Robotics 1

Minimal representations of orientation (Euler and roll-pitch-yaw angles) Homogeneous transformations

Prof. Alessandro De Luca

"Minimal" representations

- rotation matrices:

9 elements

- 3 orthogonality relationships
- 3 unitary relationships
$=3$ independent variables
- sequence of 3 rotations around independent axes
- fixed (a_{i}) or moving/current (a_{i}) axes
- generically called Roll-Pitch-Yaw (fixed axes) or Euler (moving axes) angles
- $12+12$ possible different sequences (e.g., XYX)
- actually, only 12 since

$$
\left\{\left(a_{1} \alpha_{1}\right),\left(a_{2} \alpha_{2}\right),\left(a_{3} \alpha_{3}\right)\right\} \equiv\left\{\left(a_{3}^{\prime} \alpha_{3}\right),\left(a_{2}^{\prime} \alpha_{2}\right),\left(a_{1}^{\prime} \alpha_{1}\right)\right\}
$$

ZX'Z'" Euler angles

ZX'Z" Euler angles

- direct problem: given ϕ, θ, ψ; find R

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{ZX}^{\prime} Z^{\prime \prime}}(\phi, \theta, \psi)=\mathrm{R}_{\mathrm{Z}}(\phi) \mathrm{R}_{\mathrm{X}^{\prime}}(\theta) \mathrm{R}_{\mathrm{Z}^{\prime \prime}}(\psi) \\
& \begin{array}{c}
\begin{array}{c}
\text { order of definition } \\
\text { in concatenation }
\end{array}
\end{array}=\left[\begin{array}{ccc}
c \phi c \psi-s \phi c \theta s \psi & -c \phi s \psi-s \phi c \theta c \psi & s \phi s \theta \\
s \phi c \psi+c \phi c \theta s \psi & -s \phi s \psi+c \phi c \theta c \psi & -c \phi s \theta \\
s \theta s \psi & s \theta c \psi & c \theta
\end{array}\right]
\end{aligned}
$$

- given a vector $v^{\prime \prime \prime}=\left(x^{\prime \prime \prime}, y^{\prime \prime \prime}, z^{\prime \prime \prime}\right)$ expressed in RF"', its expression in the coordinates of RF is

$$
\mathrm{v}=\mathrm{R}_{\mathrm{Zx} \mathrm{Z}^{\prime \prime}}(\phi, \theta, \psi) \mathrm{v}^{\prime \prime \prime}
$$

- the orientation of $\mathrm{RF}^{\prime \prime \prime}$ is the same that would be obtained with the sequence of rotations:
ψ around z, θ around x (fixed), ϕ around z (fixed)

ZX'Z" Euler angles

- inverse problem: given $\mathrm{R}=\left\{\mathrm{r}_{\mathrm{ij}}\right\} ;$ find ϕ, θ, ψ
$\left[\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right]=\left[\begin{array}{ccc}c \phi c \psi-s \phi c \theta s \psi & -c \phi s \psi-s \phi c \theta c \psi & s \phi s \theta \\ s \phi c \psi+c \phi c \theta s \psi & -s \phi s \psi+c \phi c \theta c \psi & -c \phi s \theta \\ s \theta s \psi & s \theta c \psi & c \theta\end{array}\right]$
- $r_{13}{ }^{2}+r_{23}{ }^{2}=s^{2} \theta, r_{33}=c \theta \Rightarrow \theta=\operatorname{ATAN} 2\left\{ \pm \sqrt{r_{13}{ }^{2}+r_{23}{ }^{2}}, r_{33}\right\}$ two values differing just for the sign
- if $r_{13}{ }^{2}+r_{23}{ }^{2} \neq 0$ (i.e., $s \theta \neq 0$)

$r_{31} / s \theta=s \psi, r_{32} / s \theta=c \psi \Rightarrow$$\psi=\operatorname{ATAN} 2\left\{r_{31} / s \theta, r_{32} / s \theta\right\}$ similarly $\ldots$$\quad \phi=\operatorname{ATAN} 2\left\{r_{13} / s \theta,-r_{23} / s \theta\right\}$

- there is always a pair of solutions
- there are always singularities (here $\theta=0, \pm \pi$)

Roll-Pitch-Yaw angles

$R_{x}(\psi)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi \\ 0 & \sin \psi & \cos \psi\end{array}\right]$

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{R}_{\mathrm{z}}(\phi) \mathrm{C}_{2}^{\top} \\
& \text { with } \mathrm{R}_{\mathrm{z}}(\phi)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{Z}^{\prime \prime \prime} \\
& x^{\prime \prime} \phi^{\prime \prime} \mathrm{x}^{\prime \prime \prime}
\end{aligned}
$$

Roll-Pitch-Yaw angles (fixed XYZ)

