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INTRODUCTION

In many applications of graph algorithms, including communication networks, VLSI
design, graphics, and assembly planning, graphs are subject to discrete changes, such
as additions or deletions of edges or vertices. In the last two decades there has been a
growing interest in such dynamically changing graphs, and a whole body of algorithms
and data structures for dynamic graphs has been discovered. This chapter is intended
as an overview of this field.

DEFINITIONS

D1: An update on a graph is an operation that inserts or deletes edges or vertices
of the graph or changes attributes associated with edges or vertices, such as cost or
color.

D2: A dynamic graph is a graph that is undergoing a sequence of updates.

REMARKS

R1: In a typical dynamic graph problem one would like to answer queries on dynamic
graphs, such as, for instance, whether the graph is connected or which is the shortest
path between any two vertices.

R2: The goal of a dynamic graph algorithm is to update efficiently the solution of a
problem after dynamic changes, rather than having to recompute it from scratch each
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time. Given their powerful versatility, it is not surprising that dynamic algorithms and
dynamic data structures are often more difficult to design and analyze than their static
counterparts.

We can classify dynamic graph problems according to the types of updates allowed.

DEFINITIONS

D3: A dynamic graph problem is said to be fully dynamic if the update operations
include unrestricted insertions and deletions of edges or vertices.

D4: A dynamic graph problem is said to be partially dynamic if only one type of
update, either insertions or deletions, is allowed.

D5: A dynamic graph problem is said to be incremental if only insertions are allowed.

D6: A dynamic graph problem is said to be decremental if only deletions are allowed.

REMARKS

R3: In the first part of this work we will present the main algorithmic techniques used
to solve dynamic problems on undirected graphs. To illustrate those techniques, we will
focus particularly on dynamic minimum spanning trees and on connectivity problems.

R4: In the second part of this work we will deal with dynamic problems on directed
graphs, and we will investigate as paradigmatic problems the dynamic maintenance of
transitive closure and shortest paths.

R5: Interestingly enough, dynamic problems on directed graphs seem much harder
to solve than their counterparts on undirected graphs, and require completely different
techniques and tools.

DYNAMIC PROBLEMS ON UNDIRECTED GRAPHS

This part considers fully dynamic algorithms for undirected graphs. These al-
gorithms maintain efficiently some property of a graph that is undergoing structural
changes defined by insertion and deletion of edges, and/or updates of edge costs. To
check the graph property throughout a sequence of these updates, the algorithms must
be prepared to answer queries on the graph property efficiently.

EXAMPLES

E1: The fully dynamic minimum spanning tree problem consists of maintaining a min-
imum spanning forest of a graph during insertions of edges, deletions of edges, and edge
cost changes.

E2: A fully dynamic connectivity algorithm must be able to insert edges, delete edges,
and answer a query on whether the graph is connected, or whether two vertices are in
the same connected component.

REMARKS

R6: The goal of a dynamic algorithm is to minimize the amount of recomputation
required after each update.



Section 10.2 Dynamic Graph Algorithms 3

R7: All the dynamic algorithms that we describe are able to maintain dynamically
the graph property at a cost (per update operation) which is significantly smaller than
the cost of recomputing the graph property from scratch.

In the remainder of this part, first we present general techniques and tools used in
designing dynamic algorithms on undirected graphs (Section 10.2.1), and then we sur-
vey the fastest algorithms for solving two of the most fundamental graph problems:
connectivity (Section 10.2.2) and minimum spanning trees (Section 10.2.3).

10.2.1 General Techniques for Undirected Graphs

Many of the algorithms proposed in the literature use the same general techniques,
and hence we begin by describing these techniques. As a common theme, most of these
techniques use some sort of graph decomposition, and partition either the vertices or the
edges of the graph to be maintained. Moreover, data structures that maintain properties
of dynamically changing trees are often used as building blocks by many dynamic graph
algorithms. The basic update operations are edge insertions and edge deletions. Many
properties of dynamically changing trees have been considered in the literature.

EXAMPLES

E3: The basic query operation is tree membership: while the forest of trees is dynam-
ically changing, we would like to know at any time which tree contains a given vertex,
or whether two vertices are in the same tree. Dynamic tree membership is a special
case of dynamic connectivity in undirected graphs, and indeed in Section 10.2.2 and in
Section 10.2.3 we will see that some of the data structures presented here for trees are
useful for solving the more general problem on graphs.

E4: Other properties that have been considered are finding the parent of a vertex,
the least common ancestor of two vertices, the center or the diameter of a tree [Al-
HoDeTh97,A1HoTh00,SITa83]. When costs are associated either to vertices or to edges,
one could also ask what i1s the minimum or maximum cost in a given path.

In the remainder of this section we first present three different data structures that
maintain properties of dynamically changing trees: topology trees, ET trees, and top
trees. Next, we discuss techniques that can be applied on general undirected graphs:
clustering, sparsification, and randomization. In the course of the presentation, we also
highlight how these techniques have been applied to solve the fully dynamic connectivity
and/or minimum spanning tree problems, and which update and query bounds can be
achieved when they are deployed.

Topology Trees

Topology trees have been introduced by Frederickson [Fr85] to maintain dynamic trees
upon insertions and deletions of edges.

DEFINITIONS

D7: Given a tree T of the forest, a cluster is a connected subgraph of T'.

D8: The cardinality of a cluster is the number of its vertices.

D9: The external degree of a cluster is the number of tree edges incident to it.
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D10: A topology tree is a hierarchical representation of a tree T of the forest: each
level of the topology tree partitions the vertices of T' into clusters. Clusters at level 0
contain one vertex each. Clusters at level £ > 1 form a partition of the vertices of the
tree T’ obtained by shrinking each cluster at level £ — 1 into a single vertex.

REMARK

R8: The basic partition must be suitably chosen so that the topology tree has depth
O(logn) and, during edge insertions and deletions, each level of the topology tree can
be updated by applying only a few local adjustments.

ASSUMPTION

In order to illustrate the solution proposed by Frederickson [Fr85,Fr97], we assume that
T has maximum vertex degree 3: this is without loss of generality, since a standard
transformation can be applied if this is not the case [Ha69].

DEFINITION

D11: A restricted partition of T is a partition of its vertex set V into clusters of
external degree < 3 and cardinality < 2 such that:

(1) Each cluster of external degree 3 has cardinality 1.
(2) Each cluster of external degree < 3 has cardinality at most 2.

(3) No two adjacent clusters can be combined and still satisfy the above.

An example of topology tree, together with the restricted partitions used to obtain its
levels, is given in Figure 10.2.1.

REMARKS

R9: There can be several restricted partitions for a given tree T', based upon different
choices of the vertices to be unioned.

R10: Because of (3), the restricted partition implements a cluster-forming scheme
according to a locally greedy heuristic, which does not always obtain the minimum
number of clusters, but has the advantage of requiring only local adjustments during
updates.

APPROACH

Edge deletion. We sketch how to update the clusters of a restricted partition when
an edge e is deleted from T'. First, removing e splits 7' into two trees, say T and T,
which inherit all of the clusters of T', possibly with the following exceptions.

¢ If e is entirely contained in a cluster, this cluster is no longer connected and therefore
must be split. After the split, we must check whether each of the two resulting
clusters is adjacent to a cluster of tree degree at most 2, and if these two adjacent
clusters together have cardinality < 2. If so, we combine these two clusters in order
to maintain condition (3).

& If e is between two clusters, then no split is needed. However, since the tree degree of
the clusters containing the endpoints of e has been decreased, we must check if each
cluster should be combined with an adjacent cluster, again because of condition (3).
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Figure 10.2.1 Restricted partitions and topology tree of a tree 7.

Edge insertion. Similar local manipulations can be applied to restore invariants (1) -
(3) in Definition D11 in case of edge insertions.

Construction of the topology tree. The levels of the topology tree are built in a
bottom up fashion by repeatedly applying the locally greedy heuristic.

