
A System for Building Animated Presentations over the Web ∗

Benedetto A. Colombo† Camil Demetrescu‡ Irene Finocchi§ Luigi Laura¶

Abstract

We describe Leonardo Web, a collection of tools
for building animated presentations that can be useful
for teaching, disseminating, and e-learning. Presenta-
tions can be created via the combined use of a visual
editor and a Java library. The library allows it to gen-
erate animations in a batch fashion directly from Java
code according to an imperative specification style.
Batch-generated animations can then be refined and
customized using the editor. Presentations can be fi-
nally viewed with a simple Java player, which ships
both as a stand-alone application for off-line deploy-
ment and as a Java applet embedded in a Web page.
The player supports step-by-step and continuous exe-
cution, reversibility, speed selection, and smooth ani-
mation.

∗This work has been partially supported by the IST Programme
of the EU under contract n. IST-1999-14.186 (ALCOM-FT) and
by the Italian Ministry of University and Research (Project“AL-
INWEB: Algorithms for Internet and the Web”).

†Dipartimento di Informatica e Sistemistica, Università degli
Studi di Roma “La Sapienza”, Via Salaria 113, 00198 Roma, Italy.
Email: ba.colombo@tiscali.it .

‡Dipartimento di Informatica e Sistemistica, Università degli
Studi di Roma “La Sapienza”, Via Salaria 113, 00198 Roma,
Italy. Email: demetres@dis.uniroma1.it . URL:
http://www.dis.uniroma1.it/˜demetres .

§Dipartimento di Informatica, Sistemi e Pro-
duzione, Università degli Studi di Roma “Tor Ver-
gata”, Via di Tor Vergata 110, 00133 Roma, Italy.
Email: finocchi@disp.uniroma2.it . URL:
http://www.disp.uniroma2.it/users/finocchi/ .

¶Dipartimento di Informatica e Sistemistica, Università
degli Studi di Roma “La Sapienza”, Via Salaria 113, 00198
Roma, Italy. Email: laura@dis.uniroma1.it . URL:
http://www.dis.uniroma1.it/˜laura .

1 Introduction

Interactive animations are a valuable tool for teach-
ing and learning: they can be used by algorithm re-
searchers who want to share and disseminate their
ideas, by lecturers to liven up lectures, to demonstrate
the behavior of complex systems, or to portray the dy-
namic aspects of some topic of interest, and by stu-
dents for individual experiments, so as to deepen the
knowledge acquired in the lectures. Realizing illustra-
tive computer-based learning material is usually very
expensive [4, 8], and the task is even more cumber-
some if one wants animations to be portable across dif-
ferent platforms. Instructors who wish to prepare ani-
mated presentations are typically required to use some
commercial general-purpose tool, or even to write ad-
hoc computer programs: this might be difficult and
time-consuming. For instance, using tools such as Mi-
crosoft PowerPoint, which provides a flexible support
for creating animated slides, may be hard if complex
animations are to be produced. On the other hand,
specialized tools, such as Macromedia Flash, can be
used to create highly customized animations, but may
have a steep learning curve. Creating animated GIFs
of MPEG movies might be even harder and limits the
user interaction possibilities. In this context, exploit-
ing Web-based technologies for education seems to
be a quite natural solution [3, 10, 14, 16]. However,
as detailed in Section 2, the quest for simple, light,
and easy-to-use tools for building general-purpose an-
imated presentations over the Web still demands for
further efforts.

In this paper we describe Leonardo Web, a col-
lection of Web-based tools for creating animations
that can be useful for teaching, disseminating, and e-
learning. Animated presentations can be created with
a specialized visual editor and viewed with a simple
Java player, which is available both as a stand-alone

application for off-line deployment and as a Java ap-
plet. The player supports step-by-step and continuous
execution of animations, which can be run both for-
ward and backward at different speeds. To support
visualization of algorithmic concepts, Leonardo Web
also provides a library that can be used to generate ani-
mations directly from Java algorithm implementations
according to an imperative style, i.e., by inserting calls
to graphical routines in the points of the code where
the events of interest take place. Presentations created
with Leonardo Web, which include text, 2D graphics,
and bitmapped images with smooth animation effects,
ship as plain text files written in a simple scripting lan-
guage. Animation scripts are small and compact, and
can specify highly complex graphical scenes. Batch-
generated animations can be easily refined and cus-
tomized using the editor. Leonardo Web is written in
Java and is made of three main components:

