocity error in the execution of the desired
end-effector trajectory pd(t), how would you modify the commanded acceleration q̈(t) so as to
recover exponentially1 the error to zero, both in position and velocity? And what if also the
angular velocity ωz(t) is not the desired one?
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Figure 2: A 3R planar robot executing the desired Cartesian task.

1This rate is a property that automatically follows from the linearity of an asymptotically stable error dynamics.
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Exercise #4

Consider the situation in Fig. 3, with all data defined therein in symbolic form. The PR robot
starts at rest with its end effector placed in Pstart = (S,L) and should move the end effector to
Pgoal = (S + ∆, L) in a given time T and stop there, without colliding with the obstacle Oobs
located at (S + (∆/2), L/2). Design a joint trajectory qd(t) ∈ R2, t ∈ [0, T ], that realizes the task
with continuous acceleration q̈d(t) and no instant of zero velocity in the open interval (0, T ). The
solution should be parametric with respect to L > 0 (length of the second link of the robot), S > 0
(x-coordinate of Pstart), ∆ > L/2 (distance of the two Cartesian points in the x-direction), and T
(motion time). Provide then a numerical example, sketching the plot of qd(t).
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Figure 3: A PR robot should move its end effector from Pstart to Pgoal, avoiding the obstacle Oobs.

Exercise #5

A transmission/reduction system that displaces rotary motion from the motor axis to the joint
axis of a link of length L is sketched in Fig. 4. The system involves two toothed gears and two
pulleys, connected by a belt at a distance D. The radius of each of the two gear wheels and of
the two pulleys is denoted as ri, i = 1, . . . , 4. At t = 0, the link is in the position shown in the
figure. If the motor spins on its axis zm with a constant angular speed θ̇m > 0, how much time Tθ
will it take for the link to rotate by 90◦? Will the link rotate clockwise (CW) or counterclockwise
(CCW) w.r.t. its joint axis zj? Evaluate then Tθ using the following data:

θ̇m = 10 [rad/s], r1 = 20, r2 = 60, r3 = 8, r4 = 32 [mm], D = 0.15, L = 0.3 [m].
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Figure 4: A transmission/reduction system for a motor/link pair.

[210 minutes (3.5 hours); open books]
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Solution
February 3, 2022

Exercise #1

A possible assignment of Denavit-Hartenberg (D-H) frames is shown in Fig. 5. The three z axes
with a double arrow are coming out of the plane. The associated D-H parameters are given
in Table 1. The signs of the qi’s in the table correspond to the robot configuration shown in
the figure. The Crane-X7 robot has no offsets, it has both shoulder and wrist spherical, and a
kinematics equivalent to that of the KUKA LWR IV robot.
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Figure 5: Assignment of D-H frames for the Crane-X7 robot.

i αi ai di θi

1 π/2 0 d1 = 105 q1 = 0

2 −π/2 0 0 q2 > 0

3 π/2 0 d3 = 250 q3 = 0

4 π/2 0 0 q4 > 0

5 −π/2 0 d5 = 250 q5 = 0

6 π/2 0 0 q6 < 0

7 0 0 d7 = 103 q7 = 0

Table 1: Table of D-H parameters for the frame assignment of Fig. 5. Lengths are in [mm].
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The constant rotation matrix from the seventh D-H frame to the end-effector frame is

7Re =

 0 1 0

−1 0 0

0 0 1

 .

Exercise #2

The YXY sequence of Euler angles (α1, α2, α3) defines the following rotation matrix:

RYXY = RY (α1)RX(α2)RY (α3)

=

 cosα1 cosα3 − sinα1 cosα2 sinα3 sinα1 sinα2 cosα1 sinα3 + sinα1 cosα2 cosα3

sinα2 sinα3 cosα2 − sinα2 cosα3

− sinα1 cosα3 − cosα1 cosα2 sinα3 cosα1 sinα2 cosα1 cosα2 cosα3 − sinα1 sinα3

.
Therefore, we evaluate the initial orientation by the rotation matrix

Ri = RYXY

(π
4
,−π

4
,
π

3

)
=

 −0.7866 −0.5 0.3624

−0.6124 0.7071 −0.3536

−0.0795 −0.5 −0.8624

 .

