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Differential kinematics 

!  “relations between motion (velocity) in joint space  
and motion (linear/angular velocity) in task space  
(e.g., Cartesian space)” 

!  instantaneous velocity mappings can be obtained 
through time derivation of the direct kinematics or 
in a geometric way, directly at the differential level 
!  different treatments arise for rotational quantities 
!  establish the link between angular velocity and  

!  time derivative of a rotation matrix  
!  time derivative of the angles in a minimal 

representation of orientation 
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Angular velocity of a rigid body 

P2 

vP2 

vP1 

vP2 - vP1 

r12 

“rigidity” constraint on distances among points:  
!rij! = constant 

vPi - vPj orthogonal to rij 

vP2 - vP1 = !1 ! r12 

vP3 - vP1 = !1 ! r13 

vP3 - vP2 = !2 ! r23 

1 

2 

3 

2 - 1 = 3 !1 = !2 = !   

•  P3 
r13 

" P1, P2, P3 

"   the angular velocity ! is associated to the whole body (not to a point) 
"   if # P1, P2 with vP1=vP2=0: pure rotation (circular motion of all Pj  line P1P2) 
"   !=0: pure translation (all points have the same velocity vP) 

r23 

vPj = vPi + ! ! rij = vPi + S(!) rij  rij = ! ! rij 

. 

vP3 
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P1 

vP3 - vP1 



Linear and angular velocity  
of the robot end-effector 

!  v and ! are “vectors”, namely are elements of vector spaces  
!  they can be obtained as the sum of single contributions (in any order) 
!  these contributions will be those of the single the joint velocities  

!  on the other hand, $ (and d$/dt) is not an element of a vector space 
!  a minimal representation of a sequence of two rotations is not obtained summing 

the corresponding minimal representations (accordingly, for their time derivatives) 

r = (p, $) 

  R   p 

000  1 
T = 

!   v 

alternative definitions 
of the direct kinematics 

of the end-effector 

in general, ! % d$/dt 
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!1 = z0θ1 

. 
!2 = z1θ2 

. 
!n = zn-1θn 

. 

!i = zi-1θi 

. v3 = z2 d3 
. 



Finite and infinitesimal translations 
!  finiteΔx,Δy,Δz or infinitesimal dx, dy, dz translations 

(linear displacements) always commute 
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x 

y 

z 

x 

y 

z 

same final 
position 

= 

Δy 

Δz 

Δz 

Δy 



Finite rotations do not commute 
example 

x 

y 

z 

$ Z = 90° 

$ X = 90° 

x 

y 

z 

x 

y 

z $ Z = 90° 

x 
y 

z 

$ X = 90° 

mathematical fact: ! is  
NOT an exact differential form 
(the integral of ! over time 

depends on the integration path!) 

different final 
orientations! 

x 

y 

z 

initial 
orientation 
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when made around the same fixed axis 



Infinitesimal rotations commute! 
!  infinitesimal rotations d$X, d$Y, d$Z around x, y, z axes 
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!  R(d$) = R(d$X, d$Y, d$Z) = 

   = I + S(d$) 

   1     -d$z    d$Y  
   d$z    1   -d$X  
-d$Y     d$X    1 

in any order 

RX($X) =  
   1      0           0 
    0    cos $X  -sin $X  
   0    sin $X    cos $X 

RX(d$X) =  
   1      0       0 
    0        1     -d$X  
   0     d$X             1 

cos $Z  -sin $Z &0 
 sin $Z     cos $Z &0 
   0          0  1 

RZ($Z) = 

RY($Y) = 
 cos $Y    0   sin $Y  
    0         1      0 
-sin $Y      0   cos $Y  

  1    -d$ Z     0 
  d$ Z      1      0 
  0       0     1 

RZ(d$Z) = 

RY(d$Y) = 
   1      0    d$ Y  
    0      1      0 
-d$ Y      0      1 

neglecting 
second- and 
third-order 

(infinitesimal) 
terms 



Time derivative of a rotation matrix 

"  let R = R(t) be a rotation matrix, given as a function of time 

"  since I = R(t)RT(t), taking the time derivative of both sides yields 

         0 = d[R(t)RT(t)]/dt = dR(t)/dt RT(t) + R(t) dRT(t)/dt  

            = dR(t)/dt RT(t) + [dR(t)/dt RT(t)]T 
 thus dR(t)/dt RT(t) = S(t) is a skew-symmetric matrix 

