
Autonomous Robots (2021) 45:435–456
https://doi.org/10.1007/s10514-021-09978-5

A behavior-based framework for safe deployment of humanoid robots

Nicola Scianca1 · Paolo Ferrari1 · Daniele De Simone1 · Leonardo Lanari1 · Giuseppe Oriolo1

Received: 17 February 2020 / Accepted: 11 February 2021 / Published online: 14 March 2021
© The Author(s) 2021

Abstract
Wepresent a complete framework for the safe deployment of humanoid robots in environments containing humans. Proceeding
from some general guidelines, we propose several safety behaviors, classified in three categories, i.e., override, temporary
override, and proactive. Activation and deactivation of these behaviors is triggered by information coming from the robot
sensors and is handled by a state machine. The implementation of our safety framework is discussed with respect to a reference
control architecture. In particular, it is shown that an MPC-based gait generator is ideal for realizing all behaviors related to
locomotion. Simulation and experimental results on the HRP-4 and NAO humanoids, respectively, are presented to confirm
the effectiveness of the proposed method.

Keywords Humanoid robots · Safety · Coexistence · Behaviors · MPC

1 Introduction

Themost recent paradigms for adopting robotic technologies
in applications emphasize the role of collaboration between
robots and humans. Since collaboration implies sharing a
common environment, safety concerns immediately become
relevant. In industrial contexts, these have been addressed
through the introduction of lightweight, compliant manipu-
lators (Bicchi and Tonietti 2004) and the development of new
techniques for safe coexistence and interaction with humans
(De Santis et al. 2008). Clearly, similar issues arise in service
applications; for example, Kruse et al. (2013) give a survey
of human-aware robot navigation and Tadele et al. (2014)
provide a review of recent research on safety for domestic
robots.

B Giuseppe Oriolo
oriolo@diag.uniroma1.it

Nicola Scianca
scianca@diag.uniroma1.it

Paolo Ferrari
ferrari@diag.uniroma1.it

Daniele De Simone
desimone@diag.uniroma1.it

Leonardo Lanari
lanari@diag.uniroma1.it

1 Dipartimento di Ingegneria Informatica, Automatica e
Gestionale, Sapienza Università di Roma, via Ariosto 25,
00185 Roma, Italy

One of the most essential safety layers in a robot is related
to the avoidance of obstacles, static or dynamic. Startingwith
the pioneering work by Khatib (1985) on artificial potential
fields, a huge literature on the topic has flourished (Minguez
et al. 2016). Recently, researchers have started looking at
this issue in the context of safe human-robot coexistence and
interaction (De Luca and Flacco 2012; Lacevic et al. 2013;
Navarro et al. 2018). These methods, however, are almost
invariably devoted to fixed-base manipulators or wheeled
robots.

On the other hand, there exists a growing interest in the
use of humanoids for assembly operations where access by
fixed-base manipulators or wheeled robots is impossible. For
example, a recent EU H2020 research project targeted the
adoption of humanoids in aeronautic manufacturing (Khed-
dar et al. 2019). Indeed, there is a widespread view that
humanoids represent a rather natural choice of platform in
environments that are specially designed to accommodate
humans. Whether one agrees or not, there is no doubt that
the challenging problem of safe deployment of humanoid
robots needs be addressed.

The design of safety layers for humanoids must account
for their unique characteristics: in particular, the fact that
they can displace their base only through steps and that bal-
ance must be maintained at all times during motion (Kajita
et al. 2014). One of the first works showing a humanoid
(ASIMO) safely navigating an environment populated by
dynamic obstacles via vision-based replanning was due to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-021-09978-5&domain=pdf
http://orcid.org/0000-0001-6153-9278

436 Autonomous Robots (2021) 45:435–456

Michel et al. (2005). More recent results range from reac-
tive Model Predictive Control techniques (Bohorquez et al.
2016; Naveau et al. 2017) to full-fledged whole-body motion
planners (Baudouin et al. 2011; Ferrari et al. 2019).

Another important body of research related to the reliabil-
ity of humanoids originated from the 2015 DARPARobotics
Challenge, in which research teams competed to effectively
control humanoids in environments designed to emulate a
real-world disaster scenario (Krotkov et al. 2017; Atkeson
et al. 2018). Many planning and control techniques devel-
oped in this context by the participating teams proved to be
effective (Lim et al. 2017), providing strong inspiration for
achieving robust operation of humanoids.

All the above works, to which many more could be
added (Wieber et al. 2016), focus however on a single issue
which is considered relevant for reliable operation, such
as robust locomotion or collision avoidance. Furthermore,
humans are generally absent in the considered scenario, and
tasks are often executed in supervised autonomy with the aid
of specifically designed user interfaces (Marion et al. 2017),
as it happens in the DARPAChallenge. In the literature, there
is no general study that looks at the safety problem from a
global viewpoint in order to design a holistic framework for
achieving safe operation of humanoids.

The objective of this paper is to propose a complete
framework for the safe deployment of humanoid robots in
environments that may contain humans. Proceeding from
some general guidelines, we propose several safety behav-
iors, classified in three categories:

– override behaviors, which stop the execution of the cur-
rent task to account for the presence of an immediate
danger, leading to a state from which normal operation
can only be resumed after human intervention;

– temporary override behaviors, that take control of the
robot for the limited amount of time necessary to address
safety concerns, after which task execution can be auto-
matically resumed;

– proactive behaviors, which are aimed at increasing the
overall level of safety by an adaptation or enhancement
of the robot activity, without interrupting the current task.

Activation and deactivation of these behaviors is triggered
by information coming from the robot sensors and is handled
by a statemachine. To allow this, the state of the robot is iden-
tified by the current context (essentially, the task the robot is
executing) and all active behaviors.

We also discuss the implementation of our safety frame-
work in a reference control architecture, showing in particular
that all behaviors related to locomotion canbe efficiently real-
ized in an MPC setting. Two humanoid platforms are used to

show the performance of the proposed method, i.e., HRP-4
in simulation and NAO in experiments.

The paper is organized as follows. Section 2 briefly
reviews the existing safety standards for robots, while Sect. 3
formulates some general guidelines for safe deployment of
humanoids. In Sect. 4 we enunciate the robot sensing capa-
bilities assumed by our framework. An overview of the
proposed safety behaviors is given in Sect. 5, while Sect. 6
provides a detailed description of each behavior. Section 7
presents the state machine that orchestrates activation and
deactivation of the behaviors. A reference control architec-
ture is outlined in Sect. 8, and the implementation of the
proposed behaviors within such architecture is discussed in
Sect. 9. Simulation and experimental results are presented in
Sects. 10 and 11 , respectively. Section 12 presents additional
results and discusses limitations and possible extensions of
the proposed method. Section 13 offers some concluding
remarks.

2 Safety standards

Standards codify a set of practices that inform the design
and operation of technologies. A product does not necessar-
ily have to follow international standards as, unlike laws and
regulations, these are not mandatory. However, they often
provide a guarantee of compliance with regulations which
otherwise can be quite hard to accommodate. It is therefore
advantageous whenever possible to follow an existing stan-
dard, as this simplifies the design process.

The main international standards are published by either
IEC or ISO committees. The first body focuses on standards
related to electronics, while the second covers the remaining
areas. Standards are divided in three categories.

• Type A standards provide basic rules and guidelines for
machine safety (e.g., ISO12100 “BasicConcepts,Design
Principles” and ISO 14121 “Principles of Risk Assess-
ment”).

• Type B standards are further divided into two subtypes:
B1 covers aspects such as safety distances or ergonomic
principles (e.g., ISO 13857 “Safety Distances”). B2
describes rules concerning protective equipment for dif-
ferent applications (e.g., IEC 13850 “Emergency Stop”).

• Type C standards refer to specific kinds of machines or
areas of application, such as robots, and describe practi-
cal requirements and precautionary measures relating to
all significant risks (e.g., see ISO 10218 “Robots and
Robotic Devices—Safety Requirements for Industrial
Robots”). Type C standards refer to Type A and B stan-
dards for generalities but may deviate from them when
needed by the application.

123

Autonomous Robots (2021) 45:435–456 437

The fundamental standard for industrial robot safety is
ISO 10218, which highlights three particular aspects.

First, the standard suggests that means must be provided
for the control and/or the release of hazardous energy stored
in the robot. Examples of energy storage sources are batteries,
springs and gravity.

The second aspect concerns safety stops. All robotic sys-
tems should have both a protective and an emergency stop
function. Protective stops are used for risk reduction and
can be activacted and deactivated automatically. Emergency
stops are used in dangerous situations and require manual
intervention.

Finally, ISO 10218 defines conditions for safe human-
robot collaborative operation, identifying in particular four
modes:

• Safety-rated monitored stop. The robot must stop when-
ever a human enters the shared workspace. This method
does not allow collaborative work but only coexistence
in the workspace. The robot may resume automatic oper-
ation when the human leaves.

• Hand guiding. The human can move the robot by
physically interacting with it, e.g., to allow simplified
path/point teaching.When provided, hand guiding equip-
ment (such as a joystick) shall be located close to the
end-effector. Thismodemust provide an emergency stop,
an enabling device and safety-rated monitored speed
limit.

• Speed and separation monitoring. The robot progres-
sively reduces its speed as the human approaches. Failure
to maintain the desired relative speed or separation dis-
tance will trigger a protective stop.

• Power and force limiting. In this mode, humans and
robots can safely interactwith little or no additional safety
components because the robot force/power are bounded
by design or control. Safe bounds are determined follow-
ing ISO 10218-2 and ISO/TS 15066.

Almost all the above mentioned standards are specifically
devised for industrial fixed-base manipulators, with only few
exceptions addressing the case of wheeled mobile robots.
No existing standard explicitly considers humanoid robots,
whose peculiar nature must be properly taken into account.

3 Safety guidelines

With an eye to the standards discussed in the previous section,
we provide here a qualitative description of the guidelines
that inspired the design of our safety behaviors. In particu-
lar, we argue that the following recommendations should be
followed for safe operation of a humanoid robot.