From the final rotation matrix

Rf =

 0 0.8660 0.5

0 0.5 −0.8660

−1 0 0

 ,

we compute the relative rotation matrix as

iRf = RT
i Rf =

 0.0795 −0.9874 0.1370

0.5 −0.0795 −0.8624

0.8624 0.1370 0.4874

 .

Denoting by Rij the elements of iRf , we use the solution formulas of the inverse axis/angle
representation problem. This is not a singular case since

sin θ =
1

2

√
(R21 −R12)2 + (R13 −R31)2 + (R32 −R23)2 = 0.9666 6= 0.

Using cos θ = 1
2

(
trace

{
iRf

}
− 1
)

= −0.2563 and the atan2 function, we obtain the two solutions

θ′ = 1.83 [rad], r′ =

 0.5170

−0.3752

0.7694

 and θ′′ = −θ′, r′′ = −r′.

With a constant angular velocity ω = 1.1 · r′ [rad/s], one traces the total angle θ′ in a time

Tω =
1.83

1.1
= 1.6636 [s].
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Exercise #3

We need to formulate the complete task at the second-order differential level, i.e., in terms of
accelerations. For the positional task of the end-effector, we set the common length of the links to
L = 1 and compute

p =

(
cos q1 + cos(q1 + q2) + cos(q1 + q2 + q3)

sin q1 + sin(q1 + q2) + sin(q1 + q2 + q3)

)
= fp(q).

Differentiating once, we build the Jacobian for the positional task

ṗ =
∂fp(q)

∂q
q̇ =

(
− (s1 + s12 + s123) − (s12 + s123) −s123
c1 + c12 + c123 c12 + c123 c123

)
= Jp(q) q̇,

where the shorthand notation has been used for trigonometric quantities (e.g., s12 = sin(q1 + q2)).
Differentiating again, we have

p̈ = Jp(q) q̈ + J̇p(q) q̇ = Jp(q) q̈ + n(q, q̇),

with

n(q, q̇) = J̇p(q) q̇ = −

(
c1 q̇

2
1 + c12 (q̇1 + q̇2)

2
+ c123 (q̇1 + q̇2 + q̇3)

2

s1 q̇
2
1 + s12 (q̇1 + q̇2)

2
+ s123 (q̇1 + q̇2 + q̇3)

2

)
. (1)

As for the angular velocity of the end effector, in this planar case it is

ωz = q̇1 + q̇2 + q̇3,

and thus
ω̇z = q̈1 + q̈2 + q̈3 =

(
1 1 1

)
q̈ = Jω q̈.

The requested task is executed by imposing the desired linear acceleration p̈ = p̈d to the end
effector, while zeroing its angular acceleration ω̇z = ω̇z,d = 0 in order to keep ωz = ωz,d = constant
(whatever this value may be). Thus, the Jacobian of the complete task will be the (3× 3) matrix

J(q) =

(
Jp(q)

Jω

)
=

 − (s1 + s12 + s123) − (s12 + s123) −s123
(c1 + c12 + c123) (c12 + c123) c123

1 1 1

 , (2)

which is singular if and only if detJ(q) = sin q2 = 0. As long as the robot is away from the
singularity q2 = 0 or π, we can solve the relation for the task accelerations(

p̈

ω̇z

)
=

(
Jp(q)

Jω

)
q̈ +

(
J̇p(q)q̇

0

)
= J(q) q̈ +

(
n(q, q̇)

0

)
(3)

in nominal conditions (i.e., for p̈ = p̈d and ω̇z = ω̇z,d = 0) in terms of the joint acceleration
command as

q̈ = J−1(q)

(
p̈d − n(q, q̇)

0

)
. (4)

At the current robot state, in the nominal conditions

qd =

 π/4

π/3

−π/2

 [rad], q̇d =

 −0.8

1

0.2

 [rad/s],
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the position of the end effector and its linear velocity are, respectively,

pd = fp(qd) =

(
1.4142

1.9319

)
[m] and ṗd = Jp(qd) q̇d =

(
0.2690

−0.2311

)
[m/s],

while the end-effector angular velocity is

ωz,d = q̇1,d + q̇2,d + q̇3,d = 0.4 [rad/s].