• The Builder: a visual editor, which can be used to
build and edit presentations;

• The Player: a viewer for Leonardo Web presen-
tations, which can be used both as a Java stand-
alone application and over the Web as a Java ap-
plet;

• The Library: a Java library that supports creation
of batch-generated animation scripts using Java
programs as drivers. Animations created in this
way can be further refined using the Builder.

Up to date information about Leonardo Web
tools can be found at the Web sitehttp://
www.dis.uniroma1.it/˜leoweb .

The rest of this paper is organized as follows. In
Section 2 we discuss the most common approaches
to creating animations over the Web and present re-
cent related work. In Section 3 we describe the main
components of Leonardo Web, discussing their main
features and the overall design of the system. In Sec-
tion 5 we address different scenarios that show how
Leonardo Web can be used to create presentations for
educational and dissemination purposes. Section 6
gives concluding remarks and discusses directions for
future work.

2 Related work

Despite the impressive rise of Web authoring appli-
cations in the last years, creating animated presenta-
tions as a support for e-learning and teaching over the
Web still remains a challenging task. The most popu-
lar trend is to write ad-hoc Java applets that display the
desired animations (see, e.g., [1, 13, 17, 22]). With this
technique, highly customized and interactive presenta-
tions can be obtained, but preparing them may be long
and boring. Creating presentations of computer sci-
ence concepts has motivated researchers to think about
ways to automate (or at least to simplify) the process of
visualizing, e.g., how programs and algorithms work.
In particular, a few Web-based systems can be found
in the literature.

JEliot [11] automatically produces visualizations of
Java programs by parsing the Java code and allow-
ing the user to choose a subset of variables to visu-
alize on the stage according to built-in graphical in-
terpretations. It relieves the user from writing any vi-
sualization code and is very easy to use, but lacks in
customization possibilities and abstraction. Thus, it
is mostly useful to illustrate basic programming con-
cepts. JDSL [2] is a Java library of data structures that
features a visualizer for animating operations on ab-
stract data types such as AVL trees, heaps, and red-
black trees [6]. It is well suited for educational pur-
poses, as students are allowed to write and test their
own classes provided they implement specific JDSL
Java interfaces. The visualization of supported data
types, however, is embedded into the library and can-
not be changed. VEGA [12] is a C++ client/server vi-
sualization environment especially targeted to portray-
ing geometric algorithms: while the algorithm is exe-
cuted on the server, the clients runs on any Java Vir-
tual Machine and a small bandwidth communication
interface guarantees good performance even on slow
networks. The end-user can visualize algorithms on-
line or show saved runs off-line, and can customize
the visualization by specifying a suitable set of view
attributes. WAVE [7] is an algorithm visualization tool
based on a publication-driven approach: algorithms
run on a developer’s remote server and their data struc-
tures are published on blackboards held by the clients.
Animations are specified by attaching visualization
handlers to the data structures published on the client’s

blackboard: modifications to these structures, due to
the remote algorithm execution, trigger the running of
the corresponding handlers on the client’s side. Other
Web-based algorithm animation tools are mentioned
in [9, 21].

In order to realize an animated presentation, all
those systems hinge upon the existence of an under-
lying running program and are tied to a specific pro-
gramming language. The Samba package [19], and its
Web-based follow up JSamba, represent a first effort
towards a language-independent solution to algorithm
animation. Samba provides an interpreted front-end to
the Tango system [20] and uses a scripting-based ap-
proach: it reads an ASCII file, one command per line,
in order to acquire directions for creating an animation.
Thus, an algorithm can be easily visualized by placing
print statements in the underlying program, which can
be implemented in any language. Unfortunately, this
often requires to take into account very low-level de-
tails about the visualization, e.g., explicitly specifying
the position of objects in the graphical scene: wrap-
ping the print statements into calls to methods of a
more abstract library would instead hide some of these
tedious details.

