Robotics 1

Differential kinematics

Prof. Alessandro De Luca

Dipartimento di Ingegneria Informatica

Automatica e Gestionale Antonio Ruberti

Differential kinematics

- "relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space)"
- instantaneous velocity mappings can be obtained through time derivation of the direct kinematics or in a geometric way, directly at the differential level
- different treatments arise for rotational quantities
- establish the link between angular velocity and
- time derivative of a rotation matrix
- time derivative of the angles in a minimal representation of orientation

Angular velocity of a rigid body

"rigidity" constraint on distances among points:

$$
\begin{gathered}
\left\|r_{i j}\right\|=\text { constant } \\
\mathrm{V}_{\mathrm{Pi}}-\mathrm{V}_{\mathrm{Pj}} \text { orthogonal to } \mathrm{r}_{\mathrm{ij}}
\end{gathered}
$$

1
$2 \quad \mathrm{~V}_{\mathrm{P} 3}-\mathrm{V}_{\mathrm{P} 1}=\omega_{1} \times \mathrm{r}_{13}$
$3 \quad V_{P 3}-V_{P 2}=\omega_{2} \times r_{23}$
$\forall P_{1}, P_{2}, P_{3}$

$$
v_{P j}=v_{p i}+\omega \times r_{i j}=v_{p i}+S(\omega) r_{i j}
$$

\Longleftrightarrow

$$
\dot{r}_{i j}=\omega \times r_{i j}
$$

- the angular velocity ω is associated to the whole body (not to a point)
- if $\exists P_{1}, P_{2}$ with $v_{P 1}=v_{P 2}=0$: pure rotation (circular motion of all $P_{j} \&$ line $P_{1} P_{2}$)
- $\omega=0$: pure translation (all points have the same velocity V_{P})

Linear and angular velocity of the robot end-effector

- v and ω are "vectors", namely are elements of vector spaces
- they can be obtained as the sum of single contributions (in any order)
- these contributions will be those of the single the joint velocities
- on the other hand, ϕ (and $\mathrm{d} \phi / \mathrm{dt}$) is not an element of a vector space
- a minimal representation of a sequence of two rotations is not obtained summing the corresponding minimal representations (accordingly, for their time derivatives)
in general, $\omega \neq \mathrm{d} \phi / \mathrm{dt}$

Finite and infinitesimal translations

- finite $\Delta x, \Delta y, \Delta z$ or infinitesimal $d x, d y, d z$ translations (linear displacements) always commute

Finite rotations do not commute

example

Infinitesimal rotations commute!

- infinitesimal rotations $\mathrm{d} \phi_{\mathrm{x}}, \mathrm{d} \phi_{\mathrm{Y}}, \mathrm{d} \phi_{\mathrm{Z}}$ around $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes

$$
\begin{aligned}
& R_{x}\left(\phi_{x}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi_{x} & -\sin \phi_{x} \\
0 & \sin \phi_{x} & \cos \phi_{x}
\end{array}\right] \quad \square R_{x}\left(d \phi_{x}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -d \phi_{x} \\
0 & d \phi_{x} & 1
\end{array}\right] \\
& R_{Y}\left(\phi_{Y}\right)=\left[\begin{array}{ccc}
\cos \phi_{Y} & 0 & \sin \phi_{Y} \\
0 & 1 & 0 \\
-\sin \phi_{Y} & 0 & \cos \phi_{Y}
\end{array}\right] \quad \square R_{Y}\left(d \phi_{Y}\right)=\left[\begin{array}{ccc}
1 & 0 & d \phi_{Y} \\
0 & 1 & 0 \\
-d \phi_{Y} & 0 & 1
\end{array}\right] \\
& R_{Z}\left(\phi_{Z}\right)=\left[\begin{array}{ccc}
\cos \phi_{z} & -\sin \phi_{z} & 0 \\
\sin \phi_{z} & \cos \phi_{z} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \square \quad R_{Z}\left(d \phi_{Z}\right)=\left[\begin{array}{ccc}
1 & -d \phi_{z} & 0 \\
d \phi_{z} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R(d)=\left[\begin{array}{lll}
1 & -d \phi_{Z} & d \phi_{Y}
\end{array}\right] \quad \begin{array}{c}
\text { neglecting } \\
\text { second- and }
\end{array} \\
& \text { - } R(\mathrm{~d} \phi)=\mathrm{R}\left(\mathrm{~d} \phi_{X}, \mathrm{~d} \phi_{Y}, \mathrm{~d} \phi_{Z}\right)=\left[\begin{array}{ccc}
1 & \mathrm{~d} \phi_{Z} & \mathrm{~d} \phi_{Y} \\
\mathrm{~d} \phi_{Z} & 1 & -\mathrm{d} \phi_{\mathrm{X}} \\
-\mathrm{d} \phi_{Y} & \mathrm{~d} \phi_{\mathrm{X}} & 1
\end{array}\right] \leftarrow \underset{\begin{array}{c}
\text { second- and } \\
\text { (inirinitorder } \\
\text { terms }
\end{array}}{\substack{\text { termal) }}} \\
& =\mathrm{I}+\mathrm{S}(\mathrm{~d} \phi)
\end{aligned}
$$