Update of the topology tree. Each level can be updated upon insertions and dele-
tions of edges in tree T by applying few locally greedy adjustments similar to the ones
described before. In particular, a constant number of basic clusters (corresponding to
leaves in the topology tree) are examined: the changes in these basic clusters percolate
up in the topology tree, possibly causing vertex clusters to be regrouped in different
ways.

FACTS

F1: Each level of the topology tree has a number of nodes which is a constant fraction
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of the previous level, and thus the number of levels is O(logn) (see [Fr85,Fr97]).
The fact that only a constant amount of work has to be done on O(logn) topology tree

nodes 1mplies a logarithmic bound on the update time.

F2: (Frederickson’s Theorem) [Fr85] The update of a topology tree because of an edge
insertion or deletion can be supported in O(logn) time.

ET Trees

ET trees have been introduced by Henzinger and King [HeKi99] to work on dynamic
forests whose vertices are associated with weighted or unweighted keys. Updates allow
it to cut arbitrary edges, to insert edges linking different trees of the forest, and to add
or remove the weighted key associated to a vertex. Supported queries are the following:

{ Connected(u,v): tells whether vertices u and v are in the same tree.
& Size(v): returns the number of vertices in the tree that contains v.

¢ Minkey(v): returns a key of minimum weight in the tree that contains v; if keys are
unweighted, an arbitrary key is returned.

DEFINITIONS

D12: An FEuler tour of a tree T is a maximal closed walk over the graph obtained
by replacing each edge of T' by two directed edges with opposite direction. The walk
traverses each edge exactly once; hence, if T" has n vertices, the Euler tour has length
2n — 2 (see Figure 10.2.2).

D13: An ET tree is a dynamic balanced binary tree (see [CLRS01] for a definition of
balanced binary trees) over some Euler tour around 7". Namely, leaves of the balanced
binary tree are the nodes of the Euler Tour, in the same order in which they appear
(see Figure 10.2.2).
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TreeT with djrectedbedges
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Euler Tour of T

ET Tree of T
Figure 10.2.2 Euler Tour and ET Tree of a tree 7.

REMARK

R11: Despite each vertex of T' may occur several times in the Euler tour (an arbitrary
occurrence is marked as representative of the vertex), an ET tree has O(n) nodes.



Section 10.2 Dynamic Graph Algorithms 7

APPROACH

Edge insertion and deletion. If trees in the forest are linked or cut, a constant
number of splits and concatenations allow it to reconstruct the new Euler tour(s); the
ET tree(s) can then be rebalanced by affecting only O(logn) nodes.

Connectivity queries. The query Connected(u, v) can be easily supported in O(log n)
time by finding the roots of the ET trees containing u and v and checking if they coincide.

Size and Minkey queries. To support Size and Minkey queries, each node ¢ of the
ET tree maintains two additional values: the number s(q) of representatives below it
and the minimum weight key k(q) attached to a representative below it. Such values
can be maintained in O(logn) time per update and allow it to answer queries of the
form Size(v) and Minkey(v) in O(logn) time for any vertex v of the forest: the root r
of the ET tree containing v is found and values s(r) and k(r) are returned, respectively.
We refer the interested reader to [HeKi99] for additional details of the method.

FACT

F3: Both updates and queries can be supported in O(logn) time using ET trees
(see [HeKi99]).

Top trees

Top trees have been introduced by Alstrup et al. [AlIHoDeTh97] to maintain efficiently
information about paths in trees, such as, e.g., the maximum weight on the path between
any pair of vertices in a tree. The basic idea is taken from Frederickson’s topology
trees, but instead of partitioning vertices, top trees work by partitioning edges: the
same vertex can then appear in more than one cluster.

DEFINITIONS

D14: Similarly to [Fr85,Fr97], a cluster is a connected subtree of tree T, with the
additional constraint that at most two vertices, called boundary vertices, have edges out
of the subtree.

D15: Two clusters are said to be neighbors if their intersection contains exactly one
vertex.

D16: A top tree of T is a binary tree such that:
{> The leaves and the internal nodes represent edges and clusters of T', respectively.

¢ The subtree represented by an internal node is the union of the subtrees represented
by its two children, which must be neighbors.

¢ The root represents the entire tree T'.
¢ The height is O(logn).

We refer to Figure 10.2.3 for an example of top tree.

APPROACH

Top trees can be maintained under edge insert and delete operations in tree 7' by making
use of two basic Merge and Split operations.
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Tree T: edges are numbered and Clusters of level 1: edges with the
each edge is a cluster of level 0 same label are in the same cluster

Clusters of level 2 Clusters of level 3

Top tree of T

Figure 10.2.3 Clusters and top tree of a tree T.

Merge. It takes two top trees whose roots are neighbor clusters and joins them to form
a unique top tree.

Split. This is the reverse operation, deleting the root of a given top tree.

Edge insertion and deletion. The implementation of an edge insertion/deletion
starts with a sequence of Split of all ancestor clusters of edges whose boundary changes
and finishes with a sequence of Merge. Since an end-point v of an edge has to be already
boundary vertex of the edge if v is not a leaf, each edge insert/delete can change the
boundary of at most two edges, excluding the edge being inserted/deleted.

From [AlHoDeTh97,Fr85] we have:

FACT

F4: (Alstrup et al.) [AlHoDeTh97] For a dynamic forest we can maintain top trees
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of height O(logn) supporting edge insertions and deletions with a sequence of O(logn)
Split and Merge. The sequence itself is identified in O(logn) time.

REMARKS

R12: Top trees are typically used by attaching extra information to their nodes. A
careful choice of the extra information makes it possible to maintain easily path prop-
erties of trees, such as the maximum weight of an edge in the unique path between any
two vertices. We refer the interested reader to [AlHoDeTh97,AlHoTh00,HoDeTh01] for

sample applications.

R13: Top trees are a natural generalization of standard balanced binary trees over
dynamic collections of lists that may be concatenated and split, where each node of the
balanced binary tree represents a segment of a list. In the terminology of top trees, this
is Just a special case of a cluster.

Clustering

The clustering technique has been introduced by Frederickson [Fr85] and is based upon
partitioning the graph into a suitable collection of connected subgraphs, called clusters,
such that each update involves only a small number of such clusters.

REMARKS

R14: Typically, the decomposition defined by the clusters is applied recursively and
the information about the subgraphs is combined with the topology trees described
above.

R15: A refinement of the clustering technique appears in the idea of ambivalent data
structures [Fr97], in which edges can belong to multiple groups, only one of which is
actually selected depending on the topology of the given spanning tree.

EXAMPLE

E5: As an example, we briefly describe the application of clustering to the problem
of maintaining a minimum spanning forest [Fr85]. Let G = (V| E) be a graph with a
designated spanning tree S. Clustering is used for partitioning the vertex set V into
subtrees connected in S| so that each subtree is only adjacent to a few other subtrees.
A topology tree is then used for representing a recursive partition of the tree S. Finally,
a generalization of topology trees, called 2-dimensional topology trees, are formed from
pairs of nodes in the topology tree and allow it to maintain information about the edges

in £\ S [Fr85].

FACTS

F5: Fully dynamic algorithms based only on a single level of clustering obtain typically
time bounds of the order of O(m?/?) (see for instance [Galt92,Ra95]).

When the partition can be applied recursively, better O(m1/2) time bounds can be
achieved by using 2-dimentional topology trees (see, for instance, [Fr85,Fr97]).

F6: (Frederickson’s theorem) [Fr85] The minimum spanning forest of an undirected
graph can be maintained in time O(m1/2) per update, where m is the current number
of edges in the graph.
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REMARKS

R16: We refer the interested reader to [Fr85,Fr97] for details about Frederickson’s
algorithm. With the same technique, an O(ml/z) time bound can be obtained also for
fully dynamic connectivity and 2-edge connectivity [Fr85,Fr97].

R17: The type of clustering used can very problem-dependent, however, and makes
this technique difficult to be used as a black box.