In many cases it would be quite useful to be able to
animate high-level concepts, independently of a spe-
cific algorithm, such as, e.g., rotations in balanced bi-
nary search trees. In this scenario, starting from an
underlying program may be difficult, and a visual edi-
tor to animate these proofs of concepts would be much
useful. A recent release of the JAWAA system [15] ex-
ploits the use of an editor to generate animation traces
in a scripting language similar to that of Samba. How-
ever, it does not support integration of the editor ca-
pabilities with the traditional program-driven anima-
tion approach. Indeed, creating a presentation may be
long and boring using a visual editor only, which in
turn may be useful to refine a visualization skeleton
by adding comments, explanations, and by orchestrat-
ing the overall graphical layout. The ANIMAL sys-
tem [18] was designed to combine visual editing with
batch generation. Unfortunately, the system, which
provides powerful features for creating lecture presen-
tations, seems to be unavailable for Web-based deploy-
ment.

Figure 1. The Leonardo Web Player showing the

Hanoi Towers Challenge.

3 An Overview of Leonardo Web

Leonardo Web is a collection of tools for building
and viewing animated presentations. The system is
written in Java and uses both stand-alone and applet
technologies, allowing users to create and view pre-
sentations off-line, and then easily post them over the
Web for remote access. In this section we describe the
main features of the Leonardo Web tools, addressing
the key aspects of our approach.

3.1 The Builder

Presentations in Leonardo Web can be easily cre-
ated using the Builder, a visual editor for building an-
imations (we refer to Figure 2 for a snapshot). The
tool allows the user to write and maintain a sequence
of key frames, which are the backbone of the presen-
tation. Each frame can contain text and 2D graphical
objects drawn from a vocabulary of elementary geo-
metric shapes, including circles, ellipses, lines, and
rectangles. User-defined bitmapped images can also
be added to the graphical scene. The user can in-
teract with the Builder’s GUI in order to add, resize,
move, and delete graphical objects. The sequence of
key frames in the presentation is shown in a window
as a list of numberedthumbnails, which allow the user
to control the big picture of the presentation and select
individual frames for editing. Each graphical object in
a scene is assigned an identification number and a set
of attributes, including size, position, and color, which
can be individually modified using the object inspec-
tor window. To support smooth animation, objects by
the same identification number in consecutive scenes

are compared, and attribute changes are interpolated
to form a sequence of intermediate frames. The num-
ber of intermediate frames is an attribute of the object
itself, and can be fully controlled by the user.

The Builder can save a presentation as a plain text
file written in a simplescripting language, which spec-
ifies the incremental changes that lead from a key
frame to the successive one. The benefits of using
scripting languages for generating program visualiza-
tions have been pointed out by several authors [15, 18,
19]. In particular, our language was inspired by that of
Samba [19] and JAWAA [15]. The incremental nature
of our scripting language makes presentation scripts
small and compact, and thus amenable to quick down-
load even on slow network connections.

Presentations created with the Builder can be visu-
alized with the Player, as we will see in Section 3.2,
and can be later reopened with the Builder itself, which
reconstructs the sequence of key frames, for additional
editing. Interestingly, the Builder can also open and
modify presentations created in some other way (e.g.,
directly writing a script or using the Library): this al-
lows the users to create and refine presentations via the
combined use of different tools, using the most appro-
priate one in different stages of the animation specifi-
cation process.

The Builder is currently being developed
and tested on different platforms: up to date
information can be found at the Web site
http://www.dis.uniroma1.it/˜leoweb .

3.2 The Player

The Leonardo Web Player has been designed as a
light and easy-to-use presentation viewer. It is able to
interpret text files created by the Builder, and can be
used both as a stand-alone Java application and as an
applet inside a Web page. The graphic user interface
of the Player, shown in Figure 1, is clean and simple,
resembling to a standard VCR control tool. The user
can start, stop, rewind, and play the presentation both
forward and backward. Playing is supported either in a
step-by-step fashion, or continuously. Animated tran-
sitions of graphical objects, including movements and
color changes, are smoothly rendered by the system by
generating sequences of interpolating interframes.

