
Robotics 1

September 9, 2022

Exercise 1

The Fanuc cr15ia is a collaborative robot with six revolute joints and a spherical wrist. Two views
are shown in Fig. 1. The drawing with a back view contains the numerical values (in [mm]) of all
geometric lengths that are needed for describing the robot kinematics.
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Figure 1: A front view and a drawing from the back of the 6R Fanuc cr15ia collaborative robot.

Assign the link frames according to the Denavit-Hartenberg (DH) convention and fill in the as-
sociated table of parameters, specifying the numerical values of the constant parameters (given
directly in the drawing of the robot or derived from those data). Moreover, provide the values of
the joint variables when the robot is in the configuration shown in the back view. Draw the frames
and fill in the table directly on the extra sheet #1 provided separately. The two DH frames 0 (at
the robot base) and 6 (at the center of the final flange) are assigned and should not be modified.

Exercise 2

A number of statements are reported on the extra sheet #2, regarding the inverse kinematics
problem of robot manipulators. Check if each of the statements is True or False. Each answer
will be considered only if you provide also a very short motivation/explanation sentence.
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Exercise 3

For a 3-dof robot, the task kinematics is given by

r = f(q) =

 q2 cos q1 + L cos(q1 + q3)

q2 sin q1 + L sin(q1 + q3)

q1 + q3

 ,

with a constant L > 0.

• Find the singularities of the mapping from q̇ to ṙ.

• Determine all possible task velocities ṙ that can be realized when the robot is in a singularity.

• When the robot is at rest (q̇ = 0), is it possible to obtain a task acceleration r̈ = 0 by com-
manding a non-zero joint acceleration q̈? Support your answer with one or more numerical
examples.

• Set now L = 1. At q = (π/2, 1, 0), with the robot having a joint velocity q̇ = (1,−1,−1),
determine a joint acceleration q̈ that realizes r̈ = 0. Is this joint acceleration unique?

Exercise 4

A single revolute joint of a robot needs to move between qi = π/2 [rad] and qf = 0, under the
velocity and acceleration bounds

| q̇ | ≤ V = 2 [rad/s], | q̈ | ≤ A = 4 [rad/s2].

Determine:

• the minimum time T0 for a rest-to-rest motion;

• the minimum time T1 for a motion from q̇i = 1.5 [rad/s] to q̇f = 0.

Sketch the position, velocity and acceleration profiles of the two resulting time-optimal motions.

[180 minutes, open books]
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Solution
September 9, 2022

Exercise 1

A possible DH frame assignment for the Fanuc CR15ia robot is shown in Fig. 2, in the front and
back views. The associated DH parameters are reported in Tab. 1.
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Figure 2: DH frames for the Fanuc CR15ia robot: front view (left) and back view (right).

i αi ai di θi

1 −π/2 75 648 q1

2 0 640 0 q2

3 −π/2 a3 0 q3

4 π/2 0 700 q4

5 −π/2 0 0 q5

6 0 0 75 q6

Table 1: Parameters associated to the DH frames of Fig. 2. Lengths are in [mm].

Parameter a3 is the only one not directly given in the data sheet. By geometric reasoning one has

a3 =

√
(2014− (648 + 640))

2 − 7002 ' 192.55 [mm],

which is best evaluated when the forearm is pointing upward and reaches the top of the workspace.
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When the robot is in the configuration shown in the back view, the values of the joint variables
are:

q1 = 0, q2 = −π
2

[rad], q3 = q4 = q5 = q6 = 0.

On the other hand, one can approximately guess the joint values (for convenience, expressed in
degree) also when the robot is in the configuration shown in the front view:

q1 = 15◦, q2 = −110◦, q3 = 5◦, q4 = 0◦, q5 = 40◦, q1 = 0◦.

Exercise 2

1. When the robot is in a singularity, there is always an infinite number of inverse solutions.

False A planar 2R robot is singular at the outer boundary, with only one inverse solution.

2. A 6-dof Cartesian robot with a spherical wrist has two inverse solutions, out of singularities.

True For such PPP-3R robot, these are the two orientation solutions of the spherical wrist.

3. If a closed-form inverse solution is not known in advance, a numerical method cannot provide one.

False This is exactly one of the main reasons for using a numerical method for inversion.

4. A 6R industrial robot may have sixteen inverse solutions in its workspace, out of singularities.

True This maximum number of solutions has been actually reached by a 6R robot.

5. A planar manipulator with n ≥ 3 revolute joints has up to n inverse solutions for a positioning task.

False The robot is redundant for the task and can have an infinity of inverse solutions.

6. At workspace boundaries, there is never an analytic solution to the inverse kinematics.

False For a stretched planar 2R robot: q1 = atan2{py, px}, q2 = 0.

7. A 3R robot with twist angles αi different from 0, ±π/2, or ±π has no closed-form inverse solution.

False Though more complex, closed-form inverse solutions can be found in other 3R cases.

8. The number of inverse solutions under joint limits is always strictly less than that without limits.

False Not always, though this is often the case.

9. A 6R spatial robot without spherical wrist or spherical shoulder has no closed-form inverse solution.

False Another sufficient condition is having three parallel joint axes, as in the UR10 robot.