"  let p(t) = R(t)p’ a vector (with constant norm) rotated over time 

"  comparing 

       dp(t)/dt = dR(t)/dt p’ = S(t)R(t) p’ = S(t) p(t)  

       dp(t)/dt = !(t) ! p(t) = S(!(t)) p(t) 

  we get S = S(!) 

R = S(!) R  
. 

S(!) = R RT  
. 
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p 

! 

p 
. 



Example 
Time derivative of an elementary rotation matrix 

RX($(t)) =  
   1        0            0 
    0    cos $(t)  -sin $(t)  
   0    sin $(t)   cos $(t) &

RX($) RT
X($) = $ &

   0        0         0 
    0  - sin $   - cos $  
   0    cos $  - sin $ &

   1        0       0 
    0     cos $    sin $ 
   0  - sin $   cos $  &

0     0     0 
0     0   - $ 
0      $       0 

= = S(!) 

. . 

. 
. 

! = 
 $ 
 0 
 0&

. 
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Time derivative of RPY angles and !  

RRPY ('x, (y, )z) = RZY’X” ()z, (y, 'x)  

z 

y 

x 

y’ 

)&

)&
. 

(&
. 

x’ 

(&

x” 

. 
'&

TRPY ((,)) 

. 

. 

. 

! = 
'&
(&
)&

x” y’ z 

det TRPY ((,)) = c( = 0 
for ( = ±* /2 

(singularity of the 
RPY representation) 

similar treatment for the other 11 minimal representations... 

2nd col in 
RZ()z) 

1st col in 
RZ()z)RY’((y) 
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the three  
contributions 
)z, (y’, 'x’’ to !  
are simply 
summed as 
vectors 

. . . 

 c( c) 
  c( s)&
 -s( 

-s) 
  c)&
 0 

0 
0&
1 



Robot Jacobian matrices 

!  analytical Jacobian (obtained by time differentiation) 

!  geometric Jacobian (no derivatives) 

p 

$ 
r =        = fr(q)  
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v 

! 
=                = J(q) q 

. JL(q) 

JA(q) 
q 
. p 

! 

. 
= 

r =        =             = Jr(q) q  
. . +fr(q) 

+q 
q 
. p 

$ 
. 

. 



Analytical Jacobian of planar 2R arm  

x 

y 

l1 

l2 

q1 

q2 

direct kinematics 

px = l1 c1 + l2 c12  

py = l1 s1 + l2 s12 

$  = q1 + q2 
px 

py 

$ 

- l1 s1 - l2 s12     - l2 s12   

  l1 c1 + l2 c12      l2 c12  

        1                1   

Jr(q) = 

. . . . 
px = - l1 s1 q1 - l2 s12 (q1 + q2)  

py = l1 c1 q1 + l2 c12 (q1 + q2)  

$  = !z = q1 + q2 

. . . 

. . . 

. 

here, all rotations occur around the same 
fixed axis z (normal to the plane of motion) 

r 

given r, this is a 3 x 2 matrix 
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Analytical Jacobian of polar robot 

px 

py 

pz 

q1 

q2 

q3 

d1 

px = q3 c2 c1   

py = q3 c2 s1 

pz = d1 + q3 s2  

direct kinematics (here, r = p) 

v = p =  q = Jr(q) q 
-q3c2s1    -q3s2c1   c2c1 
 q3c2c1    -q3s2s1  c2s1 
    0         q3c2     s2  

. . . 

taking the time derivative 
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fr(q)  

+fr(q) 

+q 



Geometric Jacobian 

vE 

!E 

= JL(q) 

JA(q) 
q = 
. JL1(q) 

JA1(q) 

JLn(q) 

JAn(q) 

… 
… 

q1 

qn 
…

 . 