For a desired linear acceleration of the end effector

p̈d =

(
1

1

)
[m/s2],

the joint acceleration command (4) is evaluated, using (1) and (2), as

q̈ = J−1(q)

(
p̈d − n(q, q̇)

0

)

=

 −1.9319 −1.2247 −0.2588

1.4142 0.7071 0.9659

1 1 1


−1 (

1

1

)
−
(
−0.5967

−0.5326

)
0

 =

 1.2322

−3.7873

2.5551

 [rad/s2].

To correct an error (in any component) that may arise during the execution of the complete task
by the robot end effector, feedback terms should be added to the nominal command (4). Due to
the task structure, a proportional-derivative (PD) action is used on the error along the positional
trajectory tracking task and a simpler proportional (P) action is used on the error in the regulation
task of the angular velocity. The resulting law is

q̈ = J−1(q)

(
p̈d +KD (ṗd − ṗ) +KP (pd − p)− n(q, q̇)

kω (ωz,d − ωz)

)

= J−1(q)

(
p̈d +KD (ṗd − Jp(q) q̇) +KP

(
pd − fp(q)

)
− n(q, q̇)

kω (ωz,d − Jω q̇)

)
,

(5)

with diagonal gain matrices KP > 0 and KD > 0, and a scalar gain kω > 0. In fact, define the
task errors as

ep(t) = pd(t)− p(t) ⇒ ėp(t) = ev(t) = ṗd(t)− ṗ(t), eω(t) = ωz,d − ωz(t).

Plugging (5) into (3) and simplifying terms, yields the two (decoupled) error dynamics

ëp +KDėp +KPep = 0, ėω + kωeω = 0,

whose evolutions will exponentially converge to zero thanks to the choice of the gains. Indeed, if
only some of the errors are present, the same control law (5) will work accordingly.

Exercise #4

The problem is addressed by adding a via point Pmid in the Cartesian space so as to avoid the
obstacle, converting then start, via, and goal points into the joint space of the PR robot, and
fitting a spline trajectory to this to guarantee the desired smoothness. It is convenient to add the
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via point at the middle of the x-displacement D, sufficiently below the obstacle (but not too far
away, so as to keep the robot travel limited). In the following, we choose Pmid = (S + ∆/2, L/4).

Note also that the start and goal positions correspond to a singularity for the PR robot (with
q2 = π/2, its Jacobian Js = J(q2 = 0) has rank one). A simple path planning with straight lines
joining Pstart to Pmid and Pmid to Pgoal would be unfeasible because the directions of these lines
would not belong to R{Js} at Pstart and Pgoal. Moreover, the tangent discontinuity of that path
at Pmid would force a stop of the robot, contrary to the desired motion requirements.

With the above in mind, we convert first the three positions in the joint space. We have immediately

Pstart =

(
S

L

)
→ qs =

(
S

π/2

)
, Pgoal =

(
S + ∆

L

)
→ qg =

(
S + ∆

π/2

)
.

For the via point, we use the closed-form expression of the inverse kinematics of the PR robot2,

p =

(
px

py

)
=

(
q1 + L cos q2

L sin q2

)
→ q[+/−] =

(
q
[+/−]
1

q
[+/−]
2

)
=

 px ±
√
L2 − p2y

atan2
{
py, px − q[+/−]1

}
 ,

and choose the ‘−′ solution (i.e., with the base of the second link on the left of Pmid)

Pmid =

(
S + ∆/2

L/4

)
→ qm =

(
S + ∆/2− L

√
15/4

atan2
{

1,
√

15
} )

.

Moreover, again because of the Cartesian symmetry, we will impose the passage through the via
point Pmid (or, equivalently, through the joint configuration qm) at the mid motion time t = T/2.

The construction of the spline trajectory can be performed in a straightforward way, being com-
posed by only two cubic polynomials (for each joint component), namely qA(t), for t ∈ [0, T/2],
and qB(t), for t ∈ [T/2, T ]. Both qA and qB are (timed) vectors in R2. As in the general case of
multiple cubics, we introduce the joint velocity at the mid knot as the (unknown) vector parameter
vm = q̇A(T/2) = q̇B(T/2) ∈ R2. The two cubics are expressed in normalized times as

qA(τA) = qs + cA,1 τA + cA,2 τ
2
A + cA,3 τ

3
A, τA =

t

T/2
=

2t

T
∈ [0, 1] (6)

and3

qB(τB) = qg + cB,1 (τB − 1) + cB,2 (τB − 1)
2

+ cB,3 (τB − 1)
3
, τB =

t− (T/2)