Sparsification

Sparsification is a general technique due to Eppstein et al. [EpGaltNi97] that can be
used as a black box (without having to know the internal details) in order to design
and dynamize graph algorithms. It is a divide-and-conquer technique that allows it to
reduce the dependence on the number of edges in a graph, so that the time bounds
for maintaining some property of the graph match the times for computing in sparse
graphs. More precisely, when the technique is applicable, it speeds up a T'(n, m) time
bound for a graph with n vertices and m edges to T'(n, O(n)), i.e., to the time needed
if the graph were sparse. For instance, if T'(n, m) = O(m'/?), we get a better bound of
O(nl/Q). The technique itself is quite simple. A key concept is the notion of certificate.

DEFINITION

D17: For any graph property P and graph G, a certificate for G is a graph G’ such
that G has property P if and only if G’ has the property.

APPROACH

Let G be a graph with m edges and n vertices. We partition the edges of GG into a
collection of O(m/n) sparse subgraphs, i.e., subgraphs with n vertices and O(n) edges.
The information relevant for each subgraph can be summarized in a sparse certificate.
Certificates are then merged in pairs, producing larger subgraphs which are made sparse
by again computing their certificate. The result is a balanced binary tree in which each
node is represented by a sparse certificate. Each update involves O(log(m/n)) graphs
with O(n) edges each, instead of one graph with m edges.

NOTATION

Throughout log z stands for max(1, log, z), so log(m/n) is never smaller than 1 even if
m < 2n.

REMARKS

There exist two variants of sparsification.

R18: The first variant is used in situations where no previous fully dynamic algorithm
is known. A static algorithm is used for recomputing a sparse certificate in each tree
node affected by an edge update. If the certificates can be found in time O(m +n), this
variant gives time bounds of O(n) per update.

R19: In the second variant, certificates are maintained using a dynamic data structure.
For this to work, a stability property of certificates is needed, to ensure that a small
change in the input graph does not lead to a large change in the certificates. (We refer
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the interested reader to [EpGaltNi97] for a precise definition of stability.) This variant
transforms time bounds of the form O(m?) into O(n?).

DEFINITION

D18: A time bound T'(n) is well-behaved if, for some ¢ < 1, T'(n/2) < ¢T'(n). Well-
behavedness eliminates strange situations in which a time bound fluctuates wildly
with n. For instance, all polynomials are well-behaved.

FACTS

F7: (Eppstein et al.) [EpGaltNi97] Let P be a property for which we can find sparse
certificates in time f(n, m) for some well-behaved f, and such that we can construct
a data structure for testing property P in time g(n,m) which can answer queries in
time ¢(n,m). Then there is a fully dynamic data structure for testing whether a
graph has property P, for which edge insertions and deletions can be performed in

time O(f(n,0(n))) + g(n,0(n)), and for which the query time is ¢(n, O(n)).

F8: (Eppstein et al.) [EpGaltNi97] Let P be a property for which stable sparse certifi-
cates can be maintained in time f(n,m) per update, where f is well-behaved, and for
which there is a data structure for property P with update time g(n, m) and query time
q(n,m). Then P can be maintained in time O(f(n,O(n))) + g(n,0(n)) per update,
with query time q(n, O(n)).

REMARKS

R20: Basically, the first version of sparsification (Fact F7) can be used to dynamize
static algorithms, in which case we only need to compute efficiently sparse certificates,
while the second version (Fact F8) can be used to speed up existing fully dynamic
algorithms, in which case we need to maintain efficiently stable sparse certificates.

R21: Sparsification applies to a wide variety of dynamic graph problems; includ-
ing minimum spanning forests, edge and vertex connectivity. As an example, for
the fully dynamic minimum spanning tree problem, it reduces the update time from

O(m'/?) [Fr85,Fr97] to O(n'/?) [EpGaltNi97].

R22: Since sparsification works on top of a given algorithm, we need not to know
the internal details of this algorithm. Consequently, it can be applied orthogonally to
other data structuring techniques: in a large number of situations both clustering and
sparsification have been combined to produce an efficient dynamic graph algorithm.

Randomization

Clustering and sparsification allow one to design efficient deterministic algorithms for
fully dynamic problems. The last technique we present in this section is due to Henzinger
and King [HeKi99], and allows one to achieve faster update times for some problems by
exploiting the power of randomization.

EXAMPLE

We sketch how the randomization technique works taking the fully dynamic connectivity
problem as an example.
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NOTATION

Let G = (V, E) be a graph to be maintained dynamically, and let ' be a spanning forest
of G. We call edges in F tree edges, and edges in E \ F non-tree edges.

APPROACH

Maintaining spanning forests. Trees in the spanning forests are maintained using
the Euler Tours data structure (ET trees) described above, that allows one to obtain
logarithmic updates and queries within the forest.

Random sampling. A key idea behind the technique of Henzinger and King is the
following: when e is deleted from a tree T', use random sampling among the non-tree
edges incident to 7', in order to find quickly a replacement edge for e, if any.

Graph decomposition. The second key idea is to combine randomization with a
suitable graph decomposition. We maintain an edge decomposition of the current graph
G into O(log n) edge disjoint subgraphs G; = (V, F;). These subgraphs are hierarchically
ordered. The lower levels contain tightly-connected portions of G (i.e., dense edge cuts),
while the higher levels contain loosely-connected portions of G (i.e., sparse cuts). For
each level ¢, a spanning forest for the graph defined by all the edges in levels ¢ or below
is also maintained.

REMARKS

R23: Note that the hard operation is the deletion of a tree edge: indeed, a spanning
forest is easily maintained throughout edge insertions, and deleting a non-tree edge does
not change the forest.

R24: The goal is an update time of O(log3 n): after an edge deletion, in the quest for
a replacement edge, we can afford a number of sampled edges of O(log2 n). However, if
the candidate set of edge e is a small fraction of all non-tree edges which are adjacent to
T, 1t 1s unlikely to find a replacement edge for e among this small sample. If we found
no candidate among the sampled edges, we must check explicitly all the non-tree edges
adjacent to T'. After random sampling has failed to produce a replacement edge, we
need to perform this check explicitly, otherwise we would not be guaranteed to provide
correct answers to the queries.

R25: Since there might be a lot of edges which are adjacent to T, this explicit check
could be an expensive operation, so it should be made a low probability event for the
randomized algorithm. This can produce pathological updates, however, since deleting
all edges in a relatively small candidate set, reinserting them, deleting them again, and
so on will almost surely produce many of those unfortunate events.

R26: The graph decomposition is used to prevent the undesirable behavior described
above. If a spanning forest edge e is deleted from a tree at some level i, random sampling
is used to quickly find a replacement for e at that level. If random sampling succeeds,
the tree is reconnected at level . If random sampling fails, the edges that can replace e
in level 7 form with high probability a sparse cut. These edges are moved to level ¢ 4 1
and the same procedure 1s applied recursively on level 7 + 1.

FACT
F9: (Henzinger and King’s Theorem) [HeKi99] Let G be a graph with mg edges and
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n vertices subject to edge deletions only. A spanning forest of G can be maintained in
O(log® n) expected amortized time per deletion, if there are at least Q(my) deletions.
The time per query is O(logn).

10.2.2 Connectivity

In this section we give a high level description of the fastest deterministic algo-
rithm for the fully dynamic connectivity problem in undirected graphs [HoDeTh01]:
the algorithm, due to Holm, de Lichtenberg and Thorup, answers connectivity queries
in O(logn/loglog n) worst-case running time while supporting edge insertions and dele-
tions in O(log?n) amortized time.

REMARKS

R27: Similarly to te randomized algorithm in [HeKi99], the deterministic algorithm
in [HoDeTh01] maintains a spanning forest F' of the dynamically changing graph G. As
above, we will refer to the edges in F' as tree edges.

FACTS

F10: Let e be a tree edge of forest F', and let T" be the tree of F' containing it. When
e 1s deleted, the two trees 77 and 75 obtained from T after the deletion of e can be
reconnected if and only if there is a non-tree edge in GG with one endpoint in 77 and the
other endpoint in 7T5. We call such an edge a replacement edge for e. In other words, if
there is a replacement edge for e, T' is reconnected via this replacement edge; otherwise,
the deletion of e creates a new connected component in G.