. 

vE = JL1(q) q1 +…+ JLn(q) qn 

. . 
!E = JA1(q) q1 +…+ JAn(q) qn 

. . 

contribution to the linear 
e-e velocity due to q1 

. 

superposition of effects 

linear and angular velocity belong to  
(linear) vector spaces in R3 

end-effector 
instantaneous 

velocity 

always a 6 x n matrix 

contribution to the angular 
e-e velocity due to q1 

. 
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prismatic 
i-th joint 

JLi(q) qi zi-1 di 

JAi(q) qi 0 

Contribution of a prismatic joint 

. 

. 

. 

RF0 

zi-1 

qi = di 

E 

JLi(q) qi = zi-1 di 

. . note: joints beyond the i-th one are considered to be “frozen”, 
 so that the distal part of the robot is a single rigid body 
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joint i  



revolute 
i-th joint 

JLi(q) qi (zi-1 ! pi-1,E) ,i 

JAi(q) qi zi-1 ,i 

Contribution of a revolute joint 

RF0 

. 

. 

. 

. 

zi-1 

qi = ,i 

JAi(q) qi = zi-1 ,i 

. JLi(q) qi 

. 

•    Oi-1 
pi-1,E 

. 
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joint i  



Expression of geometric Jacobian 

vE 

!E 

= JL(q) 

JA(q) 
q = 
. JL1(q) 

JA1(q) 

JLn(q) 

JAn(q) 

… 
… 

q1 

qn 

…
 . 

. 

prismatic  
i-th joint 

revolute 
i-th joint 

JLi(q) zi-1 zi-1 ! pi-1,E 

JAi(q) 0 zi-1 

zi-1 = 0R1(q1)…i-2Ri-1(qi-1) 
0 
0 
1 

pi-1,E = p0,E(q1,…,qn) - p0,i-1(q1,…,qi-1) 

all vectors should be  
expressed in the same 

reference frame 
(here, the base frame RF0) 

p0,E 

!E 

(         =) 
. 
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+p0,E 

+qi 
= 

this can be also  
computed as 



p0,E 

p0,1 

Example: planar 2R arm  

x0 

y0 

•   E  

l1 

l2 

x1 

y1 

y2 x2 

joint 'i di ai ,i 

1 0 0 l1 q1 

2 0 0 l2 q2 

J = 
z0 ! p0,E z1 ! p1,E 

z0 z1 

c1 - s1 0 l1c1 

s1 c1 0 l1s1 

0    0 1 0 

0    0 0  1 

c12 - s12 0 l1c1+ l2c12 

s12 c12 0 l1s1+ l2s12 

0    0 1 0 

0    0 0  1 

0A1 = 

0A2 = 

p1,E = p0,E - p0,1 

DENAVIT-HARTENBERG table 

0 
0 
1 

z0 = z1 = z2 = 
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Geometric Jacobian of planar 2R arm 

x0 

y0 

•   E  

l1 

l2 

x1 

y1 

y2 x2 

z0 ! p0,E z1 ! p1,E 

z0 z1 

J = 

= 

 - l1s1- l2s12 

l1c1+ l2c12 

0 

    - l2s12 

l2c12 

0 

0 
0 
1 

0 
0 
1 

note: the Jacobian is here a 6!2 matrix, 
 thus its maximum rank is 2 

at most 2 components of the linear/angular 
end-effector velocity can be independently assigned 
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compare rows 1, 2, and 6 
 with the analytical Jacobian 

in slide #12! 



=  0Jn(q) q = BJE(q) q 

. . 

Transformations of the Jacobian matrix 

On 

RF0 

 0vn 
0! 

= 0Jn(q) q  
. 

RFB 

BR0 0 

0 
BR0 

•  E 

rnE 

vE = vn + ! ! rnE 

    = vn + S(rEn) ! 

I S(0rEn) 

0 I 

BvE 
B! 

0vn 
0! 

