The Siren Song of Temporal Synthesis

Moshe Y. Vardi

Rice University

Verification

Model Checking:

- *Given*: Program P, Specification φ .
- Task: Check that P satisfies φ

Success:

- *Algorithmic methods*: temporal specifications and finite-state programs.
- *Also*: Certain classes of infinite-state programs
- *Tools*: SMV, SPIN, SLAM, etc.
- *Impact* on industrial design practice is increasing.

Problems:

- Designing *P* is hard and expensive.
- Redesigning P when P does not model φ is hard and expensive.

Automated Design

Basic Idea:

- Start from spec φ, design P s.t. P satisfies φ.
 Advantage:
 - No verification
 - No re-design
- Derive P from φ algorithmically.

Advantage:

No design

In essenece: Declarative programming taken to the limit.

Harel, 2008: "Can Programming be Liberated, Period?"

Program Synthesis

The Basic Idea: "Mechanical translation of human-understandable task specifications to a program that is known to meet the specifications."

Deductive Approach (Green, 1969, Waldinger and Lee, 1969, Manna and Waldinger, 1980)

- Prove *realizability* of function, e.g., $(\forall x)(\exists y)(Pre(x) \rightarrow Post(x, y))$
- Extract *program* from realizability proof.

Classical vs. Temporal Synthesis:

- *Classical*: Synthesize transformational programs
- *Temporal*: Synthesize programs for *ongoing computations* (protocols, operating systems, controllers, robots, etc.)

Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977)

Main feature: time is implicit

- *next* φ : φ holds in the next state.
- eventually φ : φ holds eventually
- *always* φ : φ holds from now on
- φ until ψ : φ holds until ψ holds.

Semantics: over infinite traces

•
$$\pi, w \models \varphi$$
 until ψ if $w \bullet - \phi \phi \phi \phi \psi \bullet \cdots \phi$

Examples

- always not (CS₁ and CS₂): mutual exclusion (safety)
- always (Request implies eventually Grant): liveness
- always (Request implies (Request until Grant)): liveness

Synthesis of Ongoing Programs

Spec: Temporal logic formulas

Early 1980s: Satisfiability approach (Wolper, Clarke+Emerson, 1981)

- Given: φ
- Satisfiability: Construct model M of φ
- *Synthesis*: Extract *P* from *M*.

Example: always $(odd \rightarrow next \neg odd) \land$ always $(\neg odd \rightarrow next odd)$

Reactive Systems

Reactivity: Ongoing interaction with environment (Harel+Pnueli, 1985), e.g., hardware, operating systems, communication protocols, robots, etc. (also, *open systems*).

Example: Printer specification – J_i - job *i* submitted, P_i - job *i* printing.

- Safety: two jobs are not printing together always $\neg(P_1 \land P_2)$
- *Liveness*: every jobs is eventually printed always $\bigwedge_{j=1}^{2} (J_i \rightarrow eventually P_i)$

Satisfiability and Synthesis

Specification Satisfiable? Yes!

Model M: A single state where J_1 , J_2 , P_1 , and P_2 are all false.

Extract program from *M***?** No!

Why? Because *M* handles only one input sequence.

- J_1, J_2 : input variables, controlled by environment
- P_1, P_2 : output variables, controlled by system

Desired: a system that handles *all* input sequences.

Conclusion: Satisfiability is *inadequate* for synthesis.

Realizability

I: input variables *O*: output variables

Game:

- System: choose from 2^O
- *Env*: choose from 2^I

Infinite Play:

 i_0, i_1, i_2, \dots $0_0, 0_1, 0_2, \dots$

Infinite Behavior: $i_0 \cup o_0$, $i_1 \cup o_1$, $i_2 \cup o_2$, ...

Win: Behavior satisfies spec.

Specifications: LTL formula on $I \cup O$

Strategy: Function $f : (2^I)^* \to 2^O$

Realizability: Abadi+Lamport+Wolper, 1989 Pnueli+Rosner, 1989 Existence of winning strategy for specification.

Desideratum: A *universal* plan! Why: Autonomy!

Church's Problem

Church, 1957: Realizability problem wrt specification expressed in MSO (monadic second-order theory of one successor function)

Büchi+Landweber, 1969:

- Realizability is decidable.
- If a winning strategy exists, then a *finite-state* winning strategy exists.
- Realizability algorithm *produces* finite-state strategy.

Rabin, 1972: Simpler solution via Rabin tree automata.

