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Abstract— We highlight the equivalence between the motion
of an elastic joint and the two-body problem in classical
mechanics. Based on this observation, a change of coordinates
is introduced that reduces the two-body problem to a pair of
decoupled one-body problems. This allows to treat the rest-to-
rest motion problem with bounded actuator torque in an elegant
geometric fashion. Instead of dealing directly with the fourth-
order dynamics, we consider two equivalent masses whose
motions have to be synchronized in separate phase spaces.
Based on this idea, we derive a complete synthesis method
for time-optimal rest-to-rest motions of this elastic system.
The solution is a bang-bang control policy with one or three
switches. We also introduce the concept of natural motions,
when the minimum-time solution for the elastic and the rigid
system is the same. The closed-form solutions obtained with
our purely geometric approach verify the standard optimality
conditions.

I. Introduction

In recent years we have seen a surge in the application of
robotic manipulators in new areas that require a dynamic in-
teraction with the environment, e.g., shared work spaces with
humans, healthcare, Industry 4.0. In order to facilitate these
interactions in a safe manner, and to increase the mechanical
robustness of robots against impacts, robot design evolved
from rigid toward compliant actuators, i.e., soft robots. In
addition, the inherent energy storing capabilities of such
compliant actuators can be utilized for motion generation [1].
The intrinsic oscillatory dynamics can be exploited, for cyclic
tasks such as locomotion, hammering, or drumming. For po-
sitioning tasks, however, these oscillatory dynamics require
elaborate control concepts [2], [3] to achieve positioning
performance that come close to that of rigid manipulators.

For many robotic applications, fast motion along a given
path is crucial. It requires the exploitation of the maxi-
mal allowable actuator torques. Therefore, it is natural to
aim at time-optimal solutions along a predefined path. The
minimum-time optimization problem for rigid manipulators
was treated first in [4], [5]. These methods rely on projecting
the robot dynamics on the predefined trajectory. Using the
parametric position and velocity along the path allows an
elegant treatment of the problem in the phase plane. Unfortu-
nately, these algorithms can not be applied to the presence of
elastic joints. Other methods have been proposed to solve the
time-optimal control problem for robots with (linear or non-
linear) flexible joints. In [6], a constrained optimal control
problem is formulated to obtain an optimal motor trajectory.
The problem of reaching a desired state in minimum time for
visco-elastic joints under limited deflection has been treated
in [7]. However, in order to simplify the analysis, these works
contemplate a simplified model by considering the motors as
ideal velocity sources. The time-optimal control problem for
the complete elastic joint model was addressed also in [8],
but only in a numerical way.

In this paper, we consider a system of two masses m and
b connected by an elastic joint of stiffness k, as shown in
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Fig. 1. The proposed change of coordinates reduces the two-body problem
in eqs. (1–2) to a pair of one-body problems. With this transformation, the
control input will act on both masses, although in a scaled fashion in one
case.

Figure 1 (top). The corresponding dynamic model is

mq̈ + k(q − θ) = 0 (1)
bθ̈ + k(θ − q) = u, (2)

where θ and q are the positions of the two masses, relative
to some inertial reference frame, and u is the control input
force. We assume a symmetric bound on the input

|u| ≤ û. (3)

We note that this model (with masses in translation) is
equivalent to that of a robot joint (with rigid bodies in
rotation), where the control torque u acts on the motor inertia
b, driving the link inertia m through an elastic transmission
of finite stiffness k. In this case, θ and q are the motor and
link position, respectively.

For the elastic system (1–2), we present a method that
simplifies generation and analysis of bang-bang control poli-
cies with bounded actuator torque. In contrast to previous
works, rest-to-rest (RTR) solutions are obtained in closed
form by means of geometric considerations only, providing
thus valuable insight into the RTR motion problem. Further,
no offline processing/optimization phase will be required.