To support effective on-line deployment even on

Figure 2. Using the Builder to prepare an animated

presentation.

slow network connections, the Player is fully multi-
threaded, allowing it to start playing a presenta-
tion even if it has not been completely down-
loaded from the remote peer. Furthermore, the ap-
plet version of the Player is just about 90KB, in-
cluding GUI graphics. This imposes a light bur-
den on the applet startup phase, which is typically
very time-critical. The interested reader can see
the Leonardo Web Player in action at the Web site:
http://www.dis.uniroma1.it/˜leoweb .

3.3 The Library

While the Builder appears to be flexible enough
to support common user’s needs, sometimes presen-
tations include complex animations that portray some
technical aspect of a topic of interest, which might be
difficult to specify visually. In this scenario, it might
be easier to write a program whose execution pro-
duces the desired animation script, rather than having
to specify it directly in the Builder. Still, a script gener-
ated in this way can be later refined and completed us-
ing the Builder. To support this scenario, which will be
addressed in more depth in Section 5, Leonardo Web

public class Bouncing {
 public static void main(String[] args){
 int x=0, y=0, dx=1, dy=1;
 JLeoScript s = new JLeoScript("bouncing.lwb");
 s.newCircle("ball", 0, 0, 10, 200, 0, 0, true);
 s.newRectangle("box", 0, 0, 400, 200, 160, 160, 160, false);
 for (i=0; i<200; i++) {
 if (x==0 && dx<0 || x==14 && dx>0) dx=-dx;
 if (y==0 && dy<0 || y==9 && dy>0) dy=-dy;
 x+=dx; y+=dy;
 s.moveAbsolute("ball", x*20, y*20, 4);
 }
 s.close();
 }
}

Figure 3. Program that generates a “bouncing ball” animatio n script.

provides a Java library (JLeoScript) that provides
primitives for creating presentation scripts.

Available primitives supported by the class
JLeoScript include adding graphical objects to
the scene, deleting existing graphical objects, moving
and resizing objects, and changing color. As an
example, in Figure 3 we show a Java program that
uses theJLeoScript library to generate a simple
animated presentation. The produced script simulates
a ball bouncing in a box as shown in the same figure.
To achieve this goal, the program first creates a
JLeoScript object, specifying the name of the file
to be created, and then adds the ball (newCircle)
and the box (newRectangle) to the scene. Those
graphical objects are defined by specifying a unique
name (e.g., “ball”, “box”), the coordinates of the
left-top corner, the object width and height, the color
in RGB format, and a flag telling whether the object
has to be color-filled. The program then enters a
simulation loop that lets the ball bounce inside the box
(moveAbsolute). Each elementary movement of
the ball is smoothly interpolated using4 interframes.

S
ce

ne
 b

uf
fe

r

Script
parser

Network

LeoWeb Site

Animation Site

Player applet

(thread) (thread)

applet

script

In-betweening +
Playback control

Figure 4. Internal Organization of the Player.

4 Architecture of the System

In this section we briefly describe the internal ar-
chitecture of the Player. Details about the Builder will
be given in the full version of this paper. The struc-
ture of the Player is shown in Figure 4. Two threads
cooperate in playing an animation script: a language
parser and an interactive animation module. As the
applet is loaded from the Leonardo Web site, the lan-
guage parser establishes a connection to the remote
site that contains the desired script, which is loaded
and parsed. In the off-line application version of the
Player, the language parser retrieves the script from a
local disk, rather than from a Web site. The language
parser produces an indexed sequence of scenes, each
of which consists of a list of data records describing
operations on graphical objects. The interactive an-
imation module is activated by the user through the
buttons in the control palette. This module is able to
interpret the operations in the scene buffer according
to the playback direction, incrementally creating inter-
polating interframes for smooth animation rendering.

5 Leonardo Web in Action

In this section we show how Leonardo Web can be
used to prepare a presentation and how animations can
be made available over the Web.