= 

BR0(q) 0 

0 
BR0(q) 

I S(0rEn(q)) 

0 I 
a) we may choose 
    RFB ⇒ RFi(q) 

RFi 

Oj 

b) we may choose 
E ⇒ Oj(q) 

never singular! 

the one just        
computed … 
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Example: Dexter robot 

!  8R robot manipulator with transmissions by 
pulleys and steel cables (joints 3 to 8) 

!  lightweight: only 15 kg in motion 
!  motors located in second link 
!  incremental encoders (homing) 
!  redundancy degree for e-e pose task: n-m=2 
!  compliant in the interaction with environment 
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Mid-frame Jacobian of Dexter robot 

!  geometric Jacobian 0J8(q) is very complex 
!  “mid-frame” Jacobian 4J4(q) is relatively simple! 

6 rows, 
8 columns x0 

y0 

z0 

08 

x4 y4 

z4 
04 
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Summary of differential relations 

= v p 
. 

p     v 
. 

(moving) axes of definition for the sequence of rotations $i  

 I     0 

0   T($) 
J(q) =                Jr(q)  

 I     0 

0   T-1($) 
Jr(q) =                  J(q)  

$     ! 
. . . . . 

 ! = !$1 + !$2 + !$3 = a1 $1 + a2($1) $2 + a3($1, $2) $3 = T($)$  . . . - . 

T($) has always   /    singularity of the specific     
     a singularity           minimal representation of orientation 

p 

$ 
r = 

R = S(!) R  
. for each column ri of R (unit vector of a frame), 

we have . 
ri = ! ! ri 

R    ! 
. 
- . 
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Acceleration relations (and beyond…) 
Higher-order differential kinematics 

!  differential relations between motion in the joint space and motion in 
the task space can be established at the second order, third order, ...  

!  the analytical Jacobian always “weights” the highest-order derivative 

r = Jr(q) q 
. . 

velocity 

. 
r = Jr(q) q + Jr(q) q 
.. .. . 

acceleration 

. 
r = Jr(q) q + 2 Jr(q) q + Jr(q) q  
... ... .. .. . 

jerk 

snap r = Jr(q) q + … 
…. …. 

matrix function N2(q,q)  
. 

matrix function N3(q,q,q)  
. .. 

!  the same holds true also for the geometric Jacobian J(q) 
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Primer on linear algebra 

!  rank 0(J) = max # of rows or columns that are linearly independent 
!  0(J) 1 min(m,n) (if equality holds, J has “full rank”) 
!  if m = n and J has full rank, J is “non singular” and the inverse J-1 exists 
!  0(J) = dimension of the largest non singular square submatrix of J 

!  range 2(J) = vector subspace generated by all possible linear 
combinations of the columns of J 
                    2(J)={v 3 Rm : # 4 3 Rn, v = J 4} 

!  dim(2(J)) = 0(J)  
!  kernel 5(J) = vector subspace of all vectors 4 3 Rn such that J"4 = 0 

!  dim(5(J)) = n - 0(J) 

!  2(J) + 5(JT) = Rm  e  2(JT) + 5(J) = Rn  
!  sum of vector subspaces V1 + V2 = vector space where any element v can be 

written as v = v1 + v2, with v1 3 V1 , v2 3 V2 

!  all the above quantities/subspaces can be computed using, e.g., Matlab 

given a matrix J: m ! n (m rows, n columns) 

Robotics 1              25 

also called “image” of J 

also called “null space” of J 



Robot Jacobian 
decomposition in linear subspaces and duality 

0 0 

space of  
joint velocities 

space of 
task (Cartesian) 

velocities 

2(J) 5(J) 

J 

space of  
joint torques 

space of 
task (Cartesian) 

forces 

0 0 
2(JT) 5(JT) 

JT 

2(J) + 5(JT) = Rm 2(JT) + 5(J) = Rn 

(in a given configuration q) 

dual spaces du
al

 s
pa

ce
s 
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Mobility analysis 

!  0(J) = 0(J(q)), 2(J) = 2(J(q)), 5(JT)= 5(JT(q)) are locally defined, i.e., 
they depend on the current configuration q 