We showcase the equivalence between the motion of
the elastic system and the two-body problem in classical
mechanics, introducing thus a change of coordinates that
reduces the two-body problem to a pair of decoupled one-
body problems. In contrast to a two-body problem in clas-
sical mechanics, additional external forces are exerted on
each mass. These forces are directly related to our control
input. This approach allows to extend the idea of phase-plane
based optimization [4], [5] to the presence of elastic joints.
However, instead of working with the projected dynamics
in a single phase-space diagram, we face the problem of
synchronizing the motion of two bodies in two separate phase
planes. In this framework, we derive conditions under which
the elastic joint system achieves time-optimal motion in the
rest-to-rest (RTR) problem in a total time equal to that of a
rigid joint (i.e., for k → ∞). Thus, an elastic joint system
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matches the performance of a rigid one only for these special
cases that we define as natural motions. As a result, our
analysis may be used also to optimize the mechanical design
of an elastic transmission.

The rest of the paper is organized as follows. In Section II,
we introduce the change of coordinates that decouples the
dynamics of the elastic joint system. Section III presents
the concept of natural motions, and the associated bang-
bang solution with a single control switch to the minimum
time problem. In Section IV, we generalize the solution to
a generic RTR motion, synthesizing the time-optimal bang-
bang policy with three control switchings. Numerical results
are reported in Section V.

II. Equivalence Transformation

In classical mechanics, the two-body problem predicts the
motion of two masses, each exerting a force on the other.
One of the prominent examples is the gravitational case, also
known as Kepler problem [9], [10], which arises in orbital
mechanics for predicting the orbits of two bodies in a binary
system1. This problem can be treated in an elegant fashion
by reducing it to a pair of one-body problems. Substituting
Newton’s law of universal gravitation [11] with Hooke’s law,
we can treat the elastic joint system (1–2) as a two-body
problem that evolves in one dimension, allowing to apply the
techniques that simplified the analysis of the Kepler problem.

In our elastic system, each body exerts a conservative
central force on the other (Figure 1). In addition, one of the
two bodies is subject to an external force which represents
our control input. The force of interaction is the elastic force
k(θ − q). This suggests that we may conveniently use the
relative position as one of the generalized coordinates

ϕ , θ − q, (4)

letting the potential energy of the system take the simple
form

V = 1
2 k (θ − q)2 = 1

2 kϕ2. (5)

A good choice for the second generalized coordinate turns
out to be the position of the center of mass (CoM) of the
system

r ,
mq + bθ

M
, (6)

where M , m + b is the total mass of the two bodies. The
original set of coordinates is related to the introduced one
by the inverse transformation

q = r −
b
M
ϕ; θ = r +

m
M
ϕ. (7)

Thus, we can rewrite the kinetic energy of the system as

T = 1
2

(
mq̇2 + bθ̇2

)
= 1

2

(
Mṙ2 + µϕ̇2

)
, (8)

with the reduced mass µ , mb
m+b < min(m, b). The kinetic

energy of the system is thus equal to that of two virtual
particles, one of total mass M moving with the speed of the
CoM, and the other of reduced mass µ moving with the speed
of the relative position. The total energy of the system,

H = 1
2 Mṙ2 + 1

2

(
µϕ̇2 + kϕ2

)
, Hcom +Hrel, (9)

1In the simplest case, each of the two bodies exert a conservative, central
force on the other, with no other external force being present.

shows the decoupled nature of the two one-body problems.
This structure significantly simplifies matters. The equations
of motion in the new coordinates are in fact

Mr̈ =u (10)
µϕ̈ + kϕ =νu, (11)

with the dimensionless parameter ν , m/M. As predicted
(see also the bottom of Figure 1), equation (10) is precisely
that of a free floating particle of mass M driven by u, while
(11) represents a mass µ oscillating about a fixed center
while subject to the external force u scaled by the constant
factor ν. We note also that, given a constant input, the elastic
joint system is invariant to time reversal, i.e., under the
operation T : t 7→ −t. Intuitively speaking, this is due to
the conservation of entropy. This property will turn out to
be extremely useful later in the paper.