F11: To accommodate systematic search for replacement edges, the algorithm asso-
ciates to each edge e a level £(e) and, based on edge levels, maintains a set of sub-forests
of the spanning forest F': for each level i, forest F; is the sub-forest induced by tree
edges of level > 1.

F12: F=FyD Fy D Fy D ...D Fy, where L denotes the maximum edge level.

F13: [Initially, all edges have level 0; levels are then progressively increased, but never
decreased. The changes of edge levels are accomplished so as to maintain the following
invariants, which obviously hold at the beginning.

INVARIANTS

Invariant (1): F is a maximum spanning forest of G if edge levels are interpreted as
weights.

Invariant (2): The number of nodes in each tree of Fj is at most n/2".

REMARKS

R28: Invariant (1) should be interpreted as follows. Let (u,v) be a non-tree edge of
level £(u,v) and let u - - - v be the unique path between u and v in F' (such a path
exists since F' is a spanning forest of GG). Let e be any edge in u - - - v and let £(e) be
its level. Due to (1), £(e) > #(u,v). Since this holds for each edge in the path, and
by construction Fy, ,) contains all the tree edges of level > £(u,v), the entire path is
contained in Fy, v, i.e., u and v are connected in Fy, 4).
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R29: Tnvariant (2) implies that the maximum number of levels is L < |log, n].

FACTS

F14: When a new edge is inserted, it is given level 0. Its level can be then increased
at most |log, n| times as a consequence of edge deletions.

F15: When a tree edge e = (v, w) of level £(e) is deleted, the algorithm looks for a re-
placement edge at the highest possible level, if any. Due to invariant (1), such a replace-
ment edge has level £ < £(e). Hence, a replacement subroutine Replace((u,w),f(e))
is called with parameters e and £(e). We now sketch the operations performed by this
subroutine.

F16: Replace((u,w),¥) finds a replacement edge of the highest level < ¢ if any. Tf
such a replacement does not exist in level £, we have two cases: if £ > 0, we recurse on
level £ —1; otherwise, £ = 0, and we can conclude that the deletion of (v, w) disconnects
v and w in G.

F17: During the search at level ¢, suitably chosen tree and non-tree edges may be
promoted at higher levels as follows. Let T, and T,, be the trees of forest F; obtained
after deleting (v, w) and let, w.l.o.g., T, be smaller than 7,,. Then T contains at most
n/2t+1 vertices, since T, U Ty, U {(v,w)} was a tree at level £ and due to invariant (2).
Thus, edges in T, of level £ can be promoted at level /41 by maintaining the invariants.
Non-tree edges incident to T are finally visited one by one: if an edge does connect 7,
and T, a replacement edge has been found and the search stops, otherwise its level is
increased by 1.

F18: We maintain an ET-tree, as described in Section 10.2.1, for each tree of each
forest. Consequently, all the basic operations needed to implement edge insertions and
deletions can be supported in O(logn) time.

REMARKS

R30: In addition to inserting and deleting edges from a forest, ET-trees must also
support operations such as finding the tree of a forest that contains a given vertex,
computing the size of a tree, and, more importantly, finding tree edges of level £ in T,
and non-tree edges of level £ incident to 7,. This can be done by augmenting the ET-
trees with a constant amount of information per node: we refer the interested reader
to [HoDeTh01] for details.

R31: Using an amortization argument based on level changes, the claimed O(log2 n)
bound on the update time can be finally proved. Namely, inserting an edge costs
O(logn), as well as increasing its level. Since this can happen O(logn) times, the to-
tal amortized insertion cost, inclusive of level increases, is O(log2 n). With respect to
edge deletions, cutting and linking O(logn) forest has a total cost O(log” n); moreover,
there are O(logn) recursive calls to Replace, each of cost O(logn) plus the cost amor-
tized over level increases. The ET-trees over Fy = F allows it to answer connectivity
queries in O(logn) worst-case time. As shown in [HoDeTh01], this can be reduced to
O(logn/loglogn) by using a O(log n)-ary version of ET-trees.

FACT

F19: (Holm et al.) [HoDeTh01] A dynamic graph G with n vertices can be maintained
upon insertions and deletions of edges using O(log2 n) amortized time per update and
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answering connectivity queries in O(logn/loglogn) worst-case running time.

10.2.3 Minimum Spanning Trees

A few simple changes to the connectivity algorithm presented in Section 10.2.2 are
sufficient to maintain a minimum spanning forest of a weighted undirected graph upon
deletions of edges [HoDeTh01]. A general reduction from [HeKi97] can then be applied
to make the deletions-only algorithm fully dynamic.

Decremental Minimum Spanning Tree
APPROACH

In addition to starting from a minimum spanning forest, the only change concerns
function Replace, that should be implemented so as to consider candidate replacement
edges of level £ in order of increasing weight, and not in arbitrary order. To do so,
the ET-trees from Section 10.2.1 can be augmented so that each node maintains the
minimum weight of a non-tree edge incident to the Euler tour segment below it. All
the operations can still be supported in O(logn) time, yielding the same time bounds
as for connectivity.

We now discuss the correctness of the algorithm. In particular, function Replace re-
turns a replacement edge of minimum weight on the highest possible level: it is not
immediate that such a replacement edge has the minimum weight among all levels.
This can be proved by first showing that the following invariant, proved in [HoDeTh01],
is maintained by the algorithm.

INVARIANT

Invariant (3): Every cycle C has a non-tree edge of maximum weight and minimum
level among all the edges in C.

FACTS

F20: TInvariant (3) can be used to prove that, among all the replacement edges, the
lightest edge is on the maximum level. Let e; and ey be two replacement edges with
w(er) < w(esz), and let C; be the cycle induced by e; in F, i = 1,2. Since F is a minimum
spanning forest, e; has maximum weight among all the edges in C;. In particular, since
by hypothesis w(e1) < w(ez), ea is also the heaviest edge in cycle C = (C;UC2)\ (C1NC3).
Thanks to Invariant (3), ez has minimum level in C, proving that £(ez) < £(e1). Thus,
considering non-tree edges from higher to lower levels is correct.

F21: (Holm et al.) [HoDeTh01] There exists a deletions-only minimum spanning forest

algorithm that can be initialized on a graph with n vertices and m edges and supports
. . 2 .

any sequence of edge deletions in O(mlog” n) total time.

Fully Dynamic Minimum Spanning Tree

The reduction used to obtain a fully dynamic algorithm is a slight generalization of the
construction proposed by Henzinger and King [HeKi97] and works as follows.
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FACTS

F22: (HeKi97,HoDeThO01) Suppose we have a deletions-only minimum spanning tree
algorithm that, for any k& and [, can be initialized on a graph with &k vertices and [
edges and supports any sequence of Q(!) deletions in total time O({ - t(k,!)), where ¢ is
a non-decreasing function. Then there exists a fully-dynamic minimum spanning tree
algorithm for a graph with n nodes starting with no edges, that, for m edges, supports
updates in time

3+logo,m 4
O | log®n + E Et(min{n,?j},Zj)
i=1 7j=1

We refer the interested reader to [HeKi97] and [HoDeTh01] for the description of the
construction that proves Fact F22. From Fact F21 we get t(k,l) = O(log” k). Hence,
combining Fact F21 and Fact F22, we get the claimed result.

F23: (Holm et al.) [HoDeTh01] There exists a fully-dynamic minimum spanning forest
algorithm that, for a graph with n vertices, starting with no edges, maintains a minimum
spanning forest in O(log4 n) amortized time per edge insertion or deletion.

DYNAMIC PROBLEMS ON DIRECTED GRAPHS

In this section we survey the newest results for dynamic problems on directed
graphs. In particular, we focus on two of the most fundamental problems: transitive
closure and shortest paths. These problems play a crucial role in many applications, in-
cluding network optimization and routing, traffic information systems, databases, com-
pilers, garbage collection, interactive verification systems, industrial robotics, dataflow
analysis, and document formatting.