Time derivative of a rotation matrix

- let $R=R(t)$ be a rotation matrix, given as a function of time
- since $I=R(t) R^{\top}(t)$, taking the time derivative of both sides yields

$$
\begin{aligned}
0 & =\mathrm{d}\left[\mathrm{R}(\mathrm{t}) \mathrm{R}^{\top}(\mathrm{t})\right] / \mathrm{dt}=\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{R}^{\top}(\mathrm{t})+\mathrm{R}(\mathrm{t}) \mathrm{dR}^{\top}(\mathrm{t}) / \mathrm{dt} \\
& =\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{R}^{\top}(\mathrm{t})+\left[\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{R}^{\top}(\mathrm{t})\right]^{\top}
\end{aligned}
$$

thus $d R(t) / d t R^{\top}(t)=S(t)$ is a skew-symmetric matrix

- let $\mathrm{p}(\mathrm{t})=\mathrm{R}(\mathrm{t}) \mathrm{p}^{\prime}$ a vector (with constant norm) rotated over time
- comparing

$$
\begin{aligned}
& \mathrm{dp}(\mathrm{t}) / \mathrm{dt}=\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{p}^{\prime}=\mathrm{S}(\mathrm{t}) \mathrm{R}(\mathrm{t}) \mathrm{p}^{\prime}=\mathrm{S}(\mathrm{t}) \mathrm{p}(\mathrm{t}) \\
& \mathrm{dp}(\mathrm{t}) / \mathrm{dt}=\omega(\mathrm{t}) \times \mathrm{p}(\mathrm{t})=\mathrm{S}(\omega(\mathrm{t})) \mathrm{p}(\mathrm{t})
\end{aligned}
$$

we get $S=S(\omega)$

$$
\dot{\mathrm{R}}=\mathrm{S}(\omega) \mathrm{R} \quad \mathrm{~S}(\omega)=\dot{\mathrm{R}} \mathrm{R}^{\top}
$$

Example

Time derivative of an elementary rotation matrix

$$
\begin{aligned}
\mathrm{R}_{\mathrm{x}}(\phi(\mathrm{t})) & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi(\mathrm{t}) & -\sin \phi(\mathrm{t}) \\
0 & \sin \phi(\mathrm{t}) & \cos \phi(\mathrm{t})
\end{array}\right] \\
\dot{\mathrm{R}}_{\mathrm{x}}(\phi) \mathrm{R}_{\mathrm{x}}^{\top}(\phi) & =\dot{\phi}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\sin \phi & -\cos \phi \\
0 & \cos \phi & -\sin \phi
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\dot{\phi} \\
0 & \dot{\phi} & 0
\end{array}\right]=\mathrm{S}(\omega) \\
\omega & \square=\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Time derivative of RPY angles and ω

$$
R_{R P Y}\left(\alpha_{x \prime} \beta_{y \prime} \gamma_{z}\right)=R_{z Y x^{\prime \prime}}\left(\gamma_{z \prime}, \beta_{y \prime} \alpha_{x}\right)
$$

similar treatment for the other 11 minimal representations...

Robot Jacobian matrices

- analytical Jacobian (obtained by time differentiation)

$$
r=\binom{p}{\phi}=\mathrm{f}_{\mathrm{r}}(\mathrm{q}) \quad \longleftrightarrow \dot{\mathrm{r}}=\binom{\dot{\mathrm{p}}}{\dot{\phi}}=\frac{\partial \mathrm{f}_{\mathrm{r}}(\mathrm{q})}{\partial \mathrm{q}} \dot{\mathrm{q}}=\mathrm{J}_{\mathrm{r}}(\mathrm{q}) \dot{\mathrm{q}}
$$