A. Solution of the Decoupled Systems
Since we are interested in bang-bang control policies, we

assume that u is piece-wise constant. In this case, the solution
to the equation of motion (10) is trivial

r(t) =
u

2M
t2 + C1t + C2, (12)

with C1 being the initial velocity and C2 being the initial
position. Since we are interested in RTR motions we can
assume, without loss of generality2, that C1 = 0 and C2 = 0.
The general solution of (11) is

ϕ(t) = A cos(ωt + δ) + ū, (13)

with oscillation amplitude A, angular frequency ω ,
√

k/µ,
phase shift δ, and static response

ū , νu/k. (14)

The amplitude and phase shift depend on the initial condi-
tions. The corresponding velocity is given by

ϕ̇(t) = −Aω sin(ωt + δ). (15)

We can represent the phase space trajectory of system
(11) in a useful way by moving into the complex plane.
To this end, we express (13) and (15) in terms of complex
exponentials. The system state will be a single point in the
complex plane, i.e., the complex plane serves as phase plane.
To this end, let

z(t) , ū + ϕ(t) + iϕ̇(t) = ū + A1ei(ωt+δ) + A2e−i(ωt+δ), (16)

with A1 ,
A
2 (1−ω) and A2 ,

A
2 (1 +ω). As the reduced mass

oscillates back and forth, point z moves on an ellipse centered
at ū in clockwise orientation. This result is illustrated in
Figure 2. The exact shape will become clear in a moment.

Observe that the state trajectory becomes particularly sim-
ple for ω = 1, when the ellipse in the phase plane degenerates
to a circle. Exploiting this fact to simplify matters, we rewrite
(13)–(15) in terms of the scaled time

τ = ωt, (17)

that we shall refer to as natural time (which is system
specific, as the scaling factor is its angular frequency). Using
the chain rule d(·)/dt = ω d(·)/dτ, we have

ϕ(t) = ϕ(τ/ω), (18a)
ϕ̇(t) = ωϕ′(τ/ω), (18b)

2We can always choose the inertial frame so that r(t)|t=0 = 0.
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Fig. 2. The position (ϕ, iϕ′) of the normalized system is given by the
complex pointer Aei(τ+δ) whose origin is offset along the real axis by ū. As
the reduced mass oscillates back and forth, this point moves in clockwise
orientation on an inscribed circle with radius A that is centered at ū. The
elliptic orbit of the reduced mass (ϕ, ϕ̇) can be obtained by scaling the
imaginary part of z̃, i. e. ϕ′, by ω.

with the natural time as parameter, and having denoted by
(·)′ , d(·)/dτ the new differential operator. We note that
(ϕ, ϕ′) are equivalent to the analytical solution of a clamped
spring-mass system with natural frequency ω = 1. The scaled
trajectory

z̃(τ) = ū + ϕ(τ) + iϕ′(τ) = ū + Aei(τ+δ), (19)

corresponds then to the solution of a spring-mass system with
a unitary angular frequency. Thus, a phase plane trajectory
z can be obtained from the trajectory z̃ by scaling the
imaginary part of z̃ by the constant factor ω.

If we know the trajectory z̃(τ/ω) in the complex plane,
we obtain z(t) by stretching (ω > 1) or squeezing (ω < 1)
the imaginary part of z̃ by the angular frequency factor. It
is straightforward to see that z̃ defines a point that moves in
the clockwise direction on a circle centered at ū and having
radius A. Hence, z will trace an ellipse centered at ū, with
axes parallel to the coordinate axes, semi-major axis (ω > 1)
of length ωA and semi-minor axis of length A.

Note finally that the natural time τ, with δ as an offset, cor-
responds to the polar angular coordinate of z̃, but not to the
polar angular coordinate of z. However, the parameter pair τ
and δ can be interpreted as the eccentric anomaly [12] of a
point z that moves on an elliptic orbit, a popular concept in
astronomy. The geometric meaning of the eccentric anomaly
becomes clear in the point construction method of an ellipse
by La Hire. Given a trajectory z̃(τ/ω), this construction
method allows to derive the corresponding trajectory z(t),
and vice versa, in a purely geometric way, see Figure 2.