Question: LTL is subsumed by MSO, so what did Pnueli and Rosner do? Answer: better algorithms!

Strategy Trees

Infinite Tree: D^* (*D* - directions)

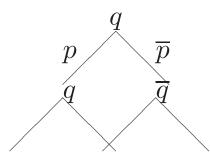
• Root: ε ; Children: $xd, x \in D^*, d \in D$

Labeled Infinite Tree: $\tau : D^* \to \Sigma$

Strategy: $f : (2^I)^* \rightarrow 2^O$

Rabin's insight: A strategy is a labeled tree with directions $D = 2^{I}$ and alphabet $\Sigma = 2^{O}$.

Example: $I = \{p\}, O = \{q\}$



Winning: Every branch

satisfies spec.

Rabin, 1972: Finite-state automata on infinite trees

Emptiness of Tree Automata

Emptiness: $L(A) = \emptyset$

Emptiness of Automata on Finite Trees: PTIME test (Doner, 1965)

Emptiness of Automata on Infinite Trees: Difficult

- Rabin, 1969: non-elementary
- Hossley+Rackoff, 1972: 2EXPTIME
- Rabin, 1972: EXPTIME
- Emerson, V.+Stockmeyer, 1985: In NP
- Emerson+Jutla, 1991: NP-complete

Rabin's Realizability Algorithm

REAL(φ **)**:

- Construct Rabin tree automaton A_{φ} that accepts all winning strategy trees for spec φ .
- Check non-emptiness of A_{φ} .
- If nonempty, then we have realizability; extract strategy from non-emptiness witness.

Complexity: non-elementary

Reason: A_{φ} is of non-elementary size for spec φ in MSO.

Post-1972 Developments

- Pnueli, 1977: Use LTL rather than MSO as spec language.
- V.+Wolper, 1983: Elementary (exponential) translation from LTL to automata.
- Safra, 1988: Doubly exponential construction of tree automata for strategy trees wrt LTL spec (using V.+Wolper).
- Rosner+Pnueli, 1989: 2EXPTIME realizability algorithm wrt LTL spec (using Safra).
- Rosner, 1990: Realizability is 2EXPTIMEcomplete.

Standard Critique

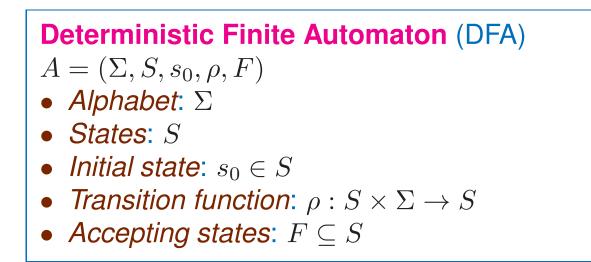
Impractical! 2EXPTIME is a horrible complexity.

Response:

- 2EXPTIME is just worst-case complexity.
- 2EXPTIME lower bound implies a doubly exponential bound on the size of the smallest strategy; thus, hand design cannot do better in the worst case.

Real Challenge: very difficult algorithmics!

Classical Al Planning



Input word: $a_0, a_1, ..., a_{n-1}$ Run: $s_0, s_1, ..., s_n$

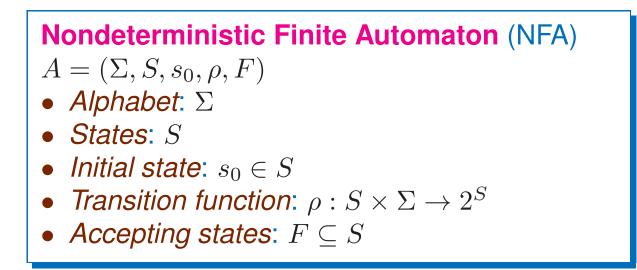
• $s_{i+1} = \rho(s_i, a_i)$ for $i \ge 0$

Acceptance: $s_n \in F$.

Planning Problem: Find word leading from s_0 to F.

- **Realizability:** $L(A) \neq \emptyset$
- **Program:** $w \in L(A)$

Dealing with Nondeterminism



Input word: $a_0, a_1, ..., a_{n-1}$ Run: $s_0, s_1, ..., s_n$

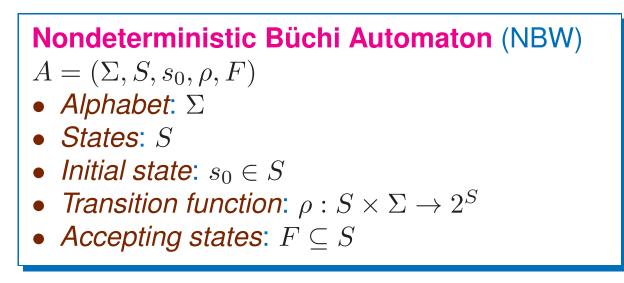
• $s_{i+1} \in \rho(s_i, a_i)$ for $i \ge 0$

Acceptance: $s_n \in F$.