We first present general techniques and tools used in designing dynamic path prob-
lems on directed graphs (Section 10.2.4), and then we address the newest results for dy-
namic transitive closure and dynamic shortest paths (Section 10.2.5 and Section 10.2.6,
respectively). In the first problem, the goal is to maintain reachability information in
a directed graph subject to insertions and deletions of edges. The fastest known algo-
rithms support graph updates in quadratic (or near-quadratic) time and reachability
queries in constant time [Delt00,Ki99]. In the second problem, we wish to maintain
information about shortest paths in a directed graph subject to insertion and deletion
of edges, or updates of edge weights. Similarly to dynamic transitive closure, this can
be done in near-quadratic time per update and optimal time per query [Delt03].

10.2.4 General Techniques for Directed Graphs

In this section we discuss the main techniques used to solve dynamic path problems
on directed graphs. We first address combinatorial and algebraic properties, and then
we consider some efficient data structures, which are used as building blocks in designing
dynamic algorithms for transitive closure and shortest paths.

Path Problems and Kleene Closures

Path problems such as transitive closure and shortest paths are tightly related to
matrix sum and matrix multiplication over a closed semiring (see [CoLeRiSt01] for more
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details). In particular, the transitive closure of a directed graph can be obtained from the
adjacency matrix of the graph via operations on the semiring of Boolean matrices, that
we denote by {+,-,0, 1}. In this case, + and - denote the usual sum and multiplication
over Boolean matrices.

FACT

F24: Let G = (V, E) be a directed graph and let TC(G) be the (reflexive) transitive
closure of G. If X is the Boolean adjacency matrix of (G, then the Boolean adjacency
matrix of T'C'(G) is the Kleene closure of X on the {+,+,0, 1} Boolean semiring;:

n—1
X* = ;X

REMARK

R32: Similarly, shortest path distances in a directed graph with real-valued edge
weights can be obtained from the weight matrix of the graph via operations on the semir-
ing of real-valued matrices, that we denote by {®, ®, R}, or more simply by {min, +}.

NOTATION

Here, R is the set of real values and @ and ©® are defined as follows. Given two
real-valued matrices A and B, C' = A ® B is the matrix product such that C[z,y] =
mini<.<p{A[z, 2] + Blz,y]} and D = A @ B is the matrix sum such that D[z, y] =
min{A[z, y], B[z, y]}. We also denote by AB the product A ® B and by AB[z,y] entry
(z,y) of matrix AB.

FACT

F25: Let G = (V, E) be a weighted directed graph with no negative-length cycles.
If X is a weight matrix such that X[z,y] is the weight of edge (z,y) in G, then the
distance matrix of G is the Kleene closure of X on the {®,®, R} semiring:

APPROACH

We now briefly recall two well-known methods for computing the Kleene closure X* of
X. In the following, we assume that X is an n x n matrix.

Logarithmic Decomposition. A simple method to compute X*, based on repeated
squaring, requires O(n” - logn) worst-case time, where O(n#) is the time required for
computing the product of two matrices over a closed semiring.

FACT

F26: The method performs log, n sums and products of the form X; 11 = X; + X?Z,
where X = Xg and X* = Xjog, n.

Recursive Decomposition. Another method, due to Munro [Mu71], is based on a
Divide and Conquer strategy and computes X* in O(n*) worst-case time.
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FACT

F27: Munro observed that, if we partition X in four submatrices A, B, D, C of size
n/2 x n/2 (considered in clockwise order), and X* similarly in four submatrices F,
F, H, G of size n/2 x n/2, then X* is defined recursively according to the following
equations:

E=(A+BD*C)*
F=FEBD*
G=D'CE
H=D"+4+D'CEBD*

REMARK

R33: Surprisingly, using this decomposition the cost of computing X* starting from
X is asymptotically the same as the cost of multiplying two matrices over a closed
semiring.

Uniform Paths

In this section we address some combinatorial properties of shortest paths in di-
rected graphs that have been recently discovered by Demetrescu and Ttaliano [Delt03].
In particular, we consider shortest paths as a special case of a broader class of paths
called uniform paths.

DEFINITION

D19: A path 7 in a graph is uniform if every proper subpath of 7 is a shortest path.

REMARKS

R34: As an alternative equivalent definition, a path 7, is uniform in a graph if every
edge (u,v) in 7y satisfies the relation dgy + Wyy + dyy = W(Tzy), where dgyy denotes the
distance between vertex z and vertex y in the graph, wy, is the weight of edge (u, v), and
w(myy) is the weight of m;,. This accounts for the terminology used in Definition D19.

R35: 1t is not difficult to prove that the number of uniform paths that may change due
to an edge weight update is O(n?) if updates are partially dynamic, i.e., increase-only
or decrease-only.

To characterize how uniform paths change in a fully dynamic graph, we consider
the notions of historical shortest path and potentially uniform path.

DEFINITIONS

D20: A historical shortest path is a path that has been a shortest path at some point
during the sequence of updates, and none of its edges have been updated since then.
Using this notion we can define a superset of uniform paths that are called potentially
uniform paths.

D21: A path m in a graph is potentially uniform if every proper subpath of 7 is a
historical shortest path.

The following lemma addresses the relationship between shortest paths, uniform paths,
historical shortest paths, and potentially uniform paths in a dynamic graph:
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FACT

F28: (Demetrescu and Ttaliano [Delt03]) If we denote by SP, UP, HSP, and PUP
respectively the sets of shortest paths, uniform paths, historical shortest paths, and
potentially uniform paths in a graph, then at any time the following inclusions hold:

SPCUPC PUP and SP C HSP C PUP.

REMARK

R36: Potentially uniform paths exhibit strong combinatorial properties in graphs sub-
ject to (fully) dynamic updates. In particular, it is possible to prove that the number of
paths that become potentially uniform in a graph at each edge weight update depends
on the number of historical shortest paths in the graph.

FACT

F29: (Demetrescu and Ttaliano [Delt03]) Let G be a graph subject to a sequence of
update operations. If at any time throughout the sequence of updates there are at most
O(z) historical shortest paths between each pair of vertices, then the amortized number
of paths that become potentially uniform at each update is O(zn?).

REMARK

R37: To keep changes in potentially uniform paths small, it is then desirable to have
as few historical shortest paths as possible. Indeed, it is possible to transform every
update sequence into a slightly longer equivalent sequence that generates only a few
historical shortest paths. In particular, there exists a simple smoothing strategy that,
given any update sequence Y of length k, produces an operationally equivalent sequence
F () of length O(k log k) that yields only O(log k) historical shortest paths between each
pair of vertices in the graph. We refer the interested reader to [Delt03] for a detailed
description of this smoothing strategy. According to Fact F29, this technique implies
that only O(n?logk) potentially uniform paths change at each edge weight update in
the smoothed sequence F(X).

R38: As elaborated in [Delt03], potentially uniform paths can be maintained very
efficiently. Since by Fact F28 potentially uniform paths include shortest paths, this
yields the fastest known algorithm for fully dynamic all pairs shortest paths.

Long Paths Property

In this section we discuss an intuitive combinatorial property of long paths. Namely,
if we pick a subset S of vertices at random from a graph G, then a sufficiently long path
will intersect S with high probability. This can be very useful in finding a long path by
using short searches.

REMARK

R39: To the best of our knowledge, the long paths property was first given in [GrKn82],
and later on 1t has been used may times in designing efficient algorithms for transitive
closure and shortest paths (see e.g., [Delt01,Ki99,UlYa91,Zw98]).

The following theorem is from [UlYa91].
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FACT

F30: (Ullman and Yannakakis [UlYa91]) Let S C V be a set of vertices chosen uni-
formly at random. Then the probability that a given simple path has a sequence of more
than (enlogn)/|S| vertices, none of which are from S, for any ¢ > 0, is, for sufficiently
large n, bounded by 27%¢ for some positive «.

REMARK

R40: Asshown in [Zw98], it is possible to choose set S deterministically by a reduction
to a hitting set problem [Ch79,Lo75]. A similar technique has also been used in [Ki99].

Reachability Trees

In this section we consider a tree data structure that has been widely used to solve
dynamic path problems on directed graphs.

REMARKS

RA41: The first appearance of this tool dates back to 1981, when Even and Shiloach
showed how to maintain a breadth-first tree of an undirected graph under any sequence
of edge deletions [EvSh81]; they used this as a kernel for decremental connectivity on
undirected graphs.