III. NaturalMotions
We preliminarily recap the rest-to-rest motion in minimum

time of the total mass M made by the two individual masses
m and b connected by a rigid joint (k → ∞). We transfer then
these insights to the case of an elastic joint and introduce the
concept of natural motions. When a natural motion applies,
this associated rest-to-rest command is time optimal. Further,
natural motions are the only cases when an elastic joint
matches the fastest RTR motion performance of a rigid joint.

r

t

t

t

ts t f

ts t f rs r f

t f

r ṙ
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Fig. 3. A typical time-optimal RTR motion profile for a rigid joint. We
have points and lines of symmetry. The total area under the velocity profile
is equal to the total displacement r f > 0. The CoM trajectory of an elastic
joint has the same form for the natural motion case.

A. Rigid Joint Case
Consider (10) as the dynamics of the rigid joint case.

The minimum time control problem to displace by a desired
amount r f the total mass M from rest to rest, under the
constraint (3), reduces to a minimum time problem for a
double integrator with constant bounds on the acceleration
input r̈. From (3), the upper and lower bounds for the
acceleration are r̈max = û/M and r̈min = −û/M. Throughout
this paper we assume, w.l.o.g, that r f > 0.3 The solution
to the optimal control problem is a bang-bang input [13].
Due to the symmetry of the constraints (3) and the time
symmetry of (10) under constant inputs, the solution will
also be symmetric with respect to time and has the form

r̈ =

{
r̈max, for 0 ≤ t ≤ ts

r̈min, for ts < t ≤ t f ,
(20)

where t f denotes the final time and ts , t f /2 the instant
of command switching. Obviously, this corresponds to the
control law

u =

{
û, for 0 ≤ t ≤ ts

−û, for ts < t ≤ t f ,
(21)

which yields the system response

r(t) =

{ û
2M t2, for 0 ≥ t ≥ ts

− û
2M (t2 − 4tst + 2t2

s ), for ts < t ≥ t f
(22)

and

ṙ(t) =

{ û
M t, for 0 ≥ t ≥ ts

− û
M (t − 2ts), for ts < t ≥ t f .

(23)

The response to a bang-bang input (21) is shown in Figure 3.

B. Elastic Joint Case
We know that the class of bang-bang inputs (21) solve

the time-optimal control problem in the rigid joint case.
We are interested in whether such solutions exist and are
optimal also for the elastic case, when the task is to move

3The solutions for r f < 0 are simply obtained by inverting the input signs.
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Fig. 4. A natural motion trajectory of the reduced mass with one switching
event. The orbit o+ (o−) is the locus of all points (ϕ, ϕ′) which can be
transferred to the origin by the control u = û (u = −û).

the entire system (10)–(11) from rest to rest, with initial and
final positions

r(t) =

{
0, for t = 0
r f > 0, for t = t f

, ϕ(t) =

{
0, for t = 0
0, for t = t f .

(24)

The result for the rigid case allows to conclude that a bang-
bang input yields the time-optimal rest-to-rest motion for the
CoM of the flexible joint system. The solution is equivalent
to the one show in Figure 3. However, since we are interested
in moving the entire system from rest to rest (and with zero
final deformation), we have to ensure that our control input
induces a synchronized motion for the CoM and the reduced
mass µ. The acceleration of the reduced mass subject to the
bang-bang input (21) is

ϕ̈(t) = ω2ϕ′′(τ/ω) =

{
f (ϕ, û), for 0 ≤ t ≤ ts

f (ϕ,−û), for ts ≤ t ≤ t f
(25)

where f (ϕ, u) , µ−1 (νu − kϕ). In order to simplify the no-
tation, let h(ϕ, u) , ω−2 f (ϕ, u) such that ϕ′′(τ/ω) = h(ϕ, u).
Also, denote for compactness ūmax , νû/k.

As we prove below, there exist indeed bang-bang inputs of
the form (21) that yield synchronized RTR motions satisfying
the boundary conditions (24). The most intuitive approach to
find the switching position is to build the switching curve in
the (ϕ, iϕ′) phase plane. We start with maximum acceleration
and solve ϕ′′ = f (ϕ, û) forward in time from the initial point
ϕ = ϕ′ = 0. From (19), we know that for a constant input
u all solutions are circles centered at ū which are traced in
the clockwise direction. As such, a system that starts from
the origin, under u = û, moves clockwise on the orbit o+

with radius A = ūmax. This behavior is shown in Figure 4,
as well as on the left in Figure 6 (where the natural time τ
corresponds to the blue angle that is being covered).