T/2
=

2t

T
− 1 ∈ [0, 1],

(7)

Next, we impose the boundary conditions. For qA(τA) in (6), we have

t = 0 → τA = 0 : q̇A(0) = 0 → cA,1 = 0

t =
T

2
→ τA = 1 : qA(1) = qm → cA,2 + cA,3 = qm − qs

t =
T

2
→ τA = 1 : q̇A(1) = vm → 4 cA,2 + 6 cA,3 = vm T,

2Remember that the two arguments of the atan2 function can be arbitrarily scaled by a positive factor.
3One could use also a cubic with powers of τB , rather than of (τB − 1). Indeed, the final result would be the

same. The choice (7) gives time specularity to the treatment, introducing the goal value qg as constant in the cubic.
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yielding

cA,2 = 3 (qm − qs)−
T

2
vm, cA,3 = 2 (qs − qm) +

T

2
vm.

Similarly, for qB(τB) in (7), we have

t = T → τB = 1 : q̇B(1) = 0 → cB,1 = 0

t =
T

2
→ τB = 0 : qB(0) = qm → cB,2 − cB,3 = qm − qg

t =
T

2
→ τB = 0 : q̇B(0) = vm → −4 cB,2 + 6 cB,3 = vm T,

yielding in this case

cB,2 = 3
(
qm − qg

)
+
T

2
vm, cB,3 = 2

(
qm − qg

)
+
T

2
vm.

Finally, we find the unknown value vm by imposing continuity of the accelerations at the mid point
instant t = T/2 (i.e., at τA = 1 and τB = 0). Since

q̈A(τA) =
8

T 2
(cA,2 + 3 cA,3 τA) , q̈B(τB) =

8

T 2
(cB,2 + 3 cB,3 (τB − 1)) ,

we have

q̈A(1) = q̈B(0) ⇒ cA,2 + 3 cA,3 = cB,2 − 3 cB,3 ⇒ vm =
3

2T

(
qg − qs

)
.

Note that the value of qm plays no role in the definition of the (unique) midpoint velocity vm.
Moreover, it is clear that vm 6= 0, satisfying the condition of no stops during motion.

As a result, replacing the coefficients of the cubics with the symbolic expression that have been
found, we obtain from (6) and (7)

qA(τA) = qs +
1

4

(
12 qm − 3 qg − 9 qs

)
τ2A +

1

4

(
5 qs + 3 qg − 8 qm

)
τ3A, (8)

and

qB(τB) = qg +
1

4

(
12 qm − 9 qg − 3 qs

)
(τB − 1)

2
+

1

4

(
8 qm − 5 qg − 3 qs

)
(τB − 1)

3
. (9)

Finally, we provide and example using the following numerical data:

L = 1, S = 0, ∆ = 3 [m], T = 4 [s]. (10)

These lead to the following values in the previous formulas

Pstart =

(
0

1

)
, Pmid =

(
1.5

0.25

)
, Pgoal =

(
3

1

)
,

qs =

(
0

π/2

)
, qm =

(
0.5318

0.2527

)
, qg =

(
3

π/2

)
⇒ vm =

(
1.1250

0

)
,

from which

qA(τA) =

(
0

1.5708

)
−
(

0.6547

3.9543

)
τ2A +

(
1.1865

2.6362

)
τ3A
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and

qB(τB) =

(
3

1.5708

)
−
(

5.1547

3.9543

)
(τB − 1)

2 −
(

2.6865

2.6362

)
(τB − 1)

3
.
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Figure 6: Spline joint trajectories of the PR robot.
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Figure 7: Joint velocities of the PR robot.
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Figure 8: Cartesian path of the end effector of the PR robot. The obstacle (circle in red) is avoided.
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Figures 6–8 show the results of the trajectory planning. The Cartesian path avoids the obstacle,
although it is slightly asymmetric w.r.t. the via point Pmid. The first joint retracts a bit in the
initial phase of the motion (when q̇1 < 0), before increasing constantly until the goal is reached.
Note that the Cartesian path starts and ends with an horizontal tangent, being this the only
admissible direction in the range of the singular Jacobian J at qs and qg. Finally, there is no
instant t ∈ (0, T ) = (0, 3) (excluding obviously the interval boundaries) such that q̇(t) = 0.