• Watch what you’re doing. The robot shouldwatch itsmain
area of operation. When performing a manipulation task,
it will therefore look at its hand(s) and/or at the object to
be manipulated. When performing a locomotion task, it
should direct its gaze towards the area where it is about
to step.

• Be on the lookout. If the robot is idle, then it should scan
the surroundings to identify possible sources of danger. In
particular, if a moving object (e.g., a human) is detected,
the robot should keep an eye on it.

• Evade if you can. When a moving object approaches, the
humanoid robot should perform an evasive action, if this
can be done safely.

• Halt if you must. In a situation of clear and present danger,
the robot should terminate any activity and stop as soon
as possible.

• Beware of obstacles. In the vicinity of unexpected
objects, robot velocities and forces should be modified,
scaled down or even zeroed in order to reduce potential
damage in the case of a collision.

• Look for support. When locomotion is expected to be
challenging (e.g., on stairs), the robot should try to estab-
lish additional contact with the environment (e.g., with
a handrail). The possibility of improving balance by
adding contacts should also be considered whenever a
non-negligible risk of falling is detected.

• Protect yourself. In the imminence of a potentially dam-
aging event, such as an unavoidable fall, the robot should
act so as to minimize damage to itself and/or the envi-
ronment.

Some of these guidelines will directly result into one or
more safety behaviors (Sects. 5 and 6) that are activated to
improve the level of safety when necessary. Other guidelines
must also be taken into account at the basic planning/control
stage. For example, watch what you’re doing generates a
behavior aimed at increasing the level of safety (scan) but
also calls for visual-servoedmanipulation/locomotion strate-
gies during normal operation; the look for support guideline
is reflected in a safety behavior (add_contact) but has also
consequences at the planning stage (e.g., generation of stair
climbing motions must include handrail grasping and releas-
ing).

4 Sensing assumptions

We now specify which information must be made available
by the robot sensory system (or by external sensing devices)
to implement the proposed safety framework. We shall not
discuss in any detail the perception processes that provide
such information.

123

438 Autonomous Robots (2021) 45:435–456

Fig. 1 The humanoid robot can identify unexpected objects within a perception area P and measure the minimum distance duo to the closest of
them. Also shown are the various safety areas (with the associated thresholds) defined in Sect. 6.2

Throughout the paper, it is assumed that at any time instant
the humanoid robot has a certain level of awareness about
its own state and the surrounding environment, defined as
follows:

• The robot knows whether there are unexpected objects
(i.e., objects that are not present in the available map
of the environment) within a perception area P , whose
extension depends on the specific sensory system, and
in particular can measure the position (e.g., range and
bearing) of the nearest point on each such object. As a
consequence, it can compute the distance duo to the clos-
est unexpected object in P (see Fig. 1). If there is no
unexpected object in P , duo is set to ∞. Techniques for
identifying unexpected objects are typically based on a
comparison between the predicted and the actual scene;
for example, Radke et al. (2005) consider change detec-
tion in images.

• The robot is able to establish whether the closest unex-
pected object in P is moving or stationary (e.g., a
human walking vs. some misplaced furniture). In prac-
tice, this can be done by looking at significant variations
of duo (Stark et al. 2016) once the effect of the robot’s
own motion has been removed. The fmo flag is used to
specify whether the unexpected object is moving or not.

• The robot can detect unexpected contacts with the envi-
ronment, indicated by the fuc flag. Depending on the
contact detection method, other information may be
available, such as the location of the contact point on the
robot body or the interaction force (Flacco et al. 2016).

• The robot knows the current risk of fall, represented by
rfall. For example, rfall can be estimated from the position
of the Zero Moment Point based on inertial measure-
ments (Ogata et al. 2007).

• The robot knows the location of contact surfaces that
can be reached without stepping from its current posture.
Contact surfaces are surfaces (or points) of the environ-
ment with which the robot may safely establish a contact
for additional support (Caron et al. 2017). The existence
of reachable contact surfaces is encoded in the fcs flag.

• The robot knows lbattery, its current battery level.

5 Overview of safety behaviors

This section provides a general description of the behaviors
adopted by the humanoid robot to increase the level of safety
for itself and the environment, which may include humans.
In particular, three categories of safety behaviors are intro-
duced, i.e., override, temporary override and proactive. We
explain the idea behind each behavior and the situation in
which it will be activated. A formal description, with detailed
triggering conditions for each case, will be given in the next
section.

5.1 Override behaviors

Override behaviors stop the execution of the current task
and lead to a state from which normal operation can only
be resumed after human intervention. They are intended as
a way to react to unexpected and dangerous situations from

123

Autonomous Robots (2021) 45:435–456 439

which it would not be safe (or even possible) to resume the
task automatically. We define two override behaviors:

• halt. In many situations, robot operation becomes crit-
ical: for example, when the battery level lbattery is too
low, or when the distance duo to an unexpected moving
obstacle goes below a certain threshold. In these cases,
the stop if you must guideline indicates that the robot
should immediately abort any task. The halt behavior is
an emergency stop procedure which interrupts any oper-
ation as quickly as possible. However, one should keep
in mind that a humanoid robot, especially during loco-
motion, must stop in such a way to maintain balance.

• self-protect. While it is obviously desirable to avoid
falling altogether, there are several reasons which might
lead to a loss of balance, for example a hardware/software
fault, or an unexpected collision. To properly handle this
event, one can design a self-protect behavior to be acti-
vated during falls, as suggested by the protect yourself
guideline. In practice, when the robot detects an unre-
coverable loss of balance, it must immediately adopt
measures aimed at minimizing damage to itself and the
environment.

5.2 Temporary override behaviors

Some events which cause safety concerns require the robot
to stop task execution for a limited amount of time. As soon
as these concerns have been properly handled, task execution
can resume automatically. In particular, this is the case of the
following behaviors:

• stop. This behavior is activated when external circum-
stances suggest to stop walking as a precaution, in
application of the beware of obstacles guideline. This
is for example the case of an unexpected object moving
in the vicinity of the robot; in this situation, locomotion
is interrupted and only resumed if the object leaves the
area. The stop behavior is also used for transitioning from
normal operation to other safety behaviors (e.g., to track)
and vice versa (e.g., from evade). Note that stop differs
from halt because it is more graceful and does not require
human intervention to restart the robot.

• evade. Following the evade if you can guideline, if an
unexpected moving object tends to approach the robot,
this performs an evasive maneuver to avoid collision. At
the end of the maneuver, the robot can resume normal
operation as soon as the object does not constitute a threat
anymore.

• add_contact. This behavior, which descends from the
look for support guideline, allows the robot to establish
new contacts for additional support whenever it is stand-

ing and the risk of fall is estimated to be non-negligible.
In fact, we consider intrinsically risky trying to establish
a new contact while the robot is walking. Besides, if the
robot is ascending or descending stairs, additional con-
tact with a handrail should have already been taken into
account at the planning stage.

• track. If an unexpected moving object has been detected
in its vicinity, the robot keeps its gaze directed at it, as
suggested by the be on the lookout guideline. Note that
this behavior can only be activated when the robot is
idle or performing an observation task (see Sect. 6.1): in
any other case, averting the gaze from the current task
can be dangerous (watch what you’re doing guideline).
In particular, if the robot is walking, it will need to stop
before starting to track the object.

5.3 Proactive behaviors

Proactive behaviors are actions intended to increase the over-
all safety level by calling for an adaptation or enhancement
of the current robot activity. They include:

• scan. During manipulation or locomotion, the robot
keeps its gaze directed at the main area of operation, as
suggested by the watch what you’re doing guideline. If
the robot is idle, then it scans its surroundings, in appli-
cation of the be on the lookout guideline.

• adapt_footsteps. During locomotion, the robot is in gen-
eral controlled via high-level directives, such as tracking
a reference velocity, or reaching a specific location in the
workspace. The adapt_footsteps behavior, inspired to the
beware of obstacles guideline, allows the robot to locally
modify its footstep plan to avoid collision with stationary
unexpected objects in its path.

• scale_velocity-force. If a nearby unexpected object is
detected duringmanipulation, the robotmust decrease all
velocities and forces associated to the current manipula-
tion task to reduce the risk of collision or the associated
damages, as indicated by the beware of obstacles guide-
line.

6 Behavior-based safety framework

The activation and deactivation of the various safety behav-
iors is triggered by the information coming from the sensory
system as described in Sect. 4 and depends on the current
context (see Fig. 2).

In this section, we define the possible contexts and discuss
the various safety areas used for behavior activation. Then,
we describe each behavior in detail. Transitions to, from and
among safety behaviors are actually controlled by a state

123

440 Autonomous Robots (2021) 45:435–456

Fig. 2 The activation of safety
behaviors depends on the
current context and is triggered
by sensory information

machine, in which states are defined as a context followed
by one or more active behaviors. The structure of the state
machine will be discussed in Sect. 7.

6.1 Contexts

The robot contexts1 characterize what the robot is doing at a
certain time instant. We identify five robot contexts:

• Idle. The humanoid is standing in double support at a
fixed position and not performing any particular task.

• Locomotion. The humanoid ismoving in the environment
by taking steps. This includes walking, multi-contact
locomotion and ascending/descending stairs.

• Manipulation. The humanoid is standing and executing
a manipulation task that does not require any stepping.

• Observation. The humanoid is standing and executing
a high-level observation task (e.g., find an object on a
table). No locomotion or manipulation task is simultane-
ously being executed.

• Error. The robot is on hold until restarted by human inter-
vention.

The first four contexts are associated to normal operation2

(i.e., no safety behavior is active, except for scan) but also
to operation under temporary override or proactive safety
behaviors. Error is the only emergency context, to which the
robot is released from override behaviors (halt, self-protect);
from this context, normal operation cannot be resumed auto-
matically.