- geometric Jacobian (no derivatives)

$$
\binom{v}{\omega}=\left(\begin{array}{l}
\dot{p} \\
\omega
\end{array}\right]=\left[\begin{array}{l}
J_{L}(q) \\
J_{A}(q)
\end{array}\right) \dot{q}=J(q) \dot{q}
$$

Analytical Jacobian of planar 2R arm

direct kinematics
$\dot{\mathrm{p}}_{\mathrm{x}}=-\mathrm{I}_{1} \mathrm{~s}_{1} \dot{\mathrm{q}}_{1}-\mathrm{I}_{2} \mathrm{~s}_{12}\left(\dot{\mathrm{q}}_{1}+\dot{\mathrm{q}}_{2}\right)$
$J_{r}(q)=\left(\begin{array}{cc}-I_{1} s_{1}-I_{2} s_{12} & -I_{2} s_{12} \\ I_{1} c_{1}+I_{2} c_{12} & I_{2} c_{12} \\ \hdashline----- \\ 1 & 1\end{array}\right)$
here, all rotations occur around the same fixed axis z (normal to the plane of motion)

Analytical Jacobian of polar robot

Geometric Jacobian

linear and angular velocity belong to
(linear) vector spaces in R^{3}

Contribution of a prismatic joint

note: joints beyond the i-th one are considered to be "frozen", so that the distal part of the robot is a single rigid body
$J_{\mathrm{Li}}(\mathrm{q}) \dot{\mathrm{q}}_{\mathrm{i}}=\mathrm{z}_{\mathrm{i}-1} \dot{\mathrm{~d}}_{\mathrm{i}}$

Contribution of a revolute joint

Expression of geometric Jacobian

$$
\left(\binom{\dot{\mathrm{p}}_{0, \mathrm{E}}}{\omega_{\mathrm{E}}}=\right)\binom{\mathrm{v}_{\mathrm{E}}}{\omega_{\mathrm{E}}}=\binom{\mathrm{J}_{\mathrm{L}}(\mathrm{q})}{\mathrm{J}_{\mathrm{A}}(\mathrm{q})} \dot{\mathrm{q}}=\left(\begin{array}{lll}
\mathrm{J}_{\mathrm{L} 1}(\mathrm{q}) & \cdots & \mathrm{J}_{\mathrm{Ln}}(\mathrm{q}) \\
\mathrm{J}_{\mathrm{A} 1}(\mathrm{q}) & \cdots & \mathrm{J}_{\mathrm{An}}(\mathrm{q})
\end{array}\right)\left(\begin{array}{c}
\dot{\mathrm{q}}_{1} \\
\vdots \\
\dot{\mathrm{q}}_{\mathrm{n}}
\end{array}\right)
$$

$$
\begin{aligned}
\mathrm{z}_{\mathrm{i}-1} & ={ }^{0} \mathrm{R}_{1}\left(\mathrm{q}_{1}\right) \ldots{ }^{\mathrm{i}-2} \mathrm{R}_{\mathrm{i}-1}\left(\mathrm{q}_{\mathrm{i}-1}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
\mathrm{p}_{\mathrm{i}-1, \mathrm{E}} & =\mathrm{p}_{0, \mathrm{E}}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right)-\mathrm{p}_{0, \mathrm{i}-1}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{i}-1}\right)
\end{aligned}
$$

all vectors should be expressed in the same reference frame (here, the base frame RF_{0})

Example: planar 2R arm

DENAVIT-HARTENBERG table

joint	α_{i}	d_{i}	a_{i}	θ_{i}
1	0	0	l_{1}	q_{1}
2	0	0	l_{2}	q_{2}

$$
{ }^{0} A_{1}=\left(\begin{array}{cccc}
c_{1} & -s_{1} & 0 & \mathrm{l}_{1} c_{1} \\
\mathrm{~s}_{1} & \mathrm{c}_{1} & 0 & \mathrm{l}_{1} \mathrm{~s}_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathrm{p}_{0,1} \quad \mathrm{p}_{1, \mathrm{E}}=\mathrm{p}_{0, \mathrm{E}}-\mathrm{p}_{0,1}
$$

$$
{ }^{0} A_{2}=\left(\begin{array}{cccc}
\mathrm{c}_{12} & -\mathrm{s}_{12} & 0 & \mathrm{I}_{1} \mathrm{c}_{1}+\mathrm{I}_{2} \mathrm{c}_{12} \\
\mathrm{~s}_{12} & \mathrm{c}_{12} & 0 & \mathrm{I}_{1} \mathrm{~s}_{1}+\mathrm{I}_{2} \mathrm{~s}_{12} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \leftarrow \mathrm{p}_{0, \mathrm{E}}
$$