Next, we solve ϕ′′ = f (ϕ,−û) backward in time from
the final point ϕ = ϕ′ = 0, yielding the circular orbit o−.
Since system (10–11) under a constant input is invariant to
time reversal, forward and backward integration are equiv-
alent operations when starting from a given system state.
Therefore, we don’t need to solve the system dynamics
backwards in time: due to the control policy (21), forward
and backward trajectories are just mirror images with respect
to the imaginary axis.

We note also that the two trajectories are tangent at the
origin of the phase plane. Since no other point of tangency or
intersection exists, transfer between the two orbits may occur
only at the origin. The phase plane trajectory that emerges
from solving ϕ′′ = h(ϕ,−û) backwards in time from ϕ =

4π 8π 12π 16π 20π
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area under curve equals
final position r f ,n slope: ± û

M

Fig. 5. Typical natural motion velocity profiles for the CoM. The red dots
indicate the switching events for n = 1, 2, . . . full acceleration/deceleration
cycles. This construction process can be continued ad infinum by adding
further acceleration and deceleration orbits.

ϕ′ = 0 is the switching curve for this scenario. The optimal
control policy is to apply maximum acceleration ϕ′′ = h(ϕ, û)
until the trajectory intersects the origin, and then switch to
maximum deceleration ϕ′′ = h(ϕ,−û).

The acceleration and deceleration phases are in the time
intervals 0 < τ ≤ 2π and 2π < τ ≤ 4π, respectively. Hence,
we spend half of the time applying u = û and the remaining
half applying u = −û. Since this strategy is time optimal for
the RTR motion of the CoM, we conclude that this control
policy moves the entire system (10)–(11) from rest to rest in
a time-optimal way4.

We can immediately see that there exists an infinite
number of such solutions. In fact, we may cover n orbits
with maximum acceleration and n orbits with maximum de-
celeration. We refer to all these instances as natural motions.
All natural RTR motions of system (1–2) emerge from the
control policy

u =

{
û, for 0 ≤ τ ≤ τs,n

−û, for τs,n < τ ≤ τ f ,n.
(26)

with τ f ,n = 4nπ and τs,n = τ f ,n/2, for n ∈ N. Furthermore,
each natural motion is a time-optimal solution to a specific
RTR motion problem for the elastic joint system.

The velocity profile of the CoM mass subject to the control
(26) is piece-wise linear, as shown in Figure 5. The geometric
relation between the CoM velocity r′ and the corresponding
final positions r f is given by

r f =

∫ t f

0
ṙ dt =

∫ τ f

0
r′ dτ. (27)

Thus, the final position r f ,n is equal to the area under the
corresponding velocity profile in Figure 5. From (23), we
know that the peak velocity at the switching point n is given
by ṙ(ts,n) = (û/M)(τs,n/ω). Applying basic geometry allows
to determine the final reached position as5

r f ,n =
û
M

(τs,n

ω

)2
=

û
M

(
2nπ
ω

)2

. (28)

4Recall that we have two decoupled systems. As such, the minimum
possible time for moving both systems synchronously has to be greater or
equal to the minimum times for moving the individual systems.

5Note that we cover half of the distance in half of the time.
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Fig. 6. Geometry of the phase-space trajectories for multiple switching incidents.

Indeed, the achievable final positions are countable and do
not cover the entire set R+. We may only reach (infinitely
many) discrete points for a given set of system parameters.
In the following section, we present the class of bang-bang
solutions that allows to cover the entire set of real numbers.

IV. Reaching any Distance
In this section, we synthesize a three-switching bang-bang

control strategy that achieves RTR motions in minimum time
for arbitrary final positions .