1 The definition of contexts could also take into account the various
environments: for example, Locomotion on flat ground could be dif-
ferent from Locomotion on stairs, e.g., in terms of acceptable risk of
fall.
2 Note that an Idle context can be included in a mission plan as an
intentional pause, e.g., at the transition between different phases or for
debugging purposes.

6.2 Safety areas and thresholds

All safety behaviors are triggeredbya certainmeasuredquan-
tity becoming larger or smaller than some given threshold.
The most relevant of these quantities is the distance duo
between the robot and the closest unexpected object, for
which we specify five thresholds, i.e., in decreasing order:
d track, devade, dadapt, dscale, dhalt. As shown in Fig. 1, these
thresholds on duo implicitly define five (partially overlap-
ping) annular areas3 around the robot:

• S track, defined by dhalt ≤ duo ≤ d track. If the robot is not
performing any locomotion ormanipulation task (context
Idle or Observation) and an unexpected moving object
enters S track, the robot will start tracking it visually. If
the robot is walking (context Locomotion), it will have to
stop before starting to track the object (walking without
watching the stepping area would be unsafe).

• Sevade, defined by dhalt ≤ duo ≤ devade. If the robot is
not performing any task (context Idle) and an unexpected
moving object enters Sevade, the robot will execute an
evasion maneuver.

• Sadapt, defined by dhalt ≤ duo ≤ dadapt. If awalking robot
(context Locomotion) detects an unexpected stationary
object in Sadapt, it will adapt the footstep plan to avoid
collisions.

• Sscale, defined by dhalt ≤ duo ≤ dscale. If the robot is
performing a manipulation task (context Manipulation)
and an unexpected moving object is detected in Sscale,
the robot will reduce all velocities and forces associated
to the current manipulation task.

3 The definition of areas around the robot is also suggested by prox-
emics, the study of the use of space in social interaction (Hall 1966). Its
goal is to describe and characterize the distances between humans in dif-
ferent social contexts, and the way these are established and perceived.
In robotics, proxemics can serve as a basis to model robot behavior in
interactionwith humans (Rios-Martinez et al. 2014), which is especially
relevant with humanoid robots as they are designed to allow for natural
and comfortable interactions.

123

Autonomous Robots (2021) 45:435–456 441

Fig. 3 The different thresholds used for quantities duo (top), rfall (cen-
ter) and lbattery (bottom), each with its associated behaviors. Consider
that the actual activation of a behavior depends on the current context

(not shown here). The only situation which does not appear in this rep-
resentation is the triggering of halt due to an unexpected contact (fuc =
TRUE)

• Shalt, defined by duo ≤ dhalt. This is the innermost safety
area. If any unexpected object is detected in Shalt, the
robot will terminate all operations, irrespective of the
current context.

As for the estimated risk of fall, as soon as rfall becomes
significant (r low ≤ rfall ≤ rhigh), the robot will establish a
new contact for additional support, provided that a suitable
surface is available (fcs = TRUE). If a fall is considered
inevitable (rfall > rhigh), the robot will take measures aimed
at minimizing damages.

Finally, operations are terminated also when the battery
level lbattery is too low (lbattery ≤ l low).

Figure 3 summarizes the activation of behaviors as a func-
tion of the values of duo, rfall and lbattery.

The reader may have noticed that the safety behaviors
related to collision avoidance (such as stop, evade, halt) dis-
cussed so far are only drivenby the distance between the robot
and the unexpected object, and do not take into account their
relative velocity. This choice was made for the following
reasons:

– Velocity information may not be available, or in any case
it may be computationally more costly to obtain. Indeed,
in Sect. 4 we have assumed that the sensory system only
provides distance measurements.

– If an unexpected obstacle enters a safety area (e.g.,
Sevade), its relative velocity w.r.t. the robot is certainly
directed towards the half-plane containing the robot (and
tangent to the area). Therefore, our choice corresponds

to a conservative viewpoint in which any such relative
velocity is considered dangerous, independently from its
specific orientation and magnitude.

– Working out an extension of the method for the case in
which relative velocity is measured and used by the colli-
sion avoidance behaviors is relatively easy, see Sect. 12.3.

6.3 Definitions of behaviors

The formal definition of each safety behavior requires the
specification of:

• one or more contexts from which the behavior can be
activated;

• a trigger, indicating which particular event or piece of
information will cause the behavior to activate, along
with specific actions that occur upon triggering, such as
deactivating other behaviors;

• the action, i.e., which activities are associated to the
behavior;

• a release, which is an event or piece of information that
causes the behavior to deactivate, again including specific
actions that occur upon deactivation.

In the following, we define override, temporary override
and proactive behaviors in this order.

halt

• Context: Idle, Locomotion, Manipulation, Observation.

123

442 Autonomous Robots (2021) 45:435–456

• Trigger: duo ≤ dhalt (T1) OR fuc = TRUE (T2) OR
lbattery ≤ l low (T3).
Triggering permanently deactivates any active behavior
and inhibits all others from activating, except for self-
protect in case of a fall.

• Action: Depends on the context and the trigger:

– If the context is Idle and the trigger is T1 or T3, the
robotwill augment its support polygon and/or assume
a low-impact configuration (e.g., by folding its arms).

– If the context is Idle and the trigger is T2, the robot
will decrease joint stiffness on the kinematic chain
where the contact has occurred, provided that the lat-
ter is on the upper body. Otherwise, the robot will
simply maintain its current posture.

– If the context is Locomotion, Manipulation or Obser-
vation the robot will abort the task and stop any
motion as soon as possible, regardless of the trigger.

• Release: When the action is completed.
Upon release, context is changed to Error.

self-protect

• Context: Idle, Locomotion, Manipulation, Observation.
• Trigger: rfall > rhigh.

Triggering permanently deactivates any active behavior
and inhibits all others from activating.

• Action: The robot will abort the task and act so as to
minimize the potential damage to itself and/or the envi-
ronment. To this end, several aspects must be considered,
including (i) how to fall, i.e., which internal posture
to assume before impact to preserve robot integrity (ii)
where to fall, i.e., how to choose the landing surfaces so
as to avoid fragile objects.

• Release: When the action is completed.
Upon release, context is changed to Error.

stop

• Context: Locomotion.
• Trigger: devade < duo ≤ d track AND fmo = TRUE.
• Action: The robot will stop walking, ending in a dou-
ble support configuration. This is done before starting to
track (and possibly later evade) an unexpected moving
object; or at the end of an evasion maneuver.

• Release: When the action is completed.
Upon release, context is changed to Idle.

evade

• Context: Idle

• Trigger: dhalt < duo ≤ devade AND fmo = TRUE.
Triggering changes context to Locomotion.

• Action: The robot will execute a reactive evasionmaneu-
ver so as to increase the distance to the unexpected
moving object.

• Release: When duo > devade.
Upon release, stop is activated in order to interrupt the
evasion maneuver.

add_contact

• Context: Idle, Manipulation, Observation.
• Trigger: r low ≤ rfall ≤ rhigh AND fcs = TRUE.

Upon triggering, context is changed to Idle if it was
Manipulation or Observation. Moreover, track is deacti-
vated if active, and evade is inhibited from activation.

• Action: The robot will interrupt the task (if the con-
text was Manipulation or Observation), and select and
establish contact with an additional support point on the
available surfaces.

• Release: When the action is completed.

track

• Context: Idle, Observation.
• Trigger: dhalt < duo ≤ d track AND fmo = TRUE.

Triggering deactivates scan and changes the context to
Idle if it was Observation.

• Action: The robot will interrupt any observation task (if
the context was Observation) and direct its gaze at the
closest unexpected object moving in S track.

• Release: When duo > d track.
Upon release, scan is activated.

scan

• Context: Idle, Manipulation, Locomotion.
• Trigger: Active by default unless track is active.
• Action: Depends on the context:

– If the context is Idle, the robot will scan the surround-
ing environment.

– If the context is Locomotion, the robot will scan the
path ahead.

– If the context is Manipulation, the robot will scan the
area of operation.

• Release: Never.

adapt_footsteps

• Context: Locomotion.

123

Autonomous Robots (2021) 45:435–456 443

• Trigger: dhalt < duo ≤ dadapt AND fmo = FALSE.
• Action: The robot will modify the current footstep plan
as needed to avoid the closest unexpected object standing
in the scene.

• Release: When duo > dadapt.

scale_velocity-force

• Context: Manipulation.
• Trigger: dhalt < duo ≤ dscale AND fmo = TRUE.
• Action: Robot velocities and/or forces associated to the
current task will be reduced.

• Release: When duo > dscale.

Note the following points.

• Override behaviors force the robot to abort any task and
deactivate/inhibit all other kinds of behavior.

• Under temporary override behaviors, any task is inter-
rupted for a limited period of time.

• Among temporary override behaviors, add_contact deac-
tivates other behaviors that would cause a conflict of
context (evade) or steal an essential sensory resource
(track); for the same latter reason, track deactivates scan,
and scan cannot be activated when the context is Obser-
vation.

• When temporaryoverride behaviors are released, the con-
text will always be Idle with the scan behavior active. It
is important to note that in this condition control goes
back to normal operation: the robot is ready to resume
any task that was interrupted, under prompting by the
supervisory module that activates and sequences tasks.

• Finally, proactive behaviors do not interrupt active tasks.

7 State machine

In the proposed framework, activation and deactivation of
safety behaviors are handled by a state machine. In par-
ticular, the state of the robot is uniquely identified by the
current context and all active behaviors, and denoted as Con-
text/behavior_1/behavior_2/…, with behaviors listed in the
order of activation.