Geometric Jacobian of planar 2R arm

note: the Jacobian is here a 6×2 matrix, thus its maximum rank is 2

at most 2 components of the linear/angular end-effector velocity can be independently assigned

Transformations of the Jacobian matrix

Example: Dexter robot

- 8 R robot manipulator with transmissions by pulleys and steel cables (joints 3 to 8)
- lightweight: only 15 kg in motion
- motors located in second link
- incremental encoders (homing)
- redundancy degree for e-e pose task: n-m=2
- compliant in the interaction with environment

i	$\mathrm{a}(\mathrm{mm})$	$\mathrm{d}(\mathrm{mm})$	$\alpha(\mathrm{rad})$	range $\theta(\mathrm{deg})$
0	0	0	$-\pi / 2$	$[-12.56,179.89]$
1	144	450	$-\pi / 2$	$[-83,84]$
2	0	0	$\pi / 2$	$[7,173]$
3	100	350	$\pi / 2$	$[65,295]$
4	0	0	$-\pi / 2$	$[-174,-3]$
5	24	250	$-\pi / 2$	$[57,265]$
6	0	0	$-\pi / 2$	$[-129.99,-45]$
7	100	0	π	$[-55.05,30]$

Mid-frame Jacobian of Dexter robot

- geometric Jacobian $\left.{ }^{0}\right]_{8}(q)$ is very complex
- "mid-frame" Jacobian ${ }^{4} \mathrm{~J}_{4}(\mathrm{q})$ is relatively simple!

6 rows,
8 columns
$\left.\begin{array}{ccccc}a_{1} s_{3}+d_{3} s_{3} s_{2} & d_{3} c_{3} & 0 & 0 & 0 \\ -a_{3} s_{3} s_{2} & -a_{3} c_{3} & 0 & 0 & 0 \\ -a_{1} c_{3}-d_{3} c_{3} s_{2}-a_{3} c_{2} & d_{3} s_{3} & -a_{3} & 0 & 0 \\ -c_{3} s_{2} & s_{3} & 0 & 0 & -s_{4} \\ c_{2} & 0 & 1 & 0 & c_{4} \\ -s_{3} s_{2} & -c_{3} & 0 & 1 & 0 \\ -a_{5} s_{4}-d_{5} c_{5} c_{4} & -a_{5} s_{5} c_{4} c_{6}+d_{5} s_{5} s_{6} c_{4} \\ d_{5} s_{5} & -a_{5} c_{6} c_{5}+d_{5} c_{5} s_{6} \\ -c_{4} s_{5} & -c_{4} c_{5} s_{6}+s_{4} c_{6} \\ -s_{4} s_{5} & -s_{4} c_{5} s_{6}-c_{4} c_{6} \\ -c_{5} & s_{5} s_{6}\end{array}\right]$

Summary of differential relations

$$
\begin{aligned}
& \dot{\mathrm{p}} \rightleftarrows \mathrm{v} \quad \dot{\mathrm{p}}=\mathrm{v} \\
& \dot{\phi} \rightleftarrows \omega \quad \omega=\omega_{\dot{\phi}_{1}}+\omega_{\dot{\phi}_{2}}+\omega_{\dot{\phi}_{3}}=a_{1} \dot{\phi}_{1}+a_{2}\left(\phi_{1}\right) \dot{\phi}_{2}+a_{4}\left(\phi_{1}, \phi_{2}\right) \dot{\phi}_{3}=T(\phi) \dot{\phi} \\
& \text { (moving) axes of definition for the sequence of rotations } \phi_{i} \\
& r=\binom{\mathrm{p}}{\phi} \quad \Rightarrow \mathrm{~J}(\mathrm{q})=\left(\begin{array}{cc}
\mathrm{I} & 0 \\
0 & \mathrm{~T}(\phi)
\end{array}\right) \mathrm{J}_{\mathrm{r}}(\mathrm{q}) \quad \mathrm{J}_{\mathrm{r}}(\mathrm{q})=\left(\begin{array}{cc}
\mathrm{I} & 0 \\
0 & \mathrm{~T}^{-1}(\phi)
\end{array}\right) \mathrm{J}(\mathrm{q}) \\
& \mathrm{T}(\phi) \text { has always } \Leftrightarrow \text { singularity of the specific } \\
& \text { a singularity minimal representation of orientation } \\
& \dot{\mathrm{R}} \rightleftarrows \omega \\
& \dot{R}=S(\omega) R \quad \Longleftrightarrow \quad \begin{array}{l}
\text { for each column } r_{i} \text { of } R \text { (unit } \\
\text { we have }
\end{array} \dot{r}_{i}=\omega \times r_{i}
\end{aligned}
$$

Acceleration relations (and beyond...)