5.1 Preparing a Presentation

We consider different usage scenarios, detailing
how the different parts of the system can be effectively
exploited to achieve the desired result.

public class BubbleSort {
 public static void main(String[] args){
 int[] v = { 3, 7, 2, 5, 9, 1, 4, 8, 6 };
 bubblesort(v);
 }
 private static void bubblesort(int[] v){
 boolean finished;

 do {
 finished = true;
 for (int i=0; i<v.length-1; i++)
 if (v[i]>v[i+1]) {

 int temp = v[i];
 v[i] = v[i+1];
 v[i+1] = temp;
 finished = false;
 }
 } while(!finished);

 }
}

 s.begin();
 s.moveRelative(v[i],20,0,7);
 s.moveRelative(v[i+1],-20,0,7);
 s.end();

 s.close();

 JLeoScript s = new JLeoScript("bubble.lwb");
 s.begin();
 for(int i=0; i<v.length; i++)
 s.newRectangle(v[i],20+i*20,20,18,20*v[i],
 180,180,180,true);
 s.end();

Figure 5. Java implementation of the Bubblesort algorithm.

Using the Builder. Visual editors may be especially
useful to prepare simple animations that illustrate
high-level concepts (e.g., rotations in balanced binary
search trees), as well as to refine more sophisticated
presentations obtained from program execution traces.
Indeed, as noted by Brown and Hershberger, “even
though it may be easy to animate a program, it’s not
so easy to produce an effective and informative visu-
alization” [4]. This requires adding comments, labels,
and a lot of text explanations that are typically quite
boring to be realized. An appealing graphical lay-
out should be orchestrated, other essential graphical
features, such as text color and size, should be cus-
tomized, and their meaning explained. In this context,
we believe that an integrated use of the Library and the
Builder can be very beneficial.

In the following, we briefly describe a usage exam-
ple of the Builder related to the first scenario. Let
us assume that we want to illustrate the idea behind
backtracking by means of a simple toy example: a
mouse in a labyrinth is seeking for its cheese. The
mouse moves along a path in the labyrinth until either
a dead-end street or the cheese is found. In case of
a dead-end street, the mouse backtracks to the near-
est branching and takes a different path. An animation
like this can be easily prepared using the Builder. The
labyrinth is made up of vertical and horizontal lines,
which can be added by means of the object inspector
window. Cheese and mouse can be represented using
two bitmapped images. When a scene is ready, we can

commit it and then obtain the successive one by in-
cremental modification (i.e., we just need to reposition
the mouse). The graphical storyboard allows us to se-
lect any scene, modify it, add a new scene or delete
an existing one. For instance, if we decide to change
the structure of the labyrinth, it suffices to modify the
starting scene and propagate the change to all the suc-
cessive ones. A snapshot of the Builder in use is illus-
trated in Figure 2 and the animation is available from
the Leonardo Web site [5].

Similarly, the Builder can be used in order to refine
an existing animation. In this case, when an existing
presentation is opened, the key frames are parsed and
appear in the graphical storyboard. Any scene can then
be modified, possibly propagating changes to a subset
of the subsequent scenes, and the new animation can
then be saved and played as usual.

Using the Library. Creating a presentation might be
long and boring even using a visual editor. This is es-
pecially true if the content is complex and technical.
For instance, creating a presentation to explain how an
algorithm works on some input data for a Computer
Science class might be hard and even error-prone due
to the difficulty to capture all the aspects of the algo-
rithm execution. A classical approach in algorithm an-
imation [21] consists of using an implementation of
the algorithm to be visualized as a driver, and let it
emit a sequence of events which are turned into graph-

Figure 6. Screenshots of the bubblesort visualization.

ical commands as the implementation runs. This is
typically achieved by annotating the algorithm imple-
mentation with suitable calls to library routines.

To explain how this approach can be supported us-
ing Leonardo Web, let us consider a concrete example.
Suppose that an instructor has to prepare a presenta-
tion showing the Bubblesort algorithm in action. The
starting point will be a Java implementation of the al-
gorithm like the one shown in Figure 5.