The complete list of the states is the following:

– Idle/scan
– Idle/track
– Idle/scan/add_contact
– Idle/halt
– Idle/self-protect
– Locomotion/scan

– Locomotion/scan/adapt_footsteps
– Locomotion/scan/stop
– Locomotion/track/evade
– Locomotion/track/evade/adapt_footsteps
– Locomotion/track/stop
– Locomotion/halt
– Locomotion/self-protect
– Manipulation/scan
– Manipulation/scan/scale_velocity-force
– Manipulation/halt
– Manipulation/self-protect
– Observation/
– Observation/halt
– Observation/self-protect
– Error/

Figure 4 gives a complete representation of the state
machine. Transition from one state to another is instan-
taneous and corresponds to activation or deactivation of
some behavior. For example, the transition from Locomo-
tion/scan to Locomotion/scan/adapt_footsteps corresponds
to the activation of the proactive behavior adapt_footsteps:
the robot was walking and scanning the stepping area when
an unexpected stationary object was detected in Sadapt,
so that it became necessary to adapt the footstep plan.
Similarly, the transition from Locomotion/track/evade to
Locomotion/track/stop corresponds to the deactivation of
the temporary override behavior evade, which automatically
triggers stop: the robot was performing an evasion maneu-
ver which became unnecessary when the moving unexpected
obstacle left Sevade, so that motion was stopped. Note that
track is still active in the final state after the transition because
the object will still be in S track after leaving Sevade (see
Fig. 1).

The only normal operation states are Idle/scan, Loco-
motion/scan, Manipulation/scan and Observation/, in which
no safety behavior is active apart from the default proactive
behavior scan. In these states, control is entirely committed
to the realization of the desired task.

Finally, examination of Fig. 4 confirms that:

• override behaviors lead to the Error/ state;
• temporary override behaviors ultimately lead to the
Idle/scan state, that is a normal operation state from
which the original task can be resumed;

• proactive behaviors (apart from scan) simply disappear
in the end, leading back to the state fromwhich they were
activated.

123

444 Autonomous Robots (2021) 45:435–456

Fig. 4 A representation of the state machine governing the transitions
among the proposed safety behaviors. For compactness, contexts within
states are denoted only by their initial (I, M, L, O or E). A transition
originating from the boundary of a dashed box (e.g., the box of Idle

states) indicates that the transition may originate from any state in the
box. Normal operation states (i.e., states where no safety behavior is
active apart from the default behavior scan) are shown in gray

8 Control architecture

The implementation of the safety behaviors, which will be
discussed in some detail in the next section, will obviously
depend on the specific control architecture of the robot. In
view of this, we describe here a possible structure which will
be used in the rest of the paper for illustration.

Figure 5 shows a general overview4 of the control archi-
tecture. Note that safety behaviors blocks appear in this
scheme as either reference signal generators (scan, track,
add_contact, stop, evade, halt, self-protect) or signal modi-
fiers (scale_velocity-force, adapt_footsteps). Note the partic-
ular placement of the self-protect behavior, which will take
control of the robot directly at the joint level. Activation and
deactivation of the behaviors is handled in the background
by the state machine described in the previous section.

In the rest of this section, we describe the core compo-
nents of the control architecture without reference to the

4 The control architecture of humanoids invariably includes a stabiliza-
tion module, not present in Fig. 5, whose role is to guarantee balancing
of the robot in all situations. This low-level module is not discussed
since here it bears no relevance to our safety framework.

safety behaviors. The specific way in which each behavior
is embedded in the architecture will be discussed in the next
section.

8.1 Cameramotion generator

The camera motion generator is primarily (i.e., during nor-
mal operation) in charge of producing a suitable reference
motion for the camera when an observation task is being
executed (context Observation). An image-based visual ser-
voing scheme (Chaumette and Hutchinson 2006) is used to
move the camera so as to track as reference signal represent-
ing the motion of a desired feature in the image plane, e.g.,
for finding an object in the scene.

8.2 Hand(s) motion-force generator

During normal operation, the hand(s)motion-force generator
is in charge of producing a suitable motion-force reference
for the hand(s) when a manipulation task is being executed
(context Manipulation). For example, when a certain grasp

123

Autonomous Robots (2021) 45:435–456 445

Fig. 5 The considered control architecture. The safety behaviors blocks appear as either signal generators or modifiers

must be executed, the module will plan a continuous motion
of the hand(s) so as to reach the associated Cartesian posture.

8.3 Gait generator

The primary role of the gait generator is to produce suitable
reference motions for the robot Center of Mass (CoM) in
order to execute a locomotion task (context Locomotion).
Since such a module is specific to humanoid robots, we will
describe it in some detail, considering for compactness the
case of flat ground. The algorithm at the core of the module
can however be easily extended to work on non-flat terrains,
in particular to deal with the presence of stairs (Zamparelli
et al. 2018).

The gait generator used in this paper is based on
Model Predictive Control (MPC). In particular, we adopt
a method (Scianca et al. 2020) which makes use of two
sequential modules running in real time (Fig. 5). The first
module (footstep planner) generates a sequence of timed
footsteps to realize high-level omnidirectional velocity com-
mands vx , vy , ω. The second module (Intrinsically Stable
MPC, or IS-MPC) produces a trajectory of the robot CoM
and feet such that (1) theZeroMoment Point (ZMP) is always
within the support polygon, thus guaranteeing that balance
is maintained, and (2) that the CoM trajectory is bounded
with respect to the ZMP trajectory, implying internal sta-
bility. Both modules require the solution of QP (Quadratic
Programming) problems.

The high-level velocity commands vx , vy ,ω that drive gait
generation are known over a preview horizon Tp = P ·δ of P

sampling intervals— each of duration δ — in the future. The
footstep generation module plans footsteps over the same
horizon, whereas IS-MPC plans CoM and ZMP trajectories
over a control horizon Tc = C · δ. It is assumed that P ≥
C , so that IS-MPC can take full advantage of the preview
information.

8.3.1 Footstep planner

At each sampling instant tk , the footstep planner receives
in input the high-level reference velocities over the preview
horizon, i.e., from tk to tk + Tp = tk+P .

First, the footstep timing over Tp is determined5 in the

form T k
s = {T 1

s , . . . , T F
s }, where T j

s is the step duration
between the (j − 1)-th and the j-th footstep, taken from the
start of the single support phase to the next. Since the step
duration is variable, the number F of footsteps falling within
Tp may change with tk .

Then, a sequence of F footsteps (X̂ k
f , Ŷ k

f ,Θ
k
f) over the

same interval is generated:

X̂ k
f = (x̂1f . . . x̂ F

f)T

Ŷ k
f = (ŷ1f . . . ŷ F

f)T

Θk
f = (θ1f . . . θ F

f)T ,

5 Step timing is chosen by a simple heuristic based on the velocity
commands (Scianca et al. 2020).

123

446 Autonomous Robots (2021) 45:435–456

where (x̂ j
f , ŷ j

f , θ
j
f) is the pose

6 (position + orientation) of the
j-th footstep. To this end, we inject the high-level reference
velocities into the following omnidirectional motion model

⎛
⎝

ẋ
ẏ
θ̇

⎞
⎠ =

⎛
⎝
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠

⎛
⎝

vx

vy

ω

⎞
⎠ (1)

and then distribute the footsteps around the resulting tra-
jectory in accordance with the timing T k

s . This is done by
solving a sequence of two QP problems; the first computes
the footstep orientations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
Θk

f

F∑
j=1

(θ
j
f − θ

j−1
f −

t j
s∫

t j−1
s

ω(τ)dτ)2

subject to |θ j
f − θ

j−1
f | ≤ θmax

while the second computes the footstep positions

⎧⎪⎨
⎪⎩

min
X̂ k

f ,Ŷ
k
f

F∑
j=1

(x̂ j
f − x̂ j−1

f − Δx j)2 + (ŷ j
f − ŷ j−1

f − Δy j)2

subject to kinematic constraints

In thefirstQPproblem, θmax is themaximumallowed rotation
between two consecutive footsteps, while t j

s is the timestamp
of the j-th footstep. In the second, (x̂0f , ŷ0f) is the known

position of the support foot at tk and Δx j , Δy j are given by

(
Δx j

Δy j

)
=

∫ t j
s

t j−1
s

Rθ

(
vx (τ)

vy(τ)

)
dτ ± R j

(
0

�/2

)
,

where Rθ , R j are the rotation matrices associated respec-

tively to θ(τ) and θ
f
j , � is the chosen coronal distance

between consecutive footsteps, and the sign of the second
term alternates for left/right footsteps. The kinematic con-
straints in the second problem are built to guarantee that the
footsteps are kinematically feasible for the specific humanoid
being considered.

8.3.2 IS-MPC

Once the timed footstep plan is available, the IS-MPCmodule
is called to generate the CoM motion and simultaneously
adjust the footstep positions. The prediction model used by

6 The hat on the position coordinates indicates that these are candidates
values which will be later adjusted by IS-MPC. Orientations are final
because their inclusion in theMPCformulationwouldmake the problem
nonlinear.

IS-MPC for the sagittal motion is

⎛
⎝

ẋc

ẍc

ẋz

⎞
⎠ =

⎛
⎝

0 1 0
η2 0 −η2

0 0 0

⎞
⎠

⎛
⎝

xc

ẋc

xz

⎞
⎠ +

⎛
⎝
0
0
1

⎞
⎠ ẋz, (2)

i.e., a Linear Inverted Pendulum (LIP) with a dynamic exten-
sion. Here, xc and xz are the x coordinates of the CoM and
the ZMP, respectively, η = √

g/hc, and hc is the height of the
CoM which is constant in the LIP formulation. The control
input of (2) is the ZMP velocity ẋz , which is assumed to be
piecewise-constant over the sampling intervals. An identical
equation holds for the evolution of the y coordinate (coronal
motion).

At each tk , the ZMP velocities Ẋ k
z = (ẋ k

z , . . . , ẋ k+C−1
z),

Ẏ k
z = (ẏk

z , . . . , ẏk+C−1
z), and the final footstep positions Xk

f ,

Y k
f , over the control horizon are determined by solving the

following QP problem:

min ‖Ẋ k
z ‖2 + ‖Ẏ k

z ‖2 + β(‖Xk
f − X̂ k

f ‖2 + ‖Y k
f − Ŷ k

f ‖2)

subject to:

• ZMP constraints. These impose that the ZMP lies at all
times within the support polygon of the robot. To avoid
nonlinearities, during double support phases the latter is
approximated by a moving constraint (Aboudonia et al.
2017).

