Robotics 1

Position and orientation of rigid bodies

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica
automatica e Gestionale Antonio Ruberti

Position and orientation

- $x_{A} y_{A} z_{A}\left(x_{B} y_{B} z_{B}\right)$ are unit vectors (with unitary norm) of frame $R F_{A}\left(R F_{B}\right)$
- components in ${ }^{A} R_{B}$ are the direction cosines of the axes of $R F_{B}$ with respect to (w.r.t.) RF_{A}

Rotation matrix

	$x_{A}^{\top} x_{B} \quad x_{A}^{\top} y_{B} \quad x_{A}^{\top} z_{B}$	direction cosine of z_{B} w.r.t. x_{A}
${ }^{A} R_{B}=$	$y_{A}^{\top} x_{B} \quad y_{A}^{\top} y_{B} \quad y_{A}^{\top} z_{B}$	
orthonormal, with det $=+1$	$z_{A}^{\top} \mathrm{X}_{\mathrm{B}} \quad \mathrm{z}_{A}^{\top} \mathrm{y}_{\mathrm{B}} \quad \mathrm{z}_{A}^{\top} \mathrm{z}_{\mathrm{B}}$	
	chain rule property	$\begin{aligned} & \text { of a group SO(3) } \\ & \text { (neutral element = I; } \end{aligned}$
	${ }_{*} k R_{i} \cdot i R_{j}=k R_{j_{k}}$	$\text { inverse element }=\mathrm{R}^{\top} \text {) }$
orientation of RF_{i} w.r.t. $R F_{k}$		orientation of $R F_{j}$ w.r.t. RF_{k}
	orientation of RF_{j} w.r.t. RF_{i}	

NOTE: in general, the product of rotation matrices does not commute!

Change of coordinates

Ex: Orientation of frames in a plane

(elementary rotation around z-axis)

similarly:

$$
\mathrm{R}_{\mathrm{z}}(-\theta)=\mathrm{R}_{\mathrm{z}}{ }^{\top}(\theta)
$$

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

Ex: Rotation of a vector around z

$$
\begin{aligned}
& x=|v| \cos \alpha \\
& y=|v| \sin \alpha
\end{aligned}
$$

$$
x^{\prime}=|v| \cos (\alpha+\theta)=|v|(\cos \alpha \cos \theta-\sin \alpha \sin \theta)
$$

$$
=x \cos \theta-y \sin \theta
$$

$$
\begin{aligned}
y^{\prime} & =|v| \sin (\alpha+\theta)=|v|(\sin \alpha \cos \theta+\cos \alpha \sin \theta) \\
& =x \sin \theta+y \cos \theta
\end{aligned}
$$

$$
z^{\prime}=z
$$

or...

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=R_{z}(\theta)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \text { before! }
$$

Equivalent interpretations of a rotation matrix

the same rotation matrix, e.g., $R_{z}(\theta)$, may represent:

the orientation of a rigid body with respect to a reference frame $R F_{0}$ ex: $\left[{ }^{0} x_{c}{ }^{0} y_{c}{ }^{0} z_{c}\right]=R_{z}(\theta)$

the change of coordinates from RF_{C} to RF_{0} ex: ${ }^{0} P=R_{z}(\theta){ }^{C P}$

the vector rotation operator
$e x: v^{\prime}=R_{z}(\theta) v$ the rotation matrix ${ }^{0} R_{C}$ is an operator superposing frame RF_{0} to frame RF_{C}

Composition of rotations

Axis/angle representation

Axis/angle: Direct problem

$$
R(\theta, r)=C R_{z}(\theta) C^{\top}
$$

sequence of three rotations

Axis/angle: Direct problem

$$
\begin{gathered}
R(\theta, r)=C R_{z}(\theta) C^{\top} \\
R(\theta, r)=\left[\begin{array}{lll}
n & s & r
\end{array}\right]\left[\begin{array}{ccc}
c \theta & -s \theta & 0 \\
s \theta & c \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
n^{\top} \\
s^{\top} \\
r^{\top}
\end{array}\right] \begin{array}{l}
\text { hint: use } \\
\text { - outer product of two vectors } \\
\text { - dyadic form of a matrix } \\
\text { - matrix product as product of dyads }
\end{array} \\
=r r^{\top}+\left(n n^{\top}+s s^{\top}\right) c \theta+\left(s n^{\top}-n s^{\top}\right) s \theta
\end{gathered}
$$

taking into account that

$$
C C^{\top}=n n^{\top}+s s^{\top}+r r^{\top}=I, \quad \text { and that }
$$

depends only

$$
R(\theta, r)=r r^{\top}+\left(I-r r^{\top}\right) c \theta+S(r) s \theta=R^{\top}(-\theta, r)=R(-\theta,-r)
$$