A classical visual metaphore for portraying sort-
ing problems displays the array as a sequence of
sticks with height proportional to the array values [21].
Swaps of items are illustrated by exchanging the posi-
tions of the corresponding sticks, and the final sorted
array is displayed as a growing sequence of sticks. The
instructor can annotate the code using the Leonardo
Web Library as shown in the grey boxes in Figure 5.
Running the annotated program produces the desired
animation script, which is shown in Figure 6.

With this approach, the same implementation can
be used to prepare different animated presentations of
the same algorithm on a variety of data sets in order
to show, for instance, the behavior of the algorithm on
worst-case instances. Of course, animations produced
in this way may be further refined, e.g., by adding la-
bels, captions, and other information to focus specific
aspects of the algorithm execution.

5.2 Delivering a Presentation over the Web

Using the applet version of the Player, it is easy to
set up Web pages that include animations created with
Leonardo Web. To explain how this can be done, we
consider again a concrete example. Suppose that the
instructor wants to create a Web page that shows the
bubblesort animation described in Section 5.1, so that
students can view it. To this aim, the only thing she has
to do is to drop the animation script filebubble.lwb
in her website together with a Web page containing an
html tag like the one shown in Figure 7.

When students access the page, the Player applet is
loaded, and the bubblesort animation script is automat-
ically fetched by the applet, allowing students to view
it. Notice that the instructor does not even have to in-
stall the Player in her Web site, since the Web browsers
used by the students will fetch it directly from our site
http://www.dis. uniroma1.it/˜leoweb .

6 Conclusions and Work in Progress

In this paper we have presented Leonardo Web,
a collection of tools for creating and viewing an-
imated presentations. Animations generated with
Leonardo Web include both text and 2D graphics
with smooth animation effects, and ship as com-
pact text files written in a simple scripting language.
The system is written in Java and includes a vi-
sual editor for editing presentations (the Builder),

<applet codebase =
http://www.dis.uniroma1.it/˜leoweb/jlwCode/
code = jLeoWeb.JLeoWeb
archive = "jLeoWeb.jar"
width = 400 height = 470>

<param name = "file" value = "bubble.lwb">
<param name = "gui" value =

"http://www.dis.uniroma1.it/˜leoweb/jlwGui">
</applet>

Figure 7. HTML tag for including the

bubble.lwb presentation in a Web page.

a presentation viewer (the Player), and a Java li-
brary for creating batch-generated animation scripts
(the Library). Presentations can be easily posted
over the Web using the applet version of the Player.
Leonardo Web is freely available over the internet
at http://www.dis.uniroma1.it/˜leoweb .
Differently from previous Web-based systems such as
JAWAA [15], Leonardo Web explores integration of
visual editing and batch generation. As another rel-
evant feature, the Player supports going back to pre-
vious animation frames. Without this feature, which
is rarely implemented, the user has to restart the ani-
mation from the beginning if a transition of interest is
passed over, strongly limiting the effectiveness of the
presentation.

We are currently extending the system in several di-
rections. In particular, we remark that the Builder is
still in a prototype stage, and new features are cur-
rently being added. To allow interested people to mod-
ify and extend the system, we plan to distribute the
source code of Leonardo Web under the terms of the
GNU General Public License (GPL). Furthermore, we
believe that writing converters that generate PostScript
versions of the animations would be a valuable contri-
bution for authors who wish to include storyboards in
their papers. Another useful addition would be export-
ing Leonardo Web presentations in a format readable
by standard tools such as Microsoft PowerPoint.

References

[1] Algorithma. Department of Computer Sci-
ence, California State University, 2000. URL:
http://web.csusb.edu/public/class
/cs455 1/winter2000/index.html .

[2] R.S. Baker, M. Boilen, M.T. Goodrich, R. Tamassia,
and B. Stibel. Testers and Visualizers for Teaching
Data Structures.SIGCSE Bulletin (ACM Special Inter-
est Group on Computer Science Education), 31, 1999.