• Kinematic constraints. These are the same exact con-
straints already enforced by the secondQP in the footstep
planner.

• Stability constraint. To ensure that the CoM trajectory
does not diverge w.r.t. the ZMP, we impose that

C−1∑
i=0

e−iηδ ẋ k+i
z = −

∞∑
i=C

e−iηδ ˙̃xk+i
z + η (xk

u − xk
z)

1 − e−ηδ
, (3)

where

xk
u = xk

c + ẋ k
c /η

is the so-called divergent component of motion xu at
time tk (Takenaka et al. 2009). The left-hand side of (3)
contains the ZMP velocities within the control hori-
zon (decision variables), whereas the right-hand side
includes the ZMP velocities beyond the horizon, collec-
tively referred to as the tail, which are unknown (hence
the tilde) and must be conjectured to obtain a causal ver-
sion of the constraint. For example, onemay set the tail to
zero (truncated tail) if the high-level velocity commands

123

Autonomous Robots (2021) 45:435–456 447

indicate that the robot should immediately stop7. A more
general choice is to use an anticipative tail, i.e., surmise
the value of such velocities on the basis of the preview
information encoded in the footstep plan.

It may be shown (Scianca et al. 2020) that the IS-MPC
scheme is recursively feasible and internally stable (in other
words, ZMP-to-CoM stable) provided that the preview hori-
zon is sufficiently long, i.e., if P is large enough. Overall,
this leads to a gait generation scheme which is anticipative,
and therefore suitable not only for regular gaits but also for
executing sudden avoidance maneuvers, as well as tempo-
rary or emergency stops—all actions which are required in
our safety framework.

9 Implementation of behaviors

In this sectionwediscuss the implementation of safety behav-
iors inside the control architecture of Fig. 5. The main focus
will be on those behaviors that are related to locomotion,
which are specific to humanoids. For the others we shall
simply provide pointers to existing work.

9.1 halt

The halt behavior realizes an emergency stop in the presence
of immediate threats. As explained in Sect. 6.3, the behav-
ior is declined differently depending on the context and/or
trigger. Here, we consider the case in which the context is
Locomotion.

Activation of halt is realized via two mechanisms:

• The high-level velocity commands vx , vy , ω are imme-
diately set to zero;

• As a consequence, the truncated tail is used in the stability
constraint (3).

9.2 self-protect

As shown by Fig. 5, the self-protect behavior takes command
of the robot at the joint level and therefore overrides all the
preceding control architecture. When an impending fall is
detected, this behavior acts so as to minimize the potential
damage to itself and/or the environment. In the following, we
refer the reader to some relevant works in this direction.

Choosing how to fall means assuming a proper configu-
ration for reducing the effect of the impact with the floor.
Fujiwara et al. (2003, 2004) present a controller that limits

7 This corresponds to imposing a terminal condition known as captura-
bility constraint in the MPC formulation (Scianca et al. 2020).

the impact force, based on the idea of lowering the CoM as
soon as possible by crouching or knee-bending; Yasin et al.
(2012) use a similar approach tomanage forwardor backward
falls. Braghin et al. (2019) compute whole-body trajecto-
ries aimed at minimizing damage due to falling through an
optimization-based control strategy.

In addition to lowering the impact force, strategies for
absorbing the impact are also useful. A control method that
combines robot reconfiguration and post-impact compliance
is proposed by Samy and Kheddar (2015): during the falling
phase, the robot is kept away from fall singularities, i.e., pos-
tures in which impact forces would be poorly absorbed. After
the impact, compliance control is activated, with the motors
behaving as spring-dampers.

Besides how to fall, it is also important to choose where to
fall. Yun et al. (2009) introduce a controller which changes
the fall direction in order to avoid specific objects or parts
of the environment. This method was extended to multiple
objects by Nagarajan and Goswami (2010).

9.3 stop

The stop behavior temporarily interrupts locomotion in
preparation for tracking a moving object, or at the end of
an evasive maneuver.

Activation of stop is realized via two mechanisms:

• The high-level velocity commands vx , vy ,ω go from their
current value to zero over a fixed arrest time;

• As a consequence, the anticipative tail is used in the sta-
bility constraint (3).

Once the motion has been stopped, the state becomes
Idle/track (see Fig. 4). If the unexpectedmoving object leaves
S track, the robot goes to the normal operation state Idle/scan,
where the original locomotion task can be resumed.

The different effect of stop vs. halt will be illustrated via
simulation in the next section.

9.4 evade

The evade behavior is realized by sending to the robot high-
level velocity commands for avoiding an unexpected moving
object that has entered the Sevade area.

To devise such commands, consider the geometry of the
problem as shown in Fig. 6. The angle θobs under which
the robot sees the moving object is directly measured by
the robot (see the first assumption in Sect. 4). The chosen
direction of evasion is represented by neva, with the robot
moving backwards so as to keep the object in its field of
view.

123

448 Autonomous Robots (2021) 45:435–456

Fig. 6 The geometry of evasion. A moving object enters Sevade. The
chosen direction of evasion is neva

While the humanoid can in principle move in any direc-
tion with motion model (1), studies on humans (Mombaur
et al. 2010) indicate that time-efficient locomotion requires
the orientation of the body to be tangent to the path, simi-
larly to what happens in nonholonomic mobile robots. For
this reason, we adopt the unicycle as template model for eva-
sive maneuvers:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω, (4)

where x, y, θ denote now the position and orientation of the
unicycle, and v, ω are its driving and steering velocity inputs.
The latter are chosen as

v = −v̄ (5)

ω = k (θeva − θ). (6)

While the driving velocity is set to a constant negative
value, the steering velocity forces the unicycle (4) to align
smoothly with the desired orientation, chosen as8 θeva =
θ + θobs − sign(θobs) · π/2. As a result, we obtain ω =
k (θobs − sign(θobs) · π/2), which can be implemented using
only on-board measurements. Alternatively, the proportional
control law (6) may be replaced with

ω = k sign(θeva − θ), (7)

to make the evader perform the evasion maneuver with a
constant curvature radius.

The final step is to send the control inputs (5 and 6) to the
gait generator,with the adjustmentvx = v cos θ ,vy = v sin θ

(while ω is unchanged).

8 This evasion strategy is called move aside, as the humanoid moves
(backwards) in a direction that is orthogonal to the object line of
approach; other strategies are possible (Cognetti et al. 2017).

An observation is in order about obstacle avoidance during
evasionmaneuvers. Since evasion is a safety behavior, it leads
the humanoid to an area which was not contemplated in the
original motion plan. Obstacles in this area should therefore
be considered as unexpected, regardless of their being repre-
sented or not in the environmentmap.With this rationale, any
obstacle inside Sadapt will trigger the adapt_footsteps behav-
ior during an evasion maneuver (see the first simulation in
the next section).

9.5 add_contact

The add_contact behavior can be activated in Idle, Obser-
vation and Manipulation. The current task is interrupted and
context is immediately changed to Idle to allow the robot
to establish an additional contact. This requires first choos-
ing a posture where one robot body (typically, a hand) is in
contact with a reachable contact surface, whose existence is
indicated by the fcs flag. The hands motion-force generator
module is then invoked to plan a continuous motion-force
reference that will achieve the chosen desired posture.

When one or more contact surfaces are reachable, it is
necessary to decide which contact to choose. Clearly, it is
essential that the added contact improves balance. To this
end, onemay use concepts such as the generalization of ZMP
support areas to the case of multiple non-coplanar contacts
(Harada et al. 2006; Caron et al. 2017). These aspects have
also been studied in the more general field of multi-contact
planning for locomotion and manipulation (Lengagne et al.
2013;Mandery et al. 2015;Werner et al. 2016); an interesting
summary is given by Bouyarmane et al. (2019).

We emphasize that additional contacts may also be
exploited outside the safety framework, i.e., during normal
operation. For example, if the robot is required to climb a
staircase it is sensible to take advantage of the handrail if
available. In this case, however, the appropriate contactsmust
be integrated in the locomotion/manipulation task being exe-
cuted.

9.6 scan and track

Both the scan and track behaviors are realized by invoking
the camera motion generation module.

The scan behavior uses an artificial image feature as a
reference signal. If the context is Idle, the artificial feature
moves cyclically throughout the surrounding area so as to
achieve complete coverage. In Locomotion or Manipulation,
the feature is fixed at the center of the specific area of interest.

In the track behavior, the image feature will be directly
the closest point on the unexpected moving object that has
triggered the behavior.

123

Autonomous Robots (2021) 45:435–456 449

Fig. 7 The geometry of footstep adaptation with the definition of the
relevant quantities. The current robot placement is defined by its CoM.
Also shown are the current footstep locations (light blue), the kinemat-
ically feasible zone (green) and the forbidden zone (yellow) due to the
presence of the obstacle for the next footstep (Color figure online)

9.7 adapt_footsteps

If the context is Locomotion and a stationary unexpected
object is detected in Sadapt, the adapt_footsteps behavior is
invoked. This is realized by minor modifications of the two
modules that constitute the gait generator, i.e., the footstep
planner and IS-MPC.

Refer to Fig. 7 for the geometry of the problem and the
definition of the relevant quantities. In particular, the range
d and bearing θobs are directly measured by the robot (again,
see the first assumption in Sect. 4), while θavo is defined as

θavo = θobs − sign(θobs) · π/2.

Within the footstep planner, the first modification is in the
QP problem used to compute the footstep orientations from
ω, whose cost function is replaced by

F∑
j=1

(θ
j
f −θ

j−1
f −

∫ t j
s

t j−1
s

ω(τ)dτ)2 + kobs
w(θobs)

d2

(
θ

j
f −θavo

)2

With respect to the original cost function, this contains an
additional term that induces an alignment of the foosteps
with θavo, i.e., with the tangent half-line originating at the
closest object point (see Fig. 7). This second term is mod-
ulated through a scaling factor kobs by the inverse of the
squared distance and by the weight function w(θobs) defined
in Fig. 8. The idea here is that when the robot moves for-
ward only obstacles lying in its front half-plane should be
considered; whereas when moving backwards (e.g., during
an evasion maneuver) footstep adaptation is only required to
avoid obstacles behind the robot.