A. The Synchronization Problem
By introducing three switching points, we will show that

one can reach any desired position for the CoM as well.
Again, we synchronize the motion of the CoM with the
motion of the reduced mass so that the boundary conditions
(24) are all satisfied. From the time-symmetry of the dy-
namics, we observe that any time-optimal control strategy
must be symmetric with respect to the half motion time.
Thus, we only consider three-switching strategies that satisfy
this condition. Therefore, a policy including three control
switches (for r f > 0) must be of the form

u =


û, for 0 ≤ τ ≤ α1

−û, for α1 < τ ≤ α1 + α2

û, for α1 + α2 < τ ≤ α1 + 2α2

−û, for α1 + 2α2 < τ ≤ 2 (α1 + α2) .

(29)

When applying an input torque û to system (10)–(11), and
starting from the origin, we know that the resulting trajectory

τ

τ f

r′

τ

τ f

r′

α1 α2α1 α2

line of
symmetry

α1 >
π
2α1 <

π
2

Fig. 7. Typical CoM velocity profiles for the three-switchings solution.
By purely geometrical reasoning we may conclude that the CoM velocity
assumes negative values if and only if α1 < π/2.

for z̃ is a circular orbit o1 centered at ūmax —see the left
side of Figure 6. Switching to an input −û after some time
τs1,n transfers z̃ to a circular orbit o2 with its center at
−ūmax. The continuity of the solution (ϕ, ϕ′) implies that
these two circular orbits intersect at the switching time τs.
This uniquely defines the radius of orbit o2. At the time-point
of switching, the amplitude A in (19) assumes the radius of
o2. In a switching event, we can think of an amplitude A
and angular offset δ adaptation such that continuity of the
solution for (ϕ, ϕ′) is ensured. This construction is illustrated
on the right side of Figure 6. We remark that a continuous
solution in (ϕ, ϕ′) imply a continuous solution in (ϕ, ϕ̇). Also,
since we require the CoM to complete the motion at rest, the
total intervals of maximum acceleration and of maximum
deceleration must be equal. This is visualized in Figure 7.

We are now in the position to derive a control policy with
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Fig. 8. A symmetric three-switchings trajectory for the reduced mass.
Note that it is possible to cover the maximum acceleration orbit o1 multiple
times before transferring to orbit o2. However, symmetry demands that for n
maximum acceleration cycles on orbit o1 we enter n maximum deceleration
cycles on orbit o4.

three switches that allows us to achieve any final rest position
for the CoM, while simultaneously moving the reduced mass
from rest to rest. We shall build the phase plane trajectory of
the reduced mass that correspond to a three-switching control
policy, as shown in Figure 7. A typical trajectory of this type
is shown in Figure 8.

The first two phases of maximum and minimum accelera-
tion yield orbit o1 and the transfer to orbit o2. The time spent
on orbit o1 corresponds to the polar angle α1. The actual time
span is related to the scaled one by the relation t = ω−1τ.
In a similar way, the polar angle α2 corresponds to the time
spent on the deceleration orbit o2. Imagine now to perform
the same procedure of trajectory construction backward in
time. We know that our final position shall be the origin.
Thus, we start by integrating ϕ′′ = f (ϕ,−û) backward in
time from the origin of the phase plane, which yields orbit
o4. After some time α1, we switch to full acceleration and
obtain orbit o3. We observe that by choosing α1 and then α2
wisely, we will have the second command switching exactly
where the orbits o2 and o3 intersect for the first time. Recall
now that forward and backward integration for our system
are equivalent operations. Thus, the forward and backward
trajectories, due to the above control policy, must be mirror
images with respect to the imaginary axis. This implies that
the switching must happen where the phase plane trajectory
intersects the imaginary axis (i.e., when ϕ = 0).

We conclude that this geometric construction yields cyclic
trajectories for the reduced mass, moving it from rest to
rest. Further, due to our assumptions above, the same control
policy yields also rest-to-rest motions for the CoM. We show
next that we can reach any distance (in particular, between
two natural motions) by adjusting the value of α1.

B. Solution by Phase Space Geometry
Let us start with some geometric observations. Clearly, the

radius of the first orbit o1 is R1 = ūmax. The relation between
the first switching angle α1 and the radius of the second orbit
o2, as shown in Figure 9, is given by

R2 = ūmax
√

5 − 4 cos(α1). (30)

α1

α2

β1

β2

R2 R1

ūmaxūmax

switching
point #1o2

o1

switching
point #2

Fig. 9. Geometric derivation of the dependence of α2 on α1.