- direct problem: given ψ, θ, ϕ; find R

$$
\begin{aligned}
\mathrm{R}_{\mathrm{RPY}} \xrightarrow{(\psi, \theta, \phi)} & =\mathrm{R}_{\mathrm{Z}}(\phi) \mathrm{R}_{\mathrm{Y}}(\theta) \mathrm{R}_{X}(\psi)
\end{aligned} \stackrel{\Leftarrow \text { note the order of products! }}{\text { order of definition }} \begin{aligned}
& =\left[\begin{array}{ccc}
\mathrm{c} \phi \mathrm{c} \theta & \mathrm{c} \phi \mathrm{~s} \theta \mathrm{~s} \psi-\mathrm{s} \phi \mathrm{c} \psi & \mathrm{c} \phi \mathrm{~s} \theta \mathrm{c} \psi+\mathrm{s} \phi \mathrm{~s} \psi \\
\mathrm{~s} \phi \mathrm{c} \theta & \mathrm{~s} \phi \mathrm{~s} \theta \mathrm{~s} \psi+\mathrm{c} \phi \mathrm{c} \psi & \mathrm{~s} \phi \mathrm{~s} \theta \mathrm{c} \psi-\mathrm{c} \phi \mathrm{~s} \psi \\
-\mathrm{s} \theta & \mathrm{c} \theta \mathrm{~s} \psi & \mathrm{c} \theta \mathrm{c} \psi
\end{array}\right.
\end{aligned}
$$

- inverse problem: given $\mathrm{R}=\left\{\mathrm{r}_{\mathrm{ij}}\right\} ;$ find ψ, θ, ϕ
- $r_{32}{ }^{2}+r_{33}{ }^{2}=c^{2} \theta, r_{31}=-s \theta \Rightarrow \theta=\operatorname{ATAN} 2\left\{-r_{31} \pm \sqrt{r_{32}^{2}+r_{33}{ }^{2}}\right\}$
- if $r_{32}{ }^{2}+r_{33}{ }^{2} \neq 0$ (i.e., $c \theta \neq 0$)
for $r_{31}<0$, two symmetric values w.r.t. $\pi / 2$
$r_{32} / c \theta=s \psi, \quad r_{33} / c \theta=c \psi \Rightarrow \psi=\operatorname{ATAN} 2\left\{r_{32} / c \theta, r_{33} / c \theta\right\}$
similarly \ldots
- singularities for $\theta= \pm \pi / 2$

...why this order in the product?

$$
\underset{\text { order of definition }}{\mathrm{R}_{\mathrm{RPY}}(\psi, \theta, \phi)}=\underset{\substack{\text { "reverse" order in the product } \\ \text { (pre-multiplication...) }}}{\mathrm{R}_{\mathrm{Z}}(\phi) \mathrm{R}_{\mathrm{Y}}(\theta) \mathrm{R}_{\mathrm{X}}(\psi)}
$$

- need to refer each rotation in the sequence to one of the original fixed axes
- use of the angle/axis technique for each rotation in the sequence: $C R(\alpha) C^{\top}$, with C being the rotation matrix reverting the previously made rotations (= go back to the original axes)
concatenating three rotations: [] [] [] (post-multiplication...)

$$
\begin{aligned}
\mathrm{R}_{\mathrm{RPY}}(\psi, \theta, \phi)= & {\left[\mathrm{R}_{\mathrm{X}}(\psi)\right]\left[\mathrm{R}_{X}^{\top}(\psi) \mathrm{R}_{\mathrm{Y}}(\theta) \mathrm{R}_{\mathrm{X}}(\psi)\right] } \\
& {\left[\mathrm{R}_{X}^{\top}(\psi) \mathrm{R}_{\mathrm{Y}}^{\top}(\theta) \mathrm{R}_{\mathrm{Z}}(\phi) \mathrm{R}_{\mathrm{Y}}(\theta) \mathrm{R}_{\mathrm{X}}(\psi)\right] } \\
= & \mathrm{R}_{\mathrm{Z}}(\phi) \mathrm{R}_{\mathrm{Y}}(\theta) \mathrm{R}_{\mathrm{X}}(\psi)
\end{aligned}
$$

Homogeneous transformations

Properties of T matrix

- describes the relation between reference frames (relative pose = position \& orientation)
- transforms the representation of a position vector (applied vector starting from the origin of the frame) from a given frame to another frame
- it is a roto-translation operator on vectors in the three-dimensional space
- it is always invertible $\left({ }^{A} T_{B}\right)^{-1}={ }^{B} T_{A}$
- can be composed, i.e., ${ }^{A} T_{C}={ }^{A} T_{B}{ }^{B} T_{C} \leftarrow$ note: it does not commute!

Inverse of a

 homogeneous transformation$$
{ }^{A} p={ }^{A} p_{A B}+{ }^{A} R_{B}{ }^{B} p \quad{ }^{B} p={ }^{B} p_{B A}+{ }^{B} R_{A}{ }^{A} p=-{ }^{A} R_{B}{ }^{\top}{ }^{A} p_{A B}+{ }^{A} R_{B}{ }^{\top}{ }^{A} p
$$

$$
\left[\begin{array}{c:c}
{ }^{A} R_{B} & { }^{A} p_{A B} \\
\hdashline 0 & 0
\end{array}\right]
$$

${ }^{A} T_{B}$

${ }^{B} T_{A}$
$\left({ }^{A} T_{B}\right)^{-1}$

Defining a robot task

$$
{ }^{\mathrm{B}} \mathrm{E}_{\mathrm{E}}(\mathrm{q})=\mathrm{W}_{\mathrm{B}}{ }^{-1} \mathrm{~W}_{\mathrm{T}} \mathrm{E}_{\mathrm{T}}{ }^{-1}=\text { constant }
$$

Final comments on T matrices

- they are the main tool for computing the direct kinematics of robot manipulators
- they are used in many application areas (in robotics and beyond)
- in positioning/orienting a vision camera (matrix ${ }^{b} T_{c}$ with extrinsic parameters of the camera pose)
- in computer graphics, for the real-time visualization of 3D solid objects when changing the observation point