R42: Later on, Henzinger and King [HeKi99] showed how to adapt this data structure
to fully dynamic transitive closure in directed graphs.

R43: King [Ki99] designed an extension of this tree data structure to weighted directed
graphs for solving fully dynamic all pairs shortest paths.

PROBLEM

In the unweighted directed version, the goal is to maintain information about breadth-
first search (BFS) on a directed graph G undergoing deletions of edges. In particular,
in the context of dynamic path problems, we are interested in maintaining BFS trees of
depth up to d, with d < n. Given a directed graph G = (V, E) and a vertex r € V, we
would like to support any intermixed sequence of the following operations:

DEFINITIONS
D22: Delete(z,y): delete edge (z,y) from G.
D23: Level(u): return the level of vertex u in the BFS tree of depth d rooted at r

(return 400 if u is not reachable from r within distance d_).

In [Ki99] it is shown how to maintain efficiently the BFS levels, supporting any Level
operation in constant time and any sequence of Delete operations in O(md) overall
time:

FACT

F31: (King [Ki99]) Maintaining BFS levels up to depth d from a given root requires
O(md) time in the worst case throughout any sequence of edge deletions in a directed
graph with m initial edges.
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REMARKS

R44: Fact F31 means that maintaining BFS levels requires d times the time needed
for constructing them. Since d < n, we obtain a total bound of O(mn) if there are no
limits on the depth of the BFS levels.

R45: Asit was shown in [HeKi99,Ki99], it is possible to extend the BFS data structure
presented in this section to deal with weighted directed graphs. In this case, a shortest
path tree is maintained in place of BFS levels: after each edge deletion or edge weight

increase, the tree is reconnected by essentially mimicking Dijkstra’s algorithm rather
than BFS. Details can be found in [Ki99].

Matrix Data Structures

In this section, we consider matrix data structures for keeping information about
paths in dynamic directed graphs. As we have seen above (Path Problems and Kleene
Closures), Kleene closures can be constructed by evaluating polynomials over matri-
ces. It is therefore natural to consider data structures for maintaining polynomials of
matrices subject to updates of entries, like the one introduced in [Delt00].

PROBLEM

In the case of Boolean matrices, the problem can be stated as follows. Let P be a
polynomial over n x n Boolean matrices with constant degree, constant number of
terms, and variables Xj ... X;. We wish to maintain a data structure for P subject to
any intermixed sequence of update and query operations of the following kind:

DEFINITIONS

D24: SetRow(i, AX, X;): sets to one the entries in the i-th row of variable X of
polynomial P corresponding to one-valued entries in the i-th row of matrix AX.

D25: SetCol(i,AX, X}): sets to one the entries in the i-th column of variable X3 of
polynomial P corresponding to one-valued entries in the i-th column of matrix AX.

D26: Reset(AX, Xp): resets to zero the entries of variable X3 of polynomial P corre-
sponding to one-valued entries in matrix AX.

D27: Lookup(): returns the maintained value of P.

We add to the previous four operations a further update operation especially de-
signed for maintaining path problems:

D28: LazySet(AX,X;): sets to 1 the entries of variable X, of P corresponding to
one-valued entries in matrix AX. However, the maintained value of P might not be
immediately affected by this operation.

REMARK

R46: Let Cp be the correct value of P that we would have by recomputing it from
scratch after each update, and let Mp be the actual value that we maintain. If no
LazySet operation is ever performed, then always Mp = Cp. Otherwise, Mp is not
necessarily equal to Cp, and we guarantee the following weaker property on Mp: if
Cplu,v] flips from 0 to 1 due to a SetRow/SetCol operation on a variable X3, then
Mpu,v] flips from 0 to 1 as well. This means that SetRow and SetCol always correctly
reveal new 1’s in the maintained value of P, possibly taking into account the 1’s in-
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serted through previous LazySet operations. This property is crucial for dynamic path
problems.

FACT

F32: (Demetrescu and Ttaliano [Delt00]) Let P be a polynomial with constant degree
of matrices over the Boolean semiring. Any SetRow, SetCol, LazySet, and Reset
operation on a polynomial P can be supported in O(n?) amortized time. Lookup queries
are answered in optimal time.

REMARK

RA47: Similar data structures can be given for settings different from the semiring of
Boolean matrices. In particular, in [Delt01] the problem of maintaining polynomials of
matrices over the {min, +} semiring is addressed.

The running time of operations for maintaining polynomials in this semiring is given
below.

FACT

F33: (Demetrescu and Ttaliano [Delt01]) Let P be a polynomial with constant degree
of matrices over the {min, +} semiring. Any SetRow, SetCol, LazySet, and Reset
operation on variables of P can be supported in O(D - n?) amortized time, where D
is the maximum number of different values assumed by entries of variables during the
sequence of operations. Lookup queries are answered in optimal time.

10.2.5 Dynamic Transitive Closure

In this section we survey the best known algorithms for fully dynamic transitive
closure. Given a directed graph G with n vertices and m edges, the problem consists of
supporting any intermixed sequence of operations of the following kind:

DEFINITIONS
D29: Insert(u,v): insert edge (u,v) in G;
D30: Delete(u,v): delete edge (u,v) from G;

D31: Query(z,y): answer a reachability query by returning “yes” if there is a path
from vertex z to vertex y in G, and “no” otherwise;

FACTS

F34: A simple-minded solution to this problem consists of maintaining the graph
under insertions and deletions, searching if y is reachable from z at any query operation.
This yields O(1) time per update (Insert and Delete), and O(m) time per query, where
m is the current number of edges in the maintained graph.

F35: Another simple-minded solution would be to maintain the Kleene closure of the
adjacency matrix of the graph, rebuilding it from scratch after each update operation.
Using the recursive decomposition of Munro [Mu71] discussed in Section 10.2.4 (Path
Problems and Kleene Closures) and fast matrix multiplication [CoWi90], this takes
constant time per reachability query and O(n") time per update, where w < 2.38 is the
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current best exponent for matrix multiplication.

REMARKS

R48: Despite many years of research in this topic, no better solution to this problem
was known until 1995, when Henzinger and King [HeKi99] proposed a randomized Monte
Carlo algorithm with one-sided error supporting a query time of O(n/logn) and an
amortized update time of O(nm?-58 log? n), where m is the average number of edges in
the graph throughout the whole update sequence. Since m can be as high as O(n?),
their update time is O(n?%log® n).

R49: Khanna, Motwani and Wilson [KhMoWi96] proved that, when a lookahead of
©(n°18) in the updates is permitted, a deterministic update bound of O(n*1'®) can be
achieved.

R50: King and Sagert [KiSa99] showed how to support queries in O(1) time and
updates in O(n?25) time for general directed graphs and O(n?) time for directed acyclic
graphs; their algorithm is randomized with one-sided error.

R51: The bounds of King and Sagert were further improved by King [Ki99], who
exhibited a deterministic algorithm on general digraphs with O(1) query time and
O(n?logn) amortized time per update operations, where updates are insertions of a
set of edges incident to the same vertex and deletions of an arbitrary subset of edges.

R52: Using a different framework, in 2000 Demetrescu and Ttaliano [Delt00] obtained
a deterministic fully dynamic algorithm that achieves O(n?) amortized time per update
for general directed graphs.

R53: We note that each update might change a portion of the transitive closure as
large as Q(n?). Thus, if the transitive closure has to be maintained explicitly after
each update so that queries can be answered with one lookup, O(n?) is the best update
bound one could hope for.

R54: [If one is willing to pay more for queries, Demetrescu and Italiano [Delt00] showed
how to break the O(n?) barrier on the single-operation complexity of fully dynamic
transitive closure: building on a previous path counting technique introduced by King
and Sagert [KiSa99], they devised a randomized algorithm with one-sided error for
directed acyclic graphs that achieves O(n'-*®) worst-case time per update and O(n°-5%)
worst-case time per query.

R55: Other recent results for dynamic transitive closure appear in [RoZw02].