Planning Problem: Find word leading from s_0 to F.

- **Realizability:** $L(A) \neq \emptyset$
- **Program:** $w \in L(A)$

Automata on Infinite Words



Input word: a_0, a_1, \ldots

Run: s_0, s_1, \ldots

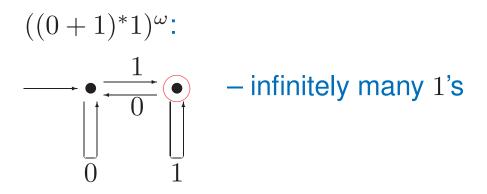
• $s_{i+1} \in \rho(s_i, a_i)$ for $i \ge 0$

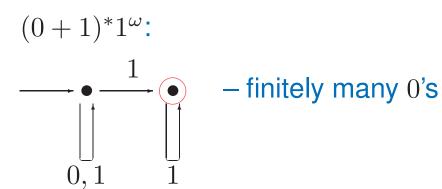
Acceptance: F visited infinitely often

Motivation:

- characterizes ω -*regular* languages
- equally expressive to MSO (Büchi 1962)
- more expressive than LTL

Examples





Infinitary Planning

Planning Problem: Given NBW $A = (\Sigma, S, s_0, \rho, F)$, find infinite word $w \in L(A)$

From Automata to Graphs: $G_A = (S, E_A)$, $E_A = \{(s,t) : t \in \rho(s,a) \text{ for some } a \in \Sigma\}$. Lemma: $L(A) \neq \emptyset$ iff there is a a state $f \in F$ such that G_A contains a path from s_0 to f and a cycle from f to itself. Corollary: $L(A) \neq \emptyset$ iff there are finite words $u, v \in \Sigma^*$ such that $uv^{\omega} \in L(A)$.

Bonus: Finite-state program.

Synthesized Program: Do u and then repeatedly do v.

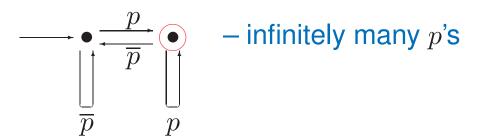
Temporal Logic vs. Büchi Automata

Paradigm: Compile high-level logical specifications into low-level finite-state language

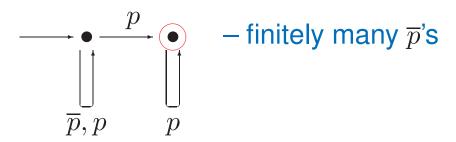
The Compilation Theorem: V.-Wolper, 1983

Given an LTL formula φ , one can construct an NBW A_{φ} such that a computation σ satisfies φ if and only if σ is accepted by A_{φ} . Furthermore, the size of A_{φ} is at most exponential in the length of φ .

always eventually p:



eventually always p:



LTL Planning

- Input: LTL formula φ
- Planning Problem: Find word $w \models \varphi$
- Realizability: φ is satisfiable.
- Solution: Solve infinitary planning with A_{φ}

Synthesis of Reactive Systems

Game Semantics: view an open system S as playing a game with an adversarial environment E, with the specifications being the winning condition.

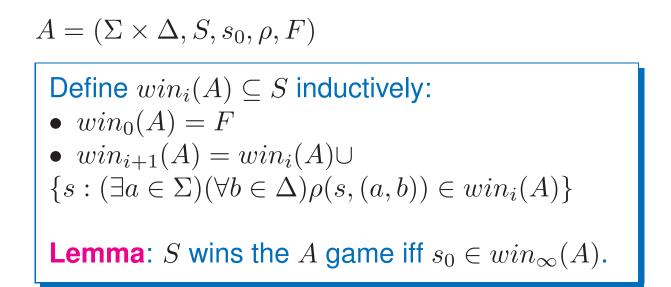
DFA Games:

- S choose output value $a \in \Sigma$
- E choose input value $b \in \Delta$
- *Round*: *S* and *E* set their values
- *Play*: word in $(\Sigma \times \Delta)^*$
- Specification: DFA A over the alphabet $\Sigma \times \Delta$
- *S* wins when play is accepted by by *A*.