!  2(J(q)) = subspace of all “generalized” velocities (with linear and/or 
angular components) that can be instantaneously realized by the robot 
end-effector when varying the joint velocities at the configuration q  

!  if J(q) has max rank (typically = m) in the configuration q, the robot 
end-effector can be moved in any direction of the task space Rm 

!  if 0(J(q)) < m, there exist directions in Rm along which the robot end-
effector cannot move (instantaneously!) 
!  these directions lie in 5(JT(q)), namely the complement of 2(J(q)) to the 

task space Rm, which is of dimension m - 0(J(q)) 

!  when 5(J(q)) % {0}, there exist non-zero joint velocities that produce 
zero end-effector velocity (“self motions”) 
!  this always happens for m<n, i.e., when the robot is redundant for the task  
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Kinematic singularities 
!  configurations where the Jacobian loses rank  
                          /  loss of instantaneous mobility of the robot end-effector 

!  for m = n, they correspond to Cartesian poses at which the number of 
solutions of the inverse kinematics problem differs from the “generic” case 

!  “in” a singular configuration, we cannot find a joint velocity that realizes a 
desired end-effector velocity in an arbitrary direction of the task space 

!  “close” to a singularity, large joint velocities may be needed to realize 
some (even small) velocity of the end-effector  

!  finding and analyzing in advance all singularities of a robot helps in 
avoiding them during trajectory planning and motion control 
!  when m = n: find the configurations q such that det J(q) = 0 
!  when m < n: find the configurations q such that all m!m minors of J are 

singular (or, equivalently, such that det [J(q) JT(q)] = 0) 

!  finding all singular configurations of a robot with a large number of joints, 
or the actual “distance” from a singularity, is a hard computational task 

Robotics 1              28 



Singularities of planar 2R arm 

!  singularities: arm is stretched (q2 = 0) or folded (q2 = *) 
!  singular configurations correspond here to Cartesian points on the 

boundary of the workspace 
!  in general, these singularities separate regions in the joint space with 

distinct inverse kinematic solutions (e.g., “elbow up” or “down”) 

x 

•    p 

l1 

l2 

q1 

q2 

px 

py direct kinematics 

 px = l1 c1 + l2 c12  

 py = l1 s1 + l2 s12 

analytical Jacobian 

p =  q = J(q) q 
-  l1s1- l2s12    - l2s12 
 l1c1+ l2c12       l2c12 

. . . 
det J(q) = l1l2s2 
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Singularities of polar (RRP) arm 

px 

py 

pz 

q1 

q2 

q3 

d1 

px = q3 c2 c1   

py = q3 c2 s1 

pz = d1 + q3 s2  

direct kinematics 

!  singularities  
!  E-E is along the z axis (q2 = ±*/2): simple singularity ⇒ rank J = 2 
!  third link is fully retracted (q3 = 0): double singularity ⇒ rank J drops to 1 

!  all singular configurations correspond here to Cartesian points internal 
to the workspace (supposing no limits for the prismatic joint) 

analytical Jacobian 

p =  q = J(q) q 
- q3s1c2   -q3c1s2   c1c2 
 q3c1c2   -q3s1s2    s1c2     
    0        q3c2        s2 

. . . 
det J(q) = q3

2 c2 
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Singularities of robots 
with spherical wrist 

!  n = 6, last three joints are revolute and their axes intersect at a point 

!  without loss of generality, we set O6 = W = center of spherical wrist     
(i.e., choose d6 = 0 in the DH table) 

!  since det J(q1,…,q5) = det J11 " det J22 , there is a decoupling property  
!  det J11(q1,…,q3) = 0 provides the arm singularities 
!  det J22(q4, q5) = 0 provides the wrist singularities 

!  being J22 = [z3 z4 z5] (in the geometric Jacobian), wrist singularities 
correspond to when z3, z4 and z5 become linearly dependent vectors  
  6  when either q5 = 0 or q5 = ±*/2 

!  inversion of J is simpler (block triangular structure)  

!  the determinant of J will never depend on q1: why?  

J11    0 

J21    J22 

J(q) = 
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