King's O(n?logn) Update Algorithm

In this section we address the algorithm by King [Ki99], who devised the first
deterministic near-quadratic update algorithm for fully dynamic transitive closure.

REMARKS

R56: The algorithm is based on the tree data structure considered in Section 10.2.4
(Tree Data Structures) and on the logarithmic decomposition discussed in Section 10.2.4
(Path Problems and Kleene Closures).

R57: Tt maintains explicitly the transitive closure of a graph G in O(n?logn) amor-
tized time per update, and supports inserting and deleting several edges of the graph
with just one operation.
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R58: Insertion of a bunch of edges incident to a vertex and deletion of any subset of
edges in the graph require asymptotically the same time of inserting/deleting just one

edge.

APPROACH

The algorithm maintains logn + 1 levels: level 7, 0 < ¢ < logn, maintains a graph G;
whose edges represent paths of length up to 2! in the original graph G. Thus, Gy = G
and Gogn is the transitive closure of G.

FACTS

F36: Each level ¢ is built on top of the previous level i —1 by keeping two trees of depth
< 2 rooted at each vertex v of G: an out-tree OUT;(v) maintaining vertices reachable
from v by traversing at most two edges in G;_1, and an in-tree IN;(v) maintaining
vertices that reach v by traversing at most two edges in G;_1. An edge (z,y) will be in
G; if and only if 2 € TN;(v) and y € OUT;(v) for some v.

F37: The 2logn trees IN;(v) and OUT;(v) are maintained with instances of the BFS
tree data structure considered in Section 10.2.4 (Tree Data Structures).

F38: To update the levels after an insertion of edges around a vertex v in G, the
algorithm simply rebuilds 7N;(v) and OUT;(v) for each i, 1 < i < logn, while other
trees are not touched. This means that some trees might not be up to date after an
insertion operation. Nevertheless, any path in G is represented in at least the in/out
trees rooted at the latest updated vertex in the path, so the reachability information 1s
correctly maintained. This idea is the key ingredient of King’s algorithm.

F39: When an edge is deleted from G, it is also deleted from any data structures
IN;(v) and OUT;(v) that contain it. The interested reader can find further details
in [Ki99].

Demetrescu and Italiano’s  O(n?) Update Algorithm
In this section we address the algorithm by Demetrescu and Ttaliano [Delt00].

REMARKS

R59: The algorithm is based on the matrix data structure considered in Section 10.2.4
(Matrix Data Structures) and on the recursive decomposition discussed in Section 10.2.4
(Path Problems and Kleene Closures).

R60: Tt maintains explicitly the transitive closure of a graph in O(n?) amortized time
per update, supporting the same generalized update operations of King’s algorithm, i.e.,
insertion of a bunch of edges incident to a vertex and deletion of any subset of edges in
the graph with just one operation.

R61: This is the best known update bound for fully dynamic transitive closure with
constant query time.

APPROACH

The algorithm maintains the Kleene closure X* of the n x n adjacency matrix X of the
graph as the sum of two matrices X; and Xs.
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NOTATION

Let Vi1 be the subset of vertices of the graph corresponding to the first half of indices of
X, and let V5 contain the remaining vertices.

FACTS

F40: Both matrices X1 and X3 are defined according to Munro’s equations of Sec-
tion 10.2.4 (Path Problems and Kleene Closures), but in such a way that paths appearing
due to an insertion of edges around a vertex in V; are correctly recorded in X;, while
paths that appear due to an insertion of edges around a vertex in V; are correctly
recorded in X3. Thus, neither X; nor X5 encode complete information about X*, but
their sum does.

F41: In more detail, assuming that X is decomposed in sub-matrices A, B, C', D as
explained in Section 10.2.4 (Path Problems and Kleene Closures), and that X;, and
X, are similarly decomposed in sub-matrices Ey, Fy, G1, Hy and Es5, Fy, G, Hs,
the algorithm maintains X; and X5 with the following 8 polynomials using the data
structure discussed in Section 10.2.4 (Matrix Data Structures):

Q = A+ BP?C Ey = E1BHZCE,

F, = E!BP Fy= E1BH?

Gy = PCE? G2 = HZCE,

H, = PCE?BP R=D+ CE}B
where P = D*, F; = Q*, and Hy = R* are Kleene closures maintained recursively as
smaller instances of the problem of size n/2 x n/2.

F42: To support an insertion of edges around a vertex in V7, strict updates are per-
formed on polynomials @, Fi, Gy, and H; using SetRow and SetCol, while Fy, Fy, G,
and R are updated with LazySet.

F43: [Insertions around V3 are performed symmetrically, while deletions are supported
via Reset operations on each polynomial in the recursive decomposition.

F44: Finally, P, E1, and H, are updated recursively. The interested reader can find
the low-level details of the method in [Delt00].

10.2.6 Dynamic Shortest Paths

In this section we survey the best known algorithms for fully dynamic all pairs
shortest paths (in short APSP). Given a weighted directed graph G with n vertices and
m edges, the problem consists of supporting any intermixed sequence of operations of
the following kind:

DEFINITIONS

D32: Update(u,v,w): updates the weight of edge (u,v) in G to the new value w (if
w = +oo this corresponds to edge deletion);

D33: Query(z,y): returns the distance from vertex z to vertex y in G, or +o0 if no
path between them exists;
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REMARKS

R62: The dynamic maintenance of shortest paths has a remarkably long history, as
the first papers date back to 35 years ago [Lo67,Mu67,Ro68]. After that, many dynamic
shortest paths algorithms have been proposed (see, e.g., [EvGa85,FrMaNa98 FrMaNa00,
RaRe96a,RaRe96b,Ro85]), but their running times in the worst case were comparable
to recomputing APSP from scratch.

R63: The first dynamic shortest path algorithms which are provably faster than re-
computing APSP from scratch, only worked on graphs with small integer weights.

R64: In particular, Ausiello et al. [AultMaNa91] proposed a decrease-only shortest
path algorithm for directed graphs having positive integer weights less than C: the
amortized running time of their algorithm is O(Cnlogn) per edge insertion.

R65: Henzinger et al. [HeKiRaSu97] designed a fully dynamic algorithm for APSP
on planar graphs with integer weights, with a running time of O(n*/3log(nC)) per
operation.

R66: This bound has been improved by Fakcharoemphol and Rao in [FaRa01], who
designed a fully dynamic algorithm for single-source shortest paths in planar directed
graphs that supports both queries and edge weight updates in 0(714/5 logl‘o’/5 n) amor-
tized time per edge operation.

R67: The first big step on general graphs and integer weights was made by King [Ki99],
who presented a fully dynamic algorithm for maintaining all pairs shortest paths in
directed graphs with positive integer weights less than C: the running time of her

algorithm is O(n?®\/CTlogn) per update.

R68: Demetrescu and Ttaliano [Delt01] gave the first algorithm for fully dynamic
APSP on general directed graphs with real weights assuming that each edge weight can
attain a limited number S of different real values throughout the sequence of updates.
In particular, the algorithm supports each update in O(n2‘5\/510g3 n) amortized time
and each query in O(1) worst-case time.

R69: The same authors discovered the first algorithm that solves the fully dynamic all
pairs shortest paths problem in its generality [Delt03]. The algorithm maintains explic-
itly information about shortest paths supporting any edge weight update in O(n? log? n)
amortized time per operation in directed graphs with non-negative real edge weights.
Distance queries are answered with one lookup and actual shortest paths can be recon-
structed in optimal time.

R70: We note that each update might change a portion of the distance matrix as large
as Q(n?). Thus, if the distance matrix has to be maintained explicitly after each update
so that queries can be answered with one lookup, O(n?) is the best update bound one
could hope for.

R71: Other deletions-only algorithms for APSP, in the simpler case of unweighted
graphs, are presented in [BaHaSe(2].

King's O(n?%y/Clogn ) Update Algorithm
In this section we consider the dynamic shortest paths algorithm by King [Ki99].
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REMARKS

R72: The algorithm is based on the long paths property discussed in Section 10.2.4
(Long Paths Property) and on the tree data structure of Section 10.2.4 (Tree Data
Structures).