Realizability and Synthesis:

- Strategy for $S \tau : \Delta^* \to \Sigma$
- Realizability exists winning strategy for S
- *Synthesis* obtain such winning strategy.

Solving DFA Games



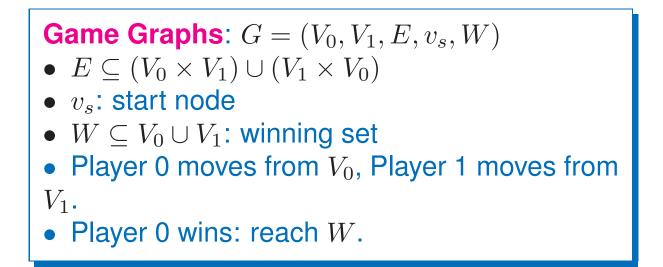
Bottom Line: *linear-time*, least-fixpoint algorithm for DFA realizability. What about synthesis?

Transducers

Transducer: a finite-state representation of a strategy- deterministic automaton with output $T = (\Delta, \Sigma, Q, q_0, \alpha, \beta)$ • Δ : input alphabet • Σ : output alphabet • Q: states • q_0 : initial state • $\alpha : S \times \Delta \rightarrow S$: transition function • $\beta : S \rightarrow \Sigma$: output function

Key Observation: A transducer representing a winning strategy can be extracted from $win_0(A), win_1(A), \ldots$

Reachability Games



Fact: Reachability games can be solved in *linear time*—least fixpoint algorithm

Consequence: realizability and synthesis

NFA Games

NFA Games:

- S choose output value $a \in \Sigma$
- E choose input value $b \in \Delta$
- Round: S and E set their variables
- *Play*: word in $(\Sigma \times \Delta)^*$
- Specification: NFA A over the alphabet $\Sigma \times \Delta$
- S wins when play is accepted by by A.

Solving NFA Games: *Basic mismatch* between nondeterminism and strategic behavior.

- Nondeterministic automata have perfect foresight.
- Strategies have no foresight.

Conclusion: Determinize A and then solve.

NBW Games

NBW Games:

- S choose output value $a \in \Sigma$
- E choose input value $b \in \Delta$
- Round: S and E set their variables
- *Play*: infinite word in $(\Sigma \times \Delta)^{\omega}$
- Specification: NBW A over the alphabet $\Sigma \times \Delta$
- S wins when infinite play is accepted by by A.

Resolving the mismatch: Determinize A

LTL Games:

- Specification: LTL formula φ
- Solution: Construct A_{φ} and determinize.

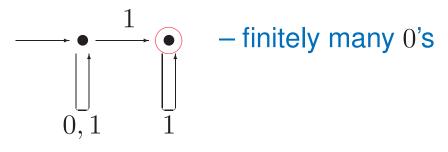
History:

- Church, 1957: problem posed (for MSO)
- Büchi-Landweber, 1969: decidability shown
- Rabin, 1972: solution via tree automata

Determinization

Key Fact (Landweber, 1969): Nondeterministic Büchi automata are more expressive than deterministic Büchi automata.

Example:
$$(0+1)^*1^{\omega}$$
:



McNaughton, 1966: NBW can be determinized using more general acceptance condition – blow-up is *doubly exponential*.

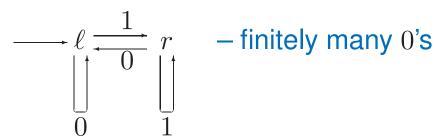
Parity Automata

Deterministic Parity Automata (DPW)

•
$$\mathcal{F} = (F_1, F_2, \dots, F_k)$$
 - partition of S.

 $A = (\Sigma, S, s_0, \rho, \mathcal{F})$ • $\mathcal{F} = (F_1, F_2, \dots, F_k)$ - partition of *S*. • *Parity index*: *k* • *Acceptance*: Least *i* such that *F_i* is visited infinitely often is even.

Example: $(0+1)^*1^{\omega}$



Parity condition: $(\{\ell\}, \{r\})$

Safra, 1988: NBW with n states can be translated to DPW with $n^{O(n)}$ states and index O(n).

Parity Games

Game Graphs: $G = (V_0, V_1, E, v_s, W)$ • $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$ • v_s : start node • $W \subseteq V_0 \cup V_1$: winning set • Player 0 moves from V_0 , Player 1 moves from V_1 . • $\mathcal{W} = (W_1, W_2, \dots, W_k)$ – partition of $V_0 \cup V_1$ • Play 0 wins: least *i* such that W_i is visited infinitely often is even.