Final expression of $\mathrm{R}(\theta, \mathrm{r})$

developing computations...

$$
\begin{aligned}
& R(\theta, r)= \\
& {\left[\begin{array}{ccc}
r_{x}{ }^{2}(1-\cos \theta)+\cos \theta & r_{x} r_{y}(1-\cos \theta)-r_{z} \sin \theta & r_{x} r_{z}(1-\cos \theta)+r_{y} \sin \theta \\
r_{x} r_{y}(1-\cos \theta)+r_{z} \sin \theta & r_{y}^{2}(1-\cos \theta)+\cos \theta & r_{y} r_{z}(1-\cos \theta)-r_{x} \sin \theta \\
r_{x} r_{z}(1-\cos \theta)-r_{y} \sin \theta & r_{y} r_{z}(1-\cos \theta)+r_{x} \sin \theta & r_{z}^{2}(1-\cos \theta)+\cos \theta
\end{array}\right.}
\end{aligned}
$$

Axis/angle: a simple example

$$
\begin{aligned}
& R(\theta, r)=r r^{\top}+\left(I-r r^{\top}\right) c \theta+S(r) s \theta \\
& r=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=z_{0} \\
& R(\theta, r)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] c \theta+\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] s \theta \\
&=\left[\begin{array}{ccc}
c \theta & -s \theta & 0 \\
s \theta & c \theta & 0 \\
0 & 0 & 1
\end{array}\right]=R_{z}(\theta)
\end{aligned}
$$

Axis/angle: proof of Rodriguez formula

$$
v^{\prime}=R(\theta, r) v
$$

$$
v^{\prime}=v \cos \theta+(r \times v) \sin \theta+(1-\cos \theta)\left(r^{\top} v\right) r
$$

proof:

$$
\begin{aligned}
& R(\theta, r) v=\left(r r^{\top}+\left(I-r r^{\top}\right) \cos \theta+S(r) \sin \theta\right) v \\
&=r r^{\top} v(1-\cos \theta)+v \cos \theta+(r \times v) \sin \theta \\
& \text { q.e.d. }
\end{aligned}
$$

Properties of $\mathrm{R}(\theta, \mathrm{r})$

1. $R(\theta, r) r=r$ (r is the invariant axis in this rotation)
2. when r is one of the coordinate axes, R boils down to one of the known elementary rotation matrices
3. $(\theta, r) \rightarrow R$ is not an injective map: $R(\theta, r)=R(-\theta,-r)$
4. $\operatorname{det} R=+1=\Pi \lambda_{i}$ (eigenvalues) \quad identities in
5. $\operatorname{tr}(\mathrm{R})=\operatorname{tr}\left(\mathrm{r} \mathrm{r}^{\mathrm{T}}\right)+\operatorname{tr}\left(\mathrm{I}-\mathrm{r} \mathrm{r}^{\mathrm{T}}\right) \mathrm{c} \theta=1+2 \mathrm{c} \theta=\Sigma \lambda_{\mathrm{i}} \begin{gathered}\text { brown hold } \\ \text { for any matrix! }\end{gathered}$
6. $\Rightarrow \lambda_{1}=1$
7. \& 5. $\Rightarrow \lambda_{2}+\lambda_{3}=2 \mathrm{c} \theta \Rightarrow \lambda^{2}-2 \mathrm{c} \theta \lambda+1=0$

$$
\Rightarrow \lambda_{2,3}=\mathrm{c} \theta \pm \sqrt{\mathrm{c}^{2} \theta-1}=\mathrm{c} \theta \pm i \mathrm{~s} \theta=\mathrm{e}^{ \pm i \theta}
$$

all eigenvalues λ have unitary module ($\Leftarrow \mathrm{R}$ orthonormal)

Axis/angle: Inverse problem

GIVEN a rotation matrix R,
 FIND a unit vector r and an angle θ such that

$$
R=r r^{\top}+\left(I-r r^{\top}\right) \cos \theta+S(r) \sin \theta=R(\theta, r)
$$

Note first that $\operatorname{tr}(R)=R_{11}+R_{22}+R_{33}=1+2 \cos \theta ;$ so, one could solve

$$
\theta=\operatorname{arcos} \frac{R_{11}+R_{22}+R_{33}-1}{2}
$$

but:

- provides only values in $[0, \pi]$ (thus, never negative angles $\theta \ldots$)
- loss of numerical accuracy for $\theta \rightarrow 0$

Axis/angle: Inverse problem

 solutionfrom
it follows

$$
\begin{equation*}
\|r\|=1 \Rightarrow \sin \theta= \pm \frac{1}{2} \sqrt{\left(R_{12}-R_{21}\right)^{2}+\left(R_{13}-R_{31}\right)^{2}+\left(R_{23}-R_{32}\right)^{2}} \tag{*}
\end{equation*}
$$

(**)

$$
\theta=\text { ATAN2 }\left\{ \pm \sqrt{\left(R_{12}-R_{21}\right)^{2}+\left(R_{13}-R_{31}\right)^{2}+\left(R_{23}-R_{32}\right)^{2}}, R_{11}+R_{22}+R_{33}-1\right\}
$$

see next slide

$$
r=\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]=\frac{1}{2 \sin \theta}\left[\begin{array}{l}
R_{32}-R_{23} \\
R_{13}-R_{31} \\
R_{21}-R_{12}
\end{array}\right]
$$

can be used only if

$$
\sin \theta \neq 0
$$

(test made in advance on the expression (*) of $\sin \theta$ in terms of the $\mathrm{R}_{\mathrm{ij}}{ }^{\prime} \mathrm{S}$)

ATAN2 function

- arctangent with output values "in the four quadrants"
- two input arguments
- takes values in $[-\pi,+\pi]$
- undefined only for $(0,0)$
- uses the sign of both arguments to define the output quadrant
- based on arctan function with output values in $[-\pi / 2,+\pi / 2]$
- available in main languages (C++, Matlab, ...)

$$
\operatorname{atan} 2(y, x)= \begin{cases}\arctan \left(\frac{y}{x}\right) & x>0 \\ \pi+\arctan \left(\frac{y}{x}\right) & y \geq 0, x<0 \\ -\pi+\arctan \left(\frac{y}{x}\right) & y<0, x<0 \\ \frac{\pi}{2} & y>0, x=0 \\ -\frac{\pi}{2} & y<0, x=0 \\ \text { undefined } & y=0, x=0\end{cases}
$$

Singular cases
 (use when $\sin \theta=0$)

- if $\theta=0$ from (**), there is no given solution for r (rotation axis is undefined)
- if $\theta= \pm \pi$ from $\left(^{* *}\right)$, then set $\sin \theta=0, \cos \theta=-1$

$$
\Rightarrow R=2 r r^{\top}-I
$$

$$
r=\left[\begin{array}{c}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]=\left[\begin{array}{c}
\pm \sqrt{\left(R_{11}+1\right) / 2} \\
\pm \sqrt{\left(R_{22}+1\right) / 2} \\
\pm \sqrt{\left(R_{33}+1\right) / 2}
\end{array}\right] \text { with } \begin{gathered}
\begin{array}{c}
\text { multiple signs } \\
\text { ambiguities }
\end{array} \\
r_{x} r_{y}=R_{12} / 2 \\
r_{x} r_{z}=R_{13} / 2 \\
r_{y} r_{z}=R_{23} / 2
\end{gathered} \begin{gathered}
\text { (always two } \\
\text { solutions, } \\
\text { of opposite } \\
\text { sign) }
\end{gathered}
$$

exercise: determine the two solutions (r, θ) for $R=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$

Unit quaternion

- to eliminate undetermined and singular cases arising in the axis/angle representation, one can use the unit quaternion representation

$$
\begin{gathered}
Q=\{\eta, \varepsilon\}=\{\cos (\theta / 2), \sin (\theta / 2) \mathbf{r}\} \\
\text { a scalar } 3 \text {-dim vector }
\end{gathered}
$$

- $\eta^{2}+\|\varepsilon\|^{2}=1$ (thus, "unit ...")
- (θ, \mathbf{r}) and $(-\theta,-\mathbf{r})$ gives the same quaternion Q
- the absence of rotation is associated to $Q=\{1, \mathbf{0}\}$
- unit quaternions can be composed with special rules (in a similar way as in a product of rotation matrices)

$$
Q_{1}^{*} Q_{2}=\left\{\eta_{1} \eta_{2}-\varepsilon_{1}^{\top} \varepsilon_{2}, \eta_{1} \varepsilon_{2}+\eta_{2} \varepsilon_{1}+\varepsilon_{1} \times \varepsilon_{2}\right\}
$$