Higher-order differential kinematics

- differential relations between motion in the joint space and motion in the task space can be established at the second order, third order, ...
- the analytical Jacobian always "weights" the highest-order derivative

$$
1
$$

- the same holds true also for the geometric Jacobian J(q)

Primer on linear algebra

given a matrix J: $\mathrm{m} \times \mathrm{n}$ (m rows, n columns)

- rank $\rho(J)=$ max \# of rows or columns that are linearly independent
- $\rho(\mathrm{J}) \leq \min (\mathrm{m}, \mathrm{n})$ (if equality holds, J has "full rank")
- if $m=n$ and J has full rank, J is "non singular" and the inverse J^{-1} exists
- $\rho(J)=$ dimension of the largest non singular square submatrix of J
- range $\Re(\mathrm{J})=$ vector subspace generated by all possible linear combinations of the columns of J \longleftarrow also called "image" of J

$$
\mathfrak{R}(\mathrm{J})=\left\{\mathrm{v} \in \mathrm{R}^{\mathrm{m}}: \exists \xi \in \mathrm{R}^{\mathrm{n}}, \mathrm{v}=\mathrm{J} \xi\right\}
$$

- $\operatorname{dim}(\Re(J))=\rho(J)$
- kernel $\mathcal{N}(\mathrm{J})=$ vector subspace of all vectors $\xi \in \mathrm{R}^{\mathrm{n}}$ such that $\mathrm{J} \cdot \xi=0$
- $\operatorname{dim}(\aleph(J))=n-\rho(\mathrm{J}) \quad$ also called "null space" of J
- $\Re(J)+\aleph\left(J^{\top}\right)=R^{m} e \Re\left(J^{\top}\right)+\aleph(J)=R^{n}$
- sum of vector subspaces $\mathrm{V}_{1}+\mathrm{V}_{2}=$ vector space where any element v can be written as $v=v_{1}+v_{2}$, with $v_{1} \in V_{1}, v_{2} \in V_{2}$
- all the above quantities/subspaces can be computed using, e.g., Matlab

Robot Jacobian

decomposition in linear subspaces and duality

(in a given configuration q)

Mobility analysis

- $\rho(J)=\rho(J(q)), \mathfrak{R}(J)=\mathfrak{R}(J(q)), \kappa\left(J^{\top}\right)=\kappa\left(J^{\top}(q)\right)$ are locally defined, i.e., they depend on the current configuration q
- $\mathfrak{R}(\mathrm{J}(\mathrm{q}))=$ subspace of all "generalized" velocities (with linear and/or angular components) that can be instantaneously realized by the robot end-effector when varying the joint velocities at the configuration q
- if $\mathrm{J}(\mathrm{q})$ has max rank (typically $=\mathrm{m}$) in the configuration q , the robot end-effector can be moved in any direction of the task space R^{m}
- if $\rho(\mathrm{J}(\mathrm{q}))<m$, there exist directions in R^{m} along which the robot endeffector cannot move (instantaneously!)
- these directions lie in $\mathcal{\aleph}\left(\mathrm{J}^{\top}(\mathrm{q})\right)$, namely the complement of $\Re(\mathrm{J}(\mathrm{q}))$ to the task space R^{m}, which is of dimension $\mathrm{m}-\rho(\mathrm{J}(\mathrm{q})$)
- when $\mathcal{N}(\mathrm{J}(\mathrm{q})) \neq\{0\}$, there exist non-zero joint velocities that produce zero end-effector velocity ("self motions")
- this always happens for $m<n$, i.e., when the robot is redundant for the task

Kinematic singularities

- configurations where the Jacobian loses rank
\Leftrightarrow loss of instantaneous mobility of the robot end-effector
- for $m=n$, they correspond to Cartesian poses at which the number of solutions of the inverse kinematics problem differs from the "generic" case
- "in" a singular configuration, we cannot find a joint velocity that realizes a desired end-effector velocity in an arbitrary direction of the task space
- "close" to a singularity, large joint velocities may be needed to realize some (even small) velocity of the end-effector
- finding and analyzing in advance all singularities of a robot helps in avoiding them during trajectory planning and motion control
- when $\mathrm{m}=\mathrm{n}$: find the configurations q such that $\operatorname{det} \mathrm{J}(\mathrm{q})=0$
- when $m<n$: find the configurations q such that all $m \times m$ minors of J are singular (or, equivalently, such that $\operatorname{det}\left[\mathrm{J}(\mathrm{q}) \mathrm{J}^{\top}(\mathrm{q})\right]=0$)
- finding all singular configurations of a robot with a large number of joints, or the actual "distance" from a singularity, is a hard computational task