R73: Similarly to the transitive closure algorithms described in Section 10.2.5, gener-
alized update operations are supported within the same bounds; i.e., insertion (or weight
decrease) of a bunch of edges incident to a vertex, and deletion (or weight increase) of
any subset of edges in the graph with just one operation.

APPROACH

The main idea of the algorithm is to maintain dynamically all pairs shortest paths up
to a distance d, and to recompute longer shortest paths from scratch at each update
by stitching together shortest paths of length < d. For the sake of simplicity, we only
consider the case of unweighted graphs: an extension to deal with positive integer
weights less than C' is described in [Ki99].

FACTS

F45: To maintain shortest paths up to distance d, similarly to the transitive closure
algorithm by King described in Section 10.2.5, the algorithm keeps a pair of in/out
shortest paths trees TN (v) and OUT(v) of depth < d rooted at each vertex v. Trees
IN(v) and OUT(v) are maintained with the decremental data structure mentioned in
Section 10.2.4 (Tree Data Structures). It is easy to prove that, if the distance d,,
between any pair of vertices z and y is at most d, then d;, is equal to the minimum of
dyy + dyy over all vertices v such that z € IN(v) and y € OUT (v). To support updates,
insertions of edges around a vertex v are handled by rebuilding only IN (v) and OUT(v),
while edge deletions are performed via operations on any trees that contain them. The
amortized cost of such updates is O(n?d) per operation.

F46: To maintain shortest paths longer than d, the algorithm exploits the long paths
property of Fact F30: in particular, it hinges on the observation that, if H is a random
subset of ©((nlogn)/d) vertices in the graph, then the probability of finding more than
d consecutive vertices in a path, none of which are from H, is very small. Thus, if we
look at vertices in H as “hubs”, then any shortest path from z to y of length > d can be
obtained by stitching together shortest subpaths of length < d that first go from z to
a vertex in H, then jump between vertices in H, and eventually reach y from a vertex
in H. This can be done by first computing shortest paths only between vertices in H
using any cubic-time static all-pairs shortest paths algorithm, and then by extending
them at both endpoints with shortest paths of length < d to reach all other vertices.
This stitching operations requires O(n?|H|) = O((n®logn)/d) time.

F47: Choosing d = +/nlogn yields an O(n?5y/logn) amortized update time. As
mentioned in Section 10.2.4 (Long Paths Property), since H can be computed deter-
ministically, the algorithm can be derandomized. The interested reader can find further
details on the algorithm in [Ki99].

Demetrescu and Italiano’s  O(n?log” n) Update Algorithm

In this section we address the algorithm by Demetrescu and Ttaliano [Delt03], who
devised the first deterministic near-quadratic update algorithm for fully dynamic all-
pairs shortest paths. This algorithm is also the first solution to the problem in its



28 Chapter 10 COMPUTER SCIENCE

generality.

REMARK

R74: The algorithm is based on the notions of uniform path, potentially uniform path,
and historical shortest paths in a graph subject to a sequence of updates, as discussed
in Section 10.2.4 (Uniform Paths).

APPROACH

The main idea is to maintain dynamically the potentially uniform paths of the graph
in a data structure. Since by Fact F28 shortest paths are potentially uniform, this
guarantees that information about shortest paths is maintained as well.

FACTS

F48: To support an edge weight update operation, the algorithm implements the
smoothing strategy mentioned in Section 10.2.4 (Uniform Paths) and works in two
phases. It first removes from the data structure all maintained paths that contain the
updated edge: this is correct since historical shortest paths, in view of their definition,
are immediately invalidated as soon as they are touched by an update. This means
that also potentially uniform paths that contain them are invalidated and have to be
removed from the data structure. As a second phase, the algorithm runs an all-pairs
modification of Dijkstra’s algorithm [Di59], where at each step a shortest path with
minimum weight i1s extracted from a priority queue and it 1s combined with existing
historical shortest paths to form new potentially uniform paths. At the end of this
phase, paths that become potentially uniform after the update are correctly inserted in
the data structure.

F49: The update algorithm spends constant time for each of the O(zn?) new poten-
tially uniform path (see Fact F29). Since the smoothing strategy lets z = O(logn) and
increases the length of the sequence of updates by an additional O(logn) factor, this
yields O(n? log? n) amortized time per update. The interested reader can find further
details about the algorithm in [Delt03].

RESEARCH ISSUES

In this work we have surveyed the algorithmic techniques underlying the fastest
known dynamic graph algorithms for several problems, both on undirected and on di-
rected graphs. Most of the algorithms that we have presented achieve bounds that
are close to optimum. In particular, we have presented fully dynamic algorithms
with polylogarithmic amortized time bounds for connectivity and minimum spanning
trees [HoDeTh01] on undirected graphs. It remains an interesting open problem to show
whether polylogarithmic update bounds can be achieved also in the worst case: we recall
that for both problems the current best worst-case bound is O(y/n ) per update, and it
is obtained with the sparsification technique [EpGaltNi97] described in Section 10.2.1.

For directed graphs, we have shown how to achieve constant-time query bounds
and nearly-quadratic update bounds for transitive closure and all pairs shortest paths.
These bounds are close to optimal in the sense that one update can make as many as
Q(n?) changes to the transitive closure and to the all pairs shortest paths matrices.
However, if the problem 1is just to maintain reachability or shortest paths between two
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fixed vertices s and ¢, no solution better that the static is known. Furthermore, if
one is willing to pay more for queries, Demetrescu and Italiano [Delt00] have shown
how to break the O(n?) barrier on the single-operation complexity of fully dynamic
transitive closure for directed acyclic graphs. It remains an interesting open problem
to show whether effective query/update tradeoffs can be achieved for general graphs
and for shortest paths problems. Furthermore, can we solve efficiently fully dynamic
single-source shortest paths on general graphs?

Finally, dynamic algorithms for other fundamental problems such as matching and
flow problems deserve further investigation.

10.2.7 Further Information

Research on dynamic graph algorithms is published in many computer science jour-
nals, including Algorithmica, Journal of ACM , Journal of Algorithms, Journal of Com-
puter and System Science, SIAM Journal on Computing and Theoretical Computer
Science. Work on this area is published also in the proceedings of general theoretical
computer science conferences, such as the ACM Symposium on Theory of Computing
(STOC), the IEEE Symposium on Foundations of Computer Science (FOCS) and the
International Colloquium on Automata, Languages and Programming (ICALP). More
specialized conferences devoted exclusively to algorithms are the ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), and the European Symposium on Algorithms
(ESA).
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GLOSSARY

Certificate: For any graph property P, and graph G, a certificate for G is a graph G’
such that G has property P if and only if G’ has the property.

Clustering: Technique used in the design of dynamic algorithms based on partitioning
the graph into a suitable collection of connected subgraphs, called clusters, such that
each update involves only a small number of such clusters.

ET-Tree: Dynamic balanced binary tree over some Euler tour around another tree.

Fully Dynamic Graph Problem: Problem where the update operations include
unrestricted insertions and deletions of edges.

Historical Shortest Path — of a graph G: Path that has been a shortest path at some
point during a sequence of updates of the graph, and such that none of its edges
have been updated since then.

In-tree: Tree representing paths of a graph that lead to a given vertex.
Out-tree: Tree representing paths of a graph that originate from a given vertex.

Partially Dynamic Graph Problem: Problem where the update operations in-
clude either edge insertions/weight-decreases (incremental) or edge deletions/weight-
increases (decremental).

Potentially Uniform Path - of a graph G: Path such that every proper subpath is
a historical shortest path.

Sparsification: Technique for speeding up dynamic graph algorithms, which when
applicable transforms a time bound of T'(n,m) into O(T'(n,n)), where m is the
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number of edges, and n is the number of vertices of the given graph.

Top Tree: Tree that describes a hierarchical partition of the edges of another tree, well
suited to maintaining path information.

Topology Tree: Tree that describes a hierarchical balanced decomposition of another
tree, according to its topology.

Uniform Path - of a graph GG: Path such that every proper subpath is a shortest path.