Fig. 8 The weight function w(θobs). Top: if the robot is walking for-
ward. Bottom: if the robot is walking backwards

The second modification in the footstep planner is in the
QP problem used to compute the footstep positions, to which
a collision avoidance constraint is added. With reference
again to Fig. 7, consider the point B = (xB, yB) located
along the line connecting the CoM with the closest object
point, at a safety distance λ from the latter, and draw the nor-
mal to the same line through B. The half-plane beyond this
line (in yellow in Fig. 7) is a forbidden zone9 for the footstep
locations. This constraint is easily written as

nTobs

{(
x j
f

y j
f

)
−

(
xB

yB

)}
≥ 0 (8)

with nobs the unit vector defined in Fig. 7.
Constraint (8) must obviously be enforced also in the QP

problem of IS-MPC which will determine the final footstep
positions.

Wrapping up, we may say that adapt_footsteps takes into
account the presence of unexpected stationary objects in the
robot path at two levels: in the cost function of the footstep
orientation QP, and through the introduction of a collision
avoidance constraint in the footstep position QP as well as
in IS-MPC. Results in a variety of environments prove that
this strategy is effective for collision-free locomotion (De
Simone et al. 2017). As shown in the next two sections, this
will be confirmed by both our simulations and experiments.

9.8 scale_velocity-force

If a moving obstacle enters Sscale while the robot is in the
Manipulation context, the scale_velocity-force behavior is
activated. Both the hand velocity and the interaction forces

9 Turning the obstacle into a half-plane is necessary to convexify the
obstacle avoidance constraint. This might appear to be a conservative
choice, but it should be noted that the position of the half-plane is
updated at each iteration, so the robot will eventually be able to go
around the obstacle.

123

450 Autonomous Robots (2021) 45:435–456

are reduced for enhancing the level of safety. Studies are
available in which velocity/force bounds are derived taking
into account the dynamic properties of the robot as well as
the possibility of human injury (Haddadin and Croft 2016).

10 Simulations

In this section we provide simulated demonstrations of
the proposed safety framework. The used robot is HRP-4,
a 1.5 m tall humanoid with 34 degrees of freedom by
Kawada Robotics. The robot has been equipped with a depth
camera for gathering range and bearing information about
the obstacles. All simulations are performed in the V-REP
environment, enabling dynamic simulation via the Newton
Dynamics engine.

The first simulation is designed so as to bring up several
safety concerns in sequence, with the objective of illustrat-
ing how the state machine orchestrates transitions between
behaviors. Snapshots of the simulation are shown in Fig. 9
(see the accompanying video for a movie clip). Only three
of the safety areas defined in Sect. 6.2 are shown around
the robot, i.e., S track, Sevade and Sadapt, respectively with
d track = 5 m, devade = 3 m, and dadapt = 1.5 m. The remain-
ing areas Sscale and Shalt are not shown because not relevant.

At the beginning, the robot is standing, not performing
any task, and scanning the environment (state Idle/scan). At
t = 9 s, a human enters S track. This event triggers the track
behavior, and the robot starts following the human with its
camera (state Idle/track). At t = 25 s, the human enters
Sevade, triggering the evade behavior: the robot initiates an
evasionmaneuver while still tracking the human (state Loco-
motion/track/evade). At t = 29 s, while the robot is still
performing the evasion maneuver, a stationary object (the
yellow cylinder) enters Sadapt; the adapt_footsteps behavior
is activated and the footstep plan is modified to avoid colli-
sion (state Locomotion/track/evade/adapt_footsteps). When
the human leaves Sevade, at t = 37 s, the stop behavior is
invoked to interrupt the evasion maneuver (state Locomo-
tion/track/stop); motion is terminated at t = 40 s (state
Idle/track). The robot quits tracking the human when he
leaves S track at t = 44 s (state Idle/scan).

At t = 49 s the second part of the simulation begins. The
robot is commanded to reach a goal in the workspace (bulls-
eye mark). Accordingly, the context switches to Locomotion
and appropriate high-level reference velocities are sent to
the gait generator (state Locomotion/scan). Since the yellow
object is still inSadapt, the adapt_footsteps behavior is imme-
diately activated (state Locomotion/scan/adapt_footsteps).
Once the object goes outside Sadapt, at t = 62 s, the robot
can walk directly towards the goal (state Locomotion/scan).
At t = 83 s, another stationary object (the green cuboid)
entersSadapt, and again collision is avoided by footstep adap-

tation (state Locomotion/scan/adapt_footsteps). As soon as
the green object leaves Sadapt (t = 104 s), the robot resumes
normal walking (state Locomotion/scan) until it reaches the
desired goal, where it stops (state Idle/scan). Note that the
final stop is not the result of a safety behavior; rather, it is
produced directly by the gait generator in response to the
high-level references velocities vanishing at the goal.

The second simulation, shown in Figs. 10 and 11, is
aimed at highlighting the difference between the halt and stop
behaviors (see Sects. 9.1 and 9.3 , respectively). The robot is
walking normally (state Locomotion/scan), with a reference
sagittal velocity vx = 0.4 m/s, when the halt and stop behav-
iors are respectively triggered during a double support phase.
The arrest time used by stop is 2 s. As expected, the results
indicate that with halt the robot stops immediately, almost
bouncing back; whereas a much smoother finish is obtained
using stop. Again, a clip of the simulation is included in the
accompanying video.

11 Experiments

Experiments were simply designed to showcase different
safety behaviors on an actual humanoid platform. Indeed,
we were more interested in a ‘proof of concept’ rather than
a quantitative performance evaluation, also considering the
fact that the results will be in any case dependent on the
specific platform.

In particular, we implemented the proposed approach on
NAO, a 58 cm tall humanoid robot with 23 degrees of free-
dombySoftBankRobotics. AnAsusXtion PROLive camera
has been mounted over the robot head for measuring depth.
Both the camera motion generator and the gait generator run
in real-time on the on-board CPU at a control frequency of
100 Hz.

In the first experiment, shown in Fig. 12 and the accom-
panying video, we use another NAO controlled through a
gamepad as an unexpected moving object that pursues our
robot. At the beginning, the robot is standing, not perform-
ing any task, and scanning the environment (state Idle/scan).
At t = 4 s, the pursuer enters S track (we set d track = 1 m).
This triggers the track behavior (state Idle/track). At t = 7 s,
the pursuer enters Sevade (devade = 0.6 m) and the evade
behavior is activated (state Locomotion/track/evade). When
the pursuer leaves Sevade, at t = 16 s, the stop behavior
is invoked to interrupt the evasion maneuver (state Loco-
motion/track/stop); motion is terminated at t = 17 s (state
Idle/track). The robot quits tracking the pursuer when it
leaves S track at t = 20 s (state Idle/scan). The experiment
includes a second part, only shown in the video, where the
pursuer doubles back and approaches our robot again, trig-
gering another evasion maneuver.

123

Autonomous Robots (2021) 45:435–456 451

Fig. 9 Simulation 1: A scenario
leading to several safety
behaviors being activated in
sequence. Snapshots correspond
to transitions between states.
The humanoid camera view is
shown in the upper right corner.
Clip in the accompanying video

The second experiment, shown in Fig. 13 and the accom-
panying video, focuses on the adapt_footsteps behavior. The
robot is following a reference sagittal velocity vx = 0.08m/s
(state Locomotion/scan) when, at t = 6 s an unexpected sta-
tionary object (wooden panel) enters Sadapt (we set dadapt =
0.9 m). Successful obstacle avoidance is produced by foot-
step adaptation (state Locomotion/scan/adapt_footsteps),
which is deactivated at t = 9 s when the obstacle is no
more perceived (state Locomotion/scan). Note that the panel

on the left flank does not trigger adapt_footsteps because it
never enters Sadapt. The robot then resumes walking in the
desired direction.

Although we just reported results from two experiments,
a similar successful performance was consistently achieved
in our trials, also thanks to the reliability of the underlying
MPC-based controller. Clearly, such performance is possible
as long as the necessary sensory information is made avail-

123

452 Autonomous Robots (2021) 45:435–456

Fig. 10 Simulation 2: Stroboscopic motion of the robot using halt (top)
vs stop (bottom). Clip in the accompanying video

Fig. 11 Simulation 2:Velocity profileswith halt (top) and stop (bottom)

able to the robot; in this sense, robust perception strategies
are an essential prerequisite for safety.

12 Discussion

The objective of this section is to provide some additional
analysis and details about the proposed method.

12.1 Effect of safety on performance

The simulation and experimental results of the last two sec-
tions show that the proposed framework effectively increases
the overall level of safety, ultimately protecting the robot as
well as its co-workers. Obviously, this safety improvement
will come at a cost, i.e., a deterioration of performance (in
terms of, e.g., time needed to complete a task) due to the
more cautious attitude of the robot.

To evaluate the above aspect in detail, we have performed
a campaign of simulations focusing on a scenario where an
HRP-4 humanoid must execute a walk-to locomotion task in
a 25×25m area. A variable number (1, 3, 5 or 10) of humans
walking at 0.2 m/s cross at random the path of the robot. To
increase the robot’s chances of detecting and avoiding the
humans, an omnidirectional camera has been added to its
sensory equipment. As a consequence (see Sect. 12.3), the
safety behaviors involved in the simulations are stop, evade
and halt, for which we have used the following parameters:
dstop = devade = 3 m, dhalt = 1 m, v̄ = −0.3 m/s and
k = 0.2. A simulation is stopped and a failure is recorded
when the halt behavior is triggered, leading the robot to an
Error state. Table 1 summarizes the outcome of 10 runs for
each scenario, in terms of success rate (how many times the
robot was able to complete the task) and completion time
(minimum, maximum and average). For comparison, each
simulationwas also performedwithout the safety framework,
addinghowever to the control architecture a standard obstacle
avoidancemodule based on artificial potentials (De Luca and
Oriolo 1994); in this case, failure means that collision with
a human could not be avoided.