As an additional comment, the path will remain the same when scaling the motion time. Figure 9
shows the same instance of motion planning for T = 1 and T = 10. Indeed, the joint velocities
have a scaled profile (by a factor k = 4/1 = 4 in the first case and k = 4/10 = 0.4 in the second).
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Figure 9: Trajectory planning for the same problem, with T = 1 [s] (top) and T = 10 [s] (bottom):
joint velocities scale linearly while the Cartesian path remains the same.

Note in conclusion that the assumed condition ∆ > L/2 is quite stringent. For shorter displace-
ments D along the x-direction between Pstart and Pgoal, one via point will not be sufficient to
obtain obstacle avoidance of the Cartesian path, at least with the chosen joint space planning
method. On the other hand, longer displacements ∆ for a given link length L will provide more
symmetric solutions. These two aspects are illustrated in Fig. 10 for L = 1. The Cartesian path
hits the obstacle when ∆ = 0.5L = 0.5, while its is practically symmetric with ∆ = 10L = 10.
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Figure 10: Cartesian paths resulting from the used trajectory planning method for the same
problem, but with D = 0.5 [m] (left) and D = 10 [m] (right).

11



Final remark. An alternative solution can be developed when assuming that the range of the
second (revolute) joint is unlimited. In this case, one could replace the final target configuration

qg =
(
S + ∆ π/2

)T
by q′g =

(
S + ∆ π/2 + 2π

)T
, and let a single smooth trajectory (a cubic

or quintic polynomial) connect qs to q′g. The second link would make then a complete counter-
clockwise rotation of 360◦ while the first joint is translating forward, avoiding thus the obstacle.
However, even in the absence of joint limits, the price to pay with this strategy is a much higher
speed reached by joint 2 at the trajectory midpoint (the motion should be coordinated, i.e., started
and completed at the same instants of time for both joints). With the numerical values in (10),
there would be a peak q̇2,max = q̇2(T/2) = 3π/T ' 2.36 [rad/s] for a rest-to-rest cubic trajec-
tory and a peak q̇2,max = q̇2(T/2) = 3.75π/T ' 2.95 [rad/s] for a quintic trajectory (with zero
acceleration at the boundaries), as opposed to |q̇2,max| = 1 [rad/s] with the solution in Fig. 7.

Exercise #5

The reduction ratio of the complete transmission is the product of the ratio nr,g = r1/r2 of the
radiuses of the two gear wheels, times the ratio nr,p = r3/r4 of the radiuses of the two pulleys
connected by the belt. While the gears invert the rotation direction, the pulleys preserve the same
direction. Thus, the link will rotate in the opposite way of the motor (around their respective axes,
zm and zj). The following (symbolic/numeric) Matlab code computes the complete reduction ratio

nr =

∣∣∣∣∣ θ̇mθ̇l
∣∣∣∣∣ ≥ 1

of the transmission and, accordingly, the time Tθ > 0 needed for the link to rotate by 90◦. With
the given numerical values, when the motor spins at θ̇m = 10 [rad/s], it is

nr = 12, θ̇l = − θ̇m
nr

= −0.8333 [rad/s], Tθ =
π/2

|θ̇l|
=

π/2

|θ̇m|/nr
= 1.8850 [s],

and the link rotates clockwise (CW).

syms r1 r2 r3 r4 dtheta_m real % D and L are irrelevant...

% reduction ratio (symbolic)

dtheta_g=-(r1/r2)*dtheta_m

dtheta_l=(r3/r4)*dtheta_g

nr=abs(dtheta_m/dtheta_l)

% time for 90 [deg] of link rotation

T_th=(pi/2)/abs(dtheta_l)

% numerical values (radiuses in [mm])

dtheta_m=10 % rad/s

dtheta_g=subs(dtheta_g,{r1,r2},{20,60});

dtheta_g=eval(dtheta_g)

dtheta_l=subs(dtheta_l,{r1,r2,r3,r4},{20,60,8,32});

dtheta_l=eval(dtheta_l)
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nr=subs(nr,{r1,r2,r3,r4},{20,60,8,32});

nr=eval(nr)

if dtheta_l > 0

disp(‘link rotation is CCW’)

else

disp(‘link rotation is CW’)

end

T_th=subs(T_th,{r1,r2,r3,r4},{20,60,8,32});

T_th=eval(T_th)

% end

∗ ∗ ∗ ∗ ∗
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