[3] C.M. Boroni, F.W. Goosey, M.T. Grinder, and R.J.
Ross. A Paradigm Shift! The Internet, The Web,
Browsers, Java, and the Future of Computer Science
Education. SIGCSE Bulletin: Proc. 29th SIGCSE
Technical Symposium on Computer Science Educa-
tion, 30(1):145–149, 1998.

[4] M.H. Brown and J. Hershberger. Color and Sound
in Algorithm Animation. IEEE Computer, 25:52–63,
1992.

[5] B.A. Colombo, C. Demetrescu, I. Finocchi,
and L. Laura. Leonardo Web site, 2003.
http://www.dis.uniroma1.it/˜leoweb .

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C.
Stein. Introduction to Algorithms. McGraw-Hill,
2001.

[7] C. Demetrescu, I. Finocchi, and G. Liotta. Visualizing
Algorithms over the Web with the Publication-driven
Approach. InProc. of the 4-th Workshop on Algorithm
Engineering (WAE’00), LNCS 1982, pages 147–158,
2000.

[8] A. Diaz de Ilarraza Sanchez and I. Fernandez de Cas-
tro, editors.Proceedings of the 3rd Int. Conference on
Computer-Aided Learning and Instruction in Science
and Engineering, Spain, July 1996.

[9] S. Diehl, editor.Software Visualization. LNCS 2269.
Springer Verlag, 2001.

[10] J. Domingue and P. Mulholland. An Effective
Web Based Software Visualization Learning Environ-
ment. Journal of Visual Languages and Computing,
9(5):485–508, 1998.

[11] J. Haajanen, M. Pesonius, E. Sutinen, J. Tarhio, T.
Teräsvirta, and P. Vanninen. Animation of User Al-
gorithms on the Web. InProceedings of the 13th
IEEE International Symposium on Visual Languages
(VL’97), pages 360–367, 1997.

[12] C.A. Hipke and S. Schuierer. VEGA: A User Cen-
tered Approach to the Distributed Visualization of Ge-
ometric Algorithms. InProceedings of the 7-th Inter-
national Conference in Central Europe on Computer
Graphics, Visualization and Interactive Digital Media
(WSCG’99), pages 110–117, 1999.

[13] L. Kucera. Homepage. URL:
http://www.ms.mff.cuni.cz/acad/kam
/kucera .

[14] T. Naps. Algorithm Visualization Served Off the
World Wide Web: Why and How.ACM SIGCSE Bul-
letin, 28:66–71, 1996.

[15] W.C. Pierson and S.H. Rodger. Web-based Anima-
tions of Data Structures Using JAWAA. InProc. 29th
SIGCSE Technical Symposium on Computer Science
Education, pages 267–271, 1998.

[16] R.J. Ross and M.T. Grinder. Hypertextbooks: Ani-
mated, Active Learning, Comprehensive Teaching and
Learning Resources for the Web. In S. Diehl, editor,
Software Visualization, LNCS 2269, pages 269–284.
Springer Verlag, 2001.

[17] G. Rößling. Collection of animations. URL:
http://www.animal.ahrgr.de/ .

[18] G. Rößling, M. Schüler, and B. Freisleben. The Ani-
mal Algorithm Animation Tool. InProceedings of the
5th Annual SIGCSE/SIGCUE Conference on Innova-
tion and Technology in Computer Science Education
(ITiCSE 2000), pages 37–40, 2000.

[19] J.T. Stasko. Algorithm Animation Research
at GVU. http://www.cc.gatech.edu/
gvu/softviz/algoanim/ .

[20] J.T. Stasko. TANGO: A Framework and System for
Algorithm Animation. IEEE Computer, 23:27–39,
1990.

[21] J.T. Stasko, J. Domingue, M.H. Brown, and B.A.
Price. Software Visualization: Programming as a
Multimedia Experience. MIT Press, Cambridge, MA,
1997.

[22] M. Syrjakow, J. Berdux, and H. Szczerbicka. Interac-
tive Web-based Animations for Teaching and Learn-
ing. In Proceedings of the 32nd Winter Simulation
Conference, pages 1651–1659. Society for Computer
Simulation International, 2000.