The results in Table 1 confirm that our safety framework
allows the robot to complete the task in the large majority
of cases, even in the presence of many moving humans. As
a counterpart, there is a limited increase in the average time
needed to complete the task (around 44% going from 1 to
10 humans). Note that the success rate is much lower in the
absence of the framework, due to collisions between the robot
and the humans. Video clips from a couple of trials with 5
and 10 humans are included in the accompanying video to
illustrate the activation of the safety behaviors in this setting.

12.2 Limitations of themethod

While the results presented so far are clearly positive, one
must acknowledge that there are limitations to the proposed
method.

1. Robot contexts (Sect. 6.1) are separated. For example, the
possibility that the humanoid performs a manipulation
task while walking is not considered here. Our motiva-
tion for excluding such cases is twofold: on the one hand,

123

Autonomous Robots (2021) 45:435–456 453

Fig. 12 Experiment 1: A NAO robot executing an evasion maneuver triggered by another NAO used as a moving object. Snapshots correspond to
transitions between states. A close-up of the robot head is shown in the upper left corner. Clip in the accompanying video

Fig. 13 Experiment 2: A NAO robot avoiding an unexpected obstacle through footstep adaptation. The humanoid camera view is shown in the
upper right corner. Clip in the accompanying video

Table 1 HRP-4 executing a walk-to locomotion task in the presence of a variable number of humans: performance data over 10 runs for each
scenario. Illustrative clips in the accompanying video

Number of humans Success rate (%) Minimum time Maximum time Average time Success rate
without safety
framework

(%)

1 100 84.75 111.22 89.64 90%

3 100 84.75 143.23 113.1 70%

5 100 100.20 148.10 113.59 70%

10 90 103.95 163.75 128.37 60%

123

454 Autonomous Robots (2021) 45:435–456

we are assuming that sensory resources are limited, so
that it may be impossible to adequately monitor both the
manipulation and the walking area; on the other hand,
it is rather obvious that focusing on one task at a time
allows to maximize safety. However, an extension allow-
ing execution of simultaneous tasks should be in principle
relatively easy to design: one can simply add the com-
bined contexts (e.g., Loco-manipulation) to the list and
adapt the definition of behaviors to the new contexts.

2. We are looking at the safety problem from the viewpoint
of a single robot. If multiple humanoids, all equipped
with the proposed framework, are sharing the same envi-
ronment, each of them will see the others as unexpected
moving obstacles, and perform evasionmaneuverswhen-
ever required. While this may not be necessarily optimal,
it should be considered that a proper multi-robot safety
framework would inevitably require some degree of cen-
tralization and inter-robot communication, which may
negatively affect the reactiveness of the single robot and
the robustness of the safety framework. In any case, such
a study is out of the scope of this paper.

3. We are looking at the safety problem in a context of pure
coexistence between robots and humans, in the sense that
physical collaboration between them is not allowed. This
simplifying assumption may be however appropriate for
many current applications, especially in industrial con-
texts where current regulations de facto exclude human-
humanoid collaboration (Kheddar et al. 2019). However,
there is no doubt that in the future such possibility should
and will be allowed, making the design of safety frame-
works considerably more challenging. Still, we believe
that the structure of the proposed approach, based on
the definition of override/temporary override/proactive
behaviors orchestrated by a state machine, provides a
valid template for such extension.

12.3 Adaptations

Although the safety guidelines proposed in Sect. 3 are com-
pletely general, our safety framework is in part dependent
on the specific equipment of the humanoid, because safety
behaviors were designed based on the sensing assumptions
of Sect. 4.While this is inevitable, adapting themethod to the
availability of different measurements is relatively simple.

For example, consider the case in which the humanoid is
equipped with an omnidirectional camera, so that the per-
ception area P becomes a full circle. As a consequence, the
robot does not need to direct its gaze, and it becomes possible
to observe a moving object while, e.g., scanning the walk-
ing area or performing another observation task. This means
that scan and track actually become a single behavior that is
always kept active.

Another interesting situation is when the robot can mea-
sure relative velocity (direction and magnitude) of moving
obstacles with respect to itself. In this case, the trigger of
the evade behavior may be modified to allow activation only
when the moving obstacle is directed ‘towards’ (in a quan-
titative sense to be suitably defined) the robot. Allowing an
object to cross the robot safety area or not depending on
its relative velocity may improve performance (some use-
less evasion may be avoided) but will obviously increase the
level of risk (if the object is a human who brusquely changes
direction, there may be no sufficient time left to perform the
evasion); a reasonable trade-off between these two aspects
must then be found.

Similar adaptations can be derived for other possible vari-
ations in the sensory equipment.

Finally, note that the framework description up to Sect. 7
(i.e., including the state machine) is independent from the
control architecture of the robot. Clearly, any implementa-
tion of the framework must take into account (and conform
to) such architecture; hence, to offer a worked out exam-
ple we have first described a possible control architecture
based on MPC (Sect. 8) and then discussed an implemen-
tation inside it (Sect. 9). Implementing the framework in a
different control architecture, however, does not pose any
conceptual difficulty.

12.4 Choice of parameters

A practically relevant issue in our framework is the choice
of the various parameters, such as the radiuses of the safety
areas. Most of these choices can be made on the basis of
simple reasoning.

As an example, we discuss below a possible way to deter-
mine the threshold devade, which defines the Sevade area,
based on the desired minimal distance between the robot
and a moving obstacle. The worst case to be considered for
this scenario is the one in which an obstacle moving at con-
stant speed is heading towards the humanoid along the robot’s
sagittal axis. When the obstacle enters Sevade, the robot starts
an evasionmaneuver under the control (5)–(7), hencemoving
along an arc of circle of radius R = v̄/k. Assuming that the
obstacle moves at the same speed v̄ of the humanoid, a sim-
ple computation shows that the minimum distance between
the robot and the obstacles takes the value

dmin = R

√
2

(
1 − cos

devade

R

)
.

This relationship can be used for selecting a value of devade

that guarantees a desired dmin. For illustration, in Fig. 14 we
have plotted dmin as a function of devade for v̄ = 1 m/s and
k = 0.75, corresponding to R = 4/3 m. To achieve, say,

123

Autonomous Robots (2021) 45:435–456 455

1 1.5 2 2.5 3 3.5 4
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Fig. 14 Minimum robot-obstacle distance dmin as a function of devade

dmin = 2.4 m one should choose devade = 3 m (as in our
simulations).

13 Conclusions

In this paper we have presented a complete framework for
the safe deployment of humanoid robots in environments
containing humans. This is obtained through the definition
of safety behaviors which are differentiated in override,
temporary override and proactive. A state machine han-
dles activation/deactivation of these behaviors based on the
information givenby the robot sensory system. In the descrip-
tion of the implementation, we focused on locomotion since
it is the main aspect which distinguishes humanoids. An
MPC setting has been used for realizing all locomotion-
related behaviors efficiently. Effectiveness of the proposed
method has been shown in dynamic simulation on the HRP-
4 humanoid and through experiments on a NAO robot.

This work can be improved under several aspects. The
main challengewewill consider in the future is going beyond
human-robot coexistence to allow physical collaboration
between the robot and humans. This obviously raises addi-
tional safety problems that can in principle be addressed by
properly extending the proposed framework, provided that
a communication system has been established between the
human and the robot, e.g, using gestures and/or voice com-
mands.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-09978-
5.

Acknowledgements Thisworkwas supported by theEUH2020project
COMANOID.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Aboudonia, A., Scianca, N., de Simone, D., Lanari, L., & Oriolo, G.
(2017). Humanoid gait generation for walk-to locomotion using
single-stage MPC. In 17th IEEE-RAS Int. Conf. on Humanoid
Robots, pp. 178–183.

Atkeson, C. G., Benzun, P. B., Banerjee, N., Berenson, D., Bove, C.
P., Cui, X., DeDonato, M., Du, R., Feng, S., & Franklin, P., et al.
(2018). What happened at the DARPA Robotics Challenge finals.
In The DARPA Robotics Challenge Finals: Humanoid Robots to
the Rescue, Springer, pp. 667–684.

Baudouin, L., Perrin, N., Moulard, T., Lamiraux, F., Stasse, O., &
Yoshida, E. (2011). Real-time replanning using 3D environment
for humanoid robot. In 11th IEEE-RAS Int. Conf. on Humanoid
Robots, pp. 584–589.

Bicchi, A., & Tonietti, G. (2004). Fast and “soft-arm” tactics. IEEE
Robotics and Automation Magazine, 11(2), 22–33.

Bohorquez, N., Sherikov, A., Dimitrov, D., &Wieber, P. B. (2016). Safe
navigation strategies for a biped robot walking in a crowd. In 16th
IEEE-RAS Int. Conf. on Humanoid Robots, pp. 379–386.

Bouyarmane, K., Caron, S., Escande, A., & Kheddar, A. (2019).
Multi-contact motion planning and control. In A. Goswami & P.
Vadakkepat (Eds.), Humanoid Robotics: A Reference (pp. 1–42).
Netherlands, Dordrecht: Springer.

Braghin, F., Henze, B., & Roa, M. (2019). Optimal trajectory for active
safe falls in humanoid robots. In 19th IEEE-RAS Int. Conf. on
Humanoid Robots, pp. 305–312.

Caron, S., Pham, Q. C., & Nakamura, Y. (2017). ZMP support areas for
multi-contact mobility under frictional constraints. IEEE Transac-
tions on Robotics, 33(1), 67–80.

Chaumette, F., & Hutchinson, S. (2006). Visual servo control: I basic
approaches. IEEE Robotics & Automation Magazine, 13(4), 82–
90.

Cognetti, M., De Simone, D., Patota, F., Scianca, N., Lanari, L., & Ori-
olo,G. (2017). Real-time pursuit-evasionwith humanoid robots. In
2017 IEEE International Conference on Robotics and Automation,
pp. 4090–4095.