10. A 3-dof gantry-type robot has only one inverse kinematic solution in its workspace.

True This is a PPP robot and there is a unique solution, say, q1 = px, q2 = py, q3 = pz.
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Exercise 3

Differentiating the given task kinematics1 gives ṙ = (∂f(q)/∂q) q̇ = J(q)q̇, with the task Jacobian

J(q) =

 −q2 sin q1 − L sin(q1 + q3) cos q1 −L sin(q1 + q3)

q2 cos q1 + L cos(q1 + q3) sin q1 L cos(q1 + q3)

1 0 1

 .

Its determinant is
detJ(q) = −q2,

so that the only singularity occurs when q2 = 0. Substituting this value in the Jacobian yields

Js = J(q)|q2=0 =

 −L sin(q1 + q3) cos q1 L sin(q1 + q3)

L cos(q1 + q3) sin q1 L cos(q1 + q3)

1 0 1

 ,

having rank 2. Thus, all task velocities that can be realized in a singularity by any possible choice
of joint velocities q̇ ∈ R3 span a two-dimensional subspace, namely R(Js), and are of the form

ṙ =

 −L sin(q1 + q3)

L cos(q1 + q3)

1

α+

 cos q1

sin q1

0

β, with α = q̇1 + q̇3, β = q̇2.

Differentiating further ṙ, we obtain the task acceleration

r̈ = J(q)q̈ + J̇(q)q̇ = J(q)q̈ + h(q, q̇),

where the term h is quadratic in q̇ and is given by

h(q, q̇) =

 −2 sin q1 q̇1q̇2 − q2 cos q1 q̇
2
1 − L cos(q1 + q3) (q̇1 + q̇3)

2

2 cos q1 q̇1q̇2 − q2 sin q1 q̇
2
1 − L sin(q1 + q3) (q̇1 + q̇3)

2

0

 .

Suppose now that the robot is at rest (q̇ = 0), so that h = 0. Then, we can obtain r̈ = J(q)q̈ = 0
for a joint acceleration q̈ 6= 0 if and only if the task Jacobian J is singular, i.e., it is Js. In this
case, any non-zero acceleration q̈ that lies in the null space of Js solves the requested problem:

q̈0 ∈ N{Js} = γ

 1

0

−1

, ∀γ ⇒ Jsq̈0 = 0.

Note that the same acceleration applied at a generic nonsingular configuration and with zero joint
velocity would produce instead

r̈ = J(q)q̈0 = γ

 q2 sin q1

−q2 cos q1

0

 6= 0.

1The robot is a planar RPR arm with the third link of length L, while the task is the position and orientation
of its end-effector. All requested derivations are done analytically, so this information is of limited use.
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When the task Jacobian is nonsingular, the unique joint acceleration q̈ that produces r̈ = 0 is
given by

q̈ = −J−1(q)h(q, q̇). (1)

Since q = (π/2, 1, 0) is a regular configuration, plugging these values of joint position into (1),
together with L = 1 and q̇ = (1,−1,−1), leads to

q̈ = −

 −1 0 −1

0 1 0

1 0 2


 2

−1

0

 =

 2

1

−2

.
Exercise 4

The case of rest-to-rest motion is standard. Since

L = |qf − qi| =
π

2
= 1.570 > 1 =

V 2

A

there will be a coast phase at maximum (negative) velocity q̇ = −V = −2 [m/s] during motion.
Applying then the known formulas for bang-coast-bang acceleration profiles, we have

Ts =
V

A
= 0.5 [s], T0 =

LA+ V 2

AV
=

2π + 4

8
=
π

4
+ 0.5 = 1.285 [s].

Thus, the cruise speed is held for T − 2Ts = 0.285 [s]. The resulting position, velocity and
acceleration profiles are shown in Fig. 3. Note the negative trapezoidal velocity profile, since the
position is being reduced (rotated clockwise!) from qi = π/2 to qf = 0.
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Figure 3: Motion profiles for the rest-to-rest case.

When the initial velocity is q̇i = 1.5 [rad/s] (state-to-rest case), the joint is moving initially in the
wrong direction: thus, it needs to reverse its motion, i.e., first decelerate and stop and then move
back to qf . However, while the joint is being brought to a first stop in a time Td, the position
has progressed from qi = π/2 to a larger positive value qd > qi. Applying the maximum negative
acceleration q̈ = −A to stop the motion in the shortest possible time, these two quantities are then
computed as

Td =
q̇i
A

= 0.375 [s], qd = qi +
1

2
q̇iTd = qi +

q̇2i
2A

=
π

2
+ 0.281 = 1.852 [rad].

At this point, the remaining part of the motion is similar to the rest-to-rest case, but with the
longer displacement to travel

Ld = |qf − qd| = 1.852 > L.
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The joint will first continue with the same negative acceleration q̈ = −A, until reaching the cruise
velocity q̇ = −V and so on. Therefore, the total minimum time in this case will be

T1 = Td +
LdA+ V 2

AV
= 0.375 + 1.426 = 1.801 [s].

The resulting position, velocity and acceleration profiles are shown in Fig. 4. Note that the overall
motion is no longer symmetric.
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Figure 4: Motion profiles for the state-to-rest case.
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