Solving Parity Games: complexity

- Jurdzinski, 1998: UP∩co-UP
- Schewe, 2007: $O(n^{k/3})$
- Calude et al., 2017: Quasi-PTIME

Open Question: In PTIME?

Algorithm for LTL Synthesis:

• Convert specification φ to NBW A_{φ} (exponential blow-up)

• Convert NBW A_{φ} to DPW A_{φ}^{d} (exponential blow-up)

• Solve parity game for A^d_{φ} (exponential)

Pnueli-Rosner, 1989: LTL realizability and synthesis is 2EXPTIME-complete.

• *Transducer*: finite-state program with doubly exponentially many states (exponentially many state variables)

Theory, Experiment, and Practice

Automata-Theoretic Approach in Practice:

- Mona: MSO on finite words
- Linear-Time Model Checking: LTL on infinite words

Experiments with Automata-Theoretic Approach:

• Symbolic decision procedure for CTL (Marrero 2005)

• Symbolic synthesis using NBT (Wallmeier-Hütten-Thomas 2003)

Why LTL synthesis is so hard?

• *NBW determinization is hard in practice*: from 9-state NBW to 1,059,057-state DRW (Althoff-Thomas-Wallmeier 2005)

- *NBW determinization is hard in practice*: no symbolic algorithms
- Parity games are hard in practice!

2EXPTIME: Need not be an insurmountable problem, but algorithmics is *very challenging*!

Solution 1: General Reactivity (1)

Piterman-Pnueli-Sa'ar, 2006: Limit LTL specification: $(AlwaysEventually P) \rightarrow (AlwaysEventually Q)$

Pros:

- Cubic game solvability (wrt game size)
- Tools, e.g., *Slugs*
- Broad applicability popular in robotics

Cons: low expressiveness!

Solution 2: LTL_f – Finite-Horizon LTL

Crux: [De Giacomo+V., 2013]

- Full syntax of LTL
- Interpreted over *finite* traces

Example: Always Eventually p - p must hold at last point of trace.

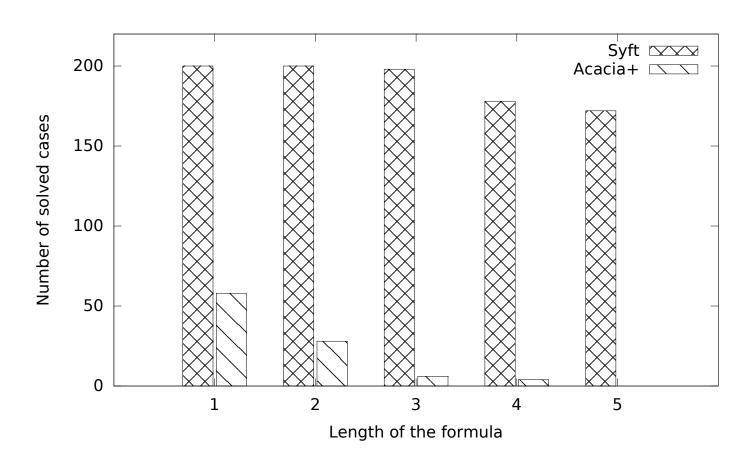
Algorithmic Ideas [De Giacomo+V., 2015]

- If φ is an LTL_f formula, then it can be translated (w. 2exp blow-up) to DFA.
- Synthesis via DFA games

Implementation [Zhu-Tabajara-Li-Pu-V., 2017]:

- Translate φ to FOL, and use MONA to translate to BDD-based Symbolic DFA.
- Solve DFA game symbolically
- Open Tool: Syft

Performance Comparison



Discussion

Question: Can we hope to reduce a 2EXPTIMEcomplete approach to practice?

Answer:

- Worst-case analysis is pessimistic.
 - Mona solves nonelementary problems.
 - SAT-solvers solve huge NP-complete problems.
 - Model checkers solve PSPACE-complete problems.
 - Doubly exponential lower bound for program size.
- We need algorithms that blow up only on hard instances
- More algorithmic engineering is needed.

Al vs SE

Some Crossfertilization:

- From planning to verification: bounded model checking
- From verification to planning: *BDDs, temporal* goals

More collaboration needed!

- Where does one get comprehensive specification?
- Can system learn from experience?
- What about humans in the loop?