De Luca, A., & Flacco, F. (2012). Integrated control for pHRI: Collision
avoidance, detection, reaction and collaboration. In 2012 IEEE
RAS & EMBS international conference on biomedical robotics
and biomechatronics, pp. 288–295.

De Luca, A., & Oriolo, G. (1994). Local incremental planning for non-
holonomic mobile robots. In 1994 IEEE International Conference
on Robotics and Automation, vol 1, pp. 104–110.

DeSantis,A., Siciliano,B.,DeLuca,A.,&Bicchi,A. (2008).Anatlas of
physical human-robot interaction. Mechanism and Machine The-
ory, 43(3), 253–270.

123

https://doi.org/10.1007/s10514-021-09978-5
https://doi.org/10.1007/s10514-021-09978-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

456 Autonomous Robots (2021) 45:435–456

De Simone, D., Scianca, N., Ferrari, P., Lanari, L., & Oriolo, G. (2017).
MPC-basedhumanoid pursuit-evasion in the presence of obstacles.
In 2017 IEEE/RSJ international conference on intelligent robots
and systems, pp. 5245–5250.

Ferrari, P., Cognetti, M., & Oriolo, G. (2019). Sensor-based whole-
body planning/replanning for humanoid robots. In 19th IEEE-RAS
International Conference on Humanoid Robots, pp. 511–517.

Flacco, F., Paolillo, A., & Kheddar, A. (2016). Residual-based contacts
estimation for humanoid robots. In 16th IEEE-RAS International
Conference on Humanoid Robots, pp. 409–415.

Fujiwara, K., Kanehiro, F., Kajita, S., Yokoi, K., Saito, H., Harada,
K., Kaneko, K., & Hirukawa, H. (2003). The first human-size
humanoid that can fall over safely and stand-up again. In 2003
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, vol 2, pp. 1920–1926.

Fujiwara, K., Kanehiro, F., Kajita, S., &Hirukawa, H. (2004). Safe knee
landing of a human-size humanoid robot while falling forward. In
2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol 1, pp. 503–508.

Haddadin, S., & Croft, E. (2016). Physical human–robot interaction. In
Springer Handbook of Robotics, Springer, pp. 1835–1874.

Hall, E. T. (1966).The hidden dimension. GardenCity,N.Y.:Doubleday.
Harada, K., Kajita, S., Kaneko, K., & Hirukawa, H. (2006). Dynamics

and balance of a humanoid robot during manipulation tasks. IEEE
Transactions on Robotics, 22(3), 568–575.

Kajita, S., Hirukawa, H., Harada, K., & Yokoi, K. (2014). Introduction
to Humanoid Robotics. Berlin: Springer.

Khatib, O. (1985). Real-time obstacle avoidance for manipulators and
mobile robots. In 1985 IEEE International Conference on Robotics
and Automation, vol 2, pp. 500–505.

Kheddar, A., Caron, S., Gergondet, P., Comport, A., Tanguy, A., Ott,
C., et al. (2019). Humanoid robots in aircraft manufactoring - the
Airbus use-case. IEEE Robotics and Automation Magazine, 26(4),
30–45.

Krotkov, E., Hackett, D., Jackel, L., Perschbacher, M., Pippine, J.,
Strauss, J., et al. (2017). The DARPA robotics challenge finals:
Results and perspectives. Journal of Field Robotics, 34(2), 229–
240.

Kruse, T., Pandey, A. K., Alami, R., &Kirsch, A. (2013). Human-aware
robot navigation: A survey. Robotics and Autonomous Systems,
61(12), 1726–1743.

Lacevic, B., Rocco, P., & Zanchettin, A. (2013). Safety assessment and
control of robotic manipulators using danger field. IEEE Transac-
tions on Robotics, 29(5), 1257–1270.

Lengagne, S., Vaillant, J., Yoshida, E., & Kheddar, A. (2013). Gener-
ation of whole-body optimal dynamic multi-contact motions. The
International Journal of Robotics Research,32(9–10), 1104–1119.

Lim, J., Lee, I., Shim, I., Jung, H., Joe, H. M., Bae, H., et al. (2017).
Robot system of DRC-HUBO+ and control strategy of team
KAIST in DARPA Robotics Challenge finals. Journal of Field
Robotics, 34(4), 802–829.

Mandery, C., Borràs, J., Jöchner, M., & Asfour, T. (2015). Analyz-
ing whole-body pose transitions in multi-contact motions. In 15th
IEEE-RAS International Conference on Humanoid Robots, pp.
1020–1027.

Marion, P., Fallon, M., Deits, R., Valenzuela, A., Pérez D’Arpino, C.,
Izatt, G., et al. (2017). Director: A user interface designed for robot
operation with shared autonomy. Journal of Field Robotics, 34(2),
262–280.

Michel, P.,Chestnutt, J.,Kuffner, J.,&Kanade,T. (2005).Vision-guided
humanoid footstep planning for dynamic environments. In 2005
IEEE-RAS international conference on humanoid robots, pp. 13–
18.

Minguez, J., Lamiraux, F., & Laumond, J. P. (2016). Motion plan-
ning and obstacle avoidance. Springer Handbook of Robotics (pp.
1177–1201). Springer.

Mombaur, K., Truong, A., & Laumond, J. P. (2010). From human
to humanoid locomotion: An inverse optimal control approach.
Autonomous Robots, 28, 369–383.

Nagarajan, U., & Goswami, A. (2010). Generalized direction changing
fall control of humanoid robots among multiple objects. In 2010
IEEE International Conference on Robotics and Automation, pp.
3316–3322.

Navarro, B., Fonte, A., Fraisse, P., Poisson, G., & Cherubini, A. (2018).
In pursuit of safety: An open-source library for physical human-
robot interaction. IEEE Robotics & Automation Magazine, 25(2),
39–50.

Naveau, M., Kudruss, M., Stasse, O., Kirches, C., Mombaur, K., &
Souères, P. (2017). A reactive walking pattern generator based on
nonlinear model predictive control. IEEE Robotics and Automa-
tion Letters, 2(1), 10–17.

Ogata, K., Terada, K., & Kuniyoshi, Y. (2007). Falling motion control
for humanoid robotswhilewalking. In 7th IEEE-RAS international
conference on humanoid robots, pp. 306–311.

Radke, R. J., Andra, S., Al-Kofahi, O., & Roysam, B. (2005). Image
change detection algorithms: A systematic survey. IEEE Transac-
tions on Image Processing, 14(3), 294–307.

Rios-Martinez, J., Spalanzani, A., & Laugier, C. (2014). From prox-
emics theory to socially-aware navigation: A survey. International
Journal of Social Robotics, 7, 137–153.

Samy, V., & Kheddar, A. (2015). Falls control using posture reshaping
and active compliance. In15th IEEE-RAS international conference
on humanoid robots, pp. 908–913.

Scianca, N., De Simone, D., Lanari, L., & Oriolo, G. (2020). MPC for
humanoid gait generation: Stability and feasibility. IEEE Transac-
tions on Robotics, 36(4), 1171–1178.

Stark,M., Schiele,B.,&Leonardis,A. (2016).Visual object class recog-
nition. Springer Handbook of Robotics (pp. 825–840). Springer.

Tadele, T. S., deVries, T.,&Stramigioli, S. (2014). The safety of domes-
tic robotics: A survey of various safety-related publications. IEEE
Robotics & Automation Magazine, 21(3), 134–142.

Takenaka, T., Matsumoto, T., & Yoshiike, T. (2009). Real time motion
generation and control for biped robot -1st report: Walking gait
pattern generation-. In 2009 IEEE/RSJ, pp. 1084–1091.

Werner, A., Henze, B., Rodriguez, D. A., Gabaret, J., Porges, O., &Roa,
M. A. (2016). Multi-contact planning and control for a torque-
controlled humanoid robot. In 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 5708–5715.

Wieber, P. B., Tedrake, R.,&Kuindersma, S. (2016).Modeling and con-
trol of legged robots. In Springer Handbook of Robotics, Springer,
pp. 1203–1234.

Yasin, A., Huang, Q., Yu, Z., Xu, Q., Syed, A. A. (2012). Stepping to
recover: A 3D-LIPM based push recovery and fall management
scheme for biped robots. In 2012 IEEE international conference
on robotics and biomimetics (ROBIO), pp. 318–323.

Yun, S., Goswami, A., & Sakagami, Y. (2009). Safe fall: Humanoid
robot fall direction change through intelligent stepping and inertia
shaping. In 2009 IEEE international conference on robotics and
automation, pp. 781–787.

Zamparelli, A., Scianca, N., Lanari, L., & Oriolo, G. (2018). Humanoid
gait generation on uneven ground using intrinsically stable MPC.
IFAC-PapersOnLine, 51, 393–398.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A behavior-based framework for safe deployment of humanoid robots
	Abstract
	1 Introduction
	2 Safety standards
	3 Safety guidelines
	4 Sensing assumptions
	5 Overview of safety behaviors
	5.1 Override behaviors
	5.2 Temporary override behaviors
	5.3 Proactive behaviors

	6 Behavior-based safety framework
	6.1 Contexts
	6.2 Safety areas and thresholds
	6.3 Definitions of behaviors

	7 State machine
	8 Control architecture
	8.1 Camera motion generator
	8.2 Hand(s) motion-force generator
	8.3 Gait generator
	8.3.1 Footstep planner
	8.3.2 IS-MPC

	9 Implementation of behaviors
	9.1 halt
	9.2 self-protect
	9.3 stop
	9.4 evade
	9.5 add_contact
	9.6 scan and track
	9.7 adapt_footsteps
	9.8 scale_velocity-force

	10 Simulations
	11 Experiments
	12 Discussion
	12.1 Effect of safety on performance
	12.2 Limitations of the method
	12.3 Adaptations
	12.4 Choice of parameters

	13 Conclusions
	Acknowledgements
	References