Singularities of planar 2R arm

analytical Jacobian

$$
\dot{\mathrm{p}}=\left(\begin{array}{rr}
-\mathrm{I}_{1} \mathrm{~s}_{1}-\mathrm{l}_{2} s_{12} & -\mathrm{I}_{2} s_{12} \\
\mathrm{I}_{1} \mathrm{c}_{1}+\mathrm{l}_{2} \mathrm{c}_{12} & \mathrm{I}_{2} \mathrm{c}_{12}
\end{array}\right) \dot{\mathrm{q}}=\mathrm{J}(\mathrm{q}) \dot{\mathrm{q}}
$$

direct kinematics

$$
\begin{aligned}
& p_{x}=l_{1} c_{1}+l_{2} c_{12} \\
& p_{y}=I_{1} s_{1}+l_{2} s_{12}
\end{aligned}
$$

- singularities: arm is stretched $\left(\mathrm{q}_{2}=0\right)$ or folded $\left(\mathrm{q}_{2}=\pi\right)$
- singular configurations correspond here to Cartesian points on the boundary of the workspace
- in general, these singularities separate regions in the joint space with distinct inverse kinematic solutions (e.g., "elbow up" or "down")

Singularities of polar (RRP) arm

direct kinematics

$$
\mathrm{p}_{\mathrm{x}}=\mathrm{q}_{3} \mathrm{c}_{2} \mathrm{c}_{1}
$$

$$
\mathrm{p}_{\mathrm{y}}=\mathrm{q}_{3} \mathrm{c}_{2} \mathrm{~s}_{1}
$$

$$
\mathrm{p}_{\mathrm{z}}=\mathrm{d}_{1}+\mathrm{q}_{3} \mathrm{~s}_{2}
$$

analytical Jacobian

$$
\dot{p}=\left(\begin{array}{ccc}
-q_{3} s_{1} c_{2} & -q_{3} c_{1} s_{2} & c_{1} c_{2} \\
q_{3} c_{1} c_{2} & -q_{3} s_{1} s_{2} & s_{1} c_{2} \\
0 & q_{3} c_{2} & s_{2}
\end{array}\right) \dot{q}=J(q) \dot{q}
$$

- singularities
- $\mathrm{E}-\mathrm{E}$ is along the z axis $\left(\mathrm{q}_{2}= \pm \pi / 2\right)$: simple singularity \Rightarrow rank $\mathrm{J}=2$
- third link is fully retracted $\left(q_{3}=0\right)$: double singularity \Rightarrow rank J drops to 1
- all singular configurations correspond here to Cartesian points internal to the workspace (supposing no limits for the prismatic joint)

Singularities of robots with spherical wrist

- $n=6$, last three joints are revolute and their axes intersect at a point
- without loss of generality, we set $\mathrm{O}_{6}=\mathrm{W}=$ center of spherical wrist (i.e., choose $\mathrm{d}_{6}=0$ in the DH table)

$$
\mathrm{J}(\mathrm{q})=\left(\begin{array}{ll}
\mathrm{J}_{11} & 0 \\
\mathrm{~J}_{21} & \mathrm{~J}_{22}
\end{array}\right)
$$

- since $\operatorname{det} J\left(q_{1}, \ldots, q_{5}\right)=\operatorname{det} J_{11} \cdot \operatorname{det} J_{22}$, there is a decoupling property
- det $\mathrm{J}_{11}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{3}\right)=0$ provides the arm singularities
- $\operatorname{det} \mathrm{J}_{22}\left(\mathrm{q}_{4}, \mathrm{q}_{5}\right)=0$ provides the wrist singularities
- being $J_{22}=\left[z_{3} z_{4} z_{5}\right]$ (in the geometric Jacobian), wrist singularities correspond to when z_{3}, z_{4} and z_{5} become linearly dependent vectors
\Rightarrow when either $\mathrm{q}_{5}=0$ or $\mathrm{q}_{5}= \pm \pi / 2$
- inversion of J is simpler (block triangular structure)
- the determinant of J will never depend on q_{1} : why?