We simplify the derivation of the angle α2 by introducing two
intermediary angles β1 and β2, which are defined in Figure 9.
For these two angles we can derive the following relations

β1 = arcsin
(

R1

R2
sin(α1)

)
= arcsin

(
sin(α1)

√
5 − 4 cos(α1)

)
β2 = arccos

(
û

R2

)
= arccos

(
1

√
5 − 4 cos(α1)

)
.

Note that both intermediary angles are solely a function of
the first switching time point α1. In turn, this implies that α2
is a function of α1. We have

α2 = β1 + β2, (31)

which is zero if and only if α1 = 2πn, as expected. Recall that
the final position is given by (27). The integral corresponds
to the area under the curves in Figure 7 on the right. This
area can be derived through purely geometric reasoning, and
is equal to

r f (α1) =
û

Mω2

(
2α2

1 − (α1 − α2)2
)
. (32)

The corresponding natural time required to reach r f > 0 is

τ f (α1) = 2 (α1 + α2) . (33)

Is it easy to verify that, for the degenerate case of α2 = 0,
we obtain just one of the natural motion solutions (28).

Finally, Figure 10 shows the mapping between the final
(natural) motion time τ f and the desired motion displacement
r f > 0, as a result of relations (31) to (33). One can
immediately see that, for all but the natural motion cases,
the minimum time needed for a RTR motion realizing a
desired displacement r f of the CoM is always larger in
the flexible case in comparison to the rigid case. Anyway,
differences tend to vanish for longer displacements (as well
as for increasing values of the joint stiffness k).

C. Optimality Result
We conclude this section with the following proposition.

Proposition 1. Given the initial and desired final positions
of the form (24) for system (1–2), the three-switching bang-
bang control policy (29) provides the time-optimal solution
for rest-to-rest motions. If the final position satisfies con-
dition (28), the control policy (29) degenerates to a single
switching bang-bang input which results in a natural motion.

We sketch here the verification of the time-optimality of
the three-switching strategy, based on a procedure that uses
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Fig. 10. A comparison of the three-switching control policy, including
natural motion solutions, versus the time-optimal RTR solutions for a rigid
joint. Note, the natural motion solutions of a flexible joint match the time-
optimal solutions for a rigid joint. Otherwise, a flexible joint is always
inferior for RTR motions. However, for motions that take longer than 4π
this mismatch, in relation to the total time τ f , becomes negligible.

Pontryagin’s minimum principle [13]. For our linear, single-
input, time-invariant, and controllable system, we deal with a
normal time-optimal problem, and therefore singular arcs in
the optimal solution can be ruled out. Pontryagin’s minimum
principle provides then the optimal control as a piece-wise
constant function of time, which is always in saturation
(i.e., bang-bang) except in isolated instants of switching.
The sign of the control law u∗(t) is determined by the sign
of the switching function s(t), which in our case depends
on the evolution of two components of the optimal costate
vector λ(t) ∈ R4. We impose then equality to zero of the
Hamiltonian H(t) at the initial and final times, t = 0 and
t = t f , using the known boundary conditions of the problem,
the optimal values of our control profile, u∗(0) and u∗(t f ),
and the final time t f obtained from our geometric approach.
Similarly, we impose in two out of the three instants of
control switching, namely t1 = α1/ω and t2 = t f /2 (both
obtained from our geometric computations), the vanishing
of the switching function, s(t1) = s(t2) = 0. In this way, we
set up a well-defined linear system of equations that allows
us to determine the four initial costate values, i.e., λi(0),
i = 1, . . . , 4. With these, we integrate forward the necessary
conditions of optimality and obtain analytically the unique
expression of the optimal costate λ∗(t) and of the associated
switching function s∗(t). We verify then that the crossing of
zero of this function occurs only at the switching instants
of our control policy and that the sign of s∗(t) elsewhere is
always opposite to the sign of our u∗(t). Moreover, using
forward integration of the state equations driven by our
optimal control, we obtained also the optimal state evolution
x∗(t). With all these values plugged into the Hamiltonian, we
finally verify that H(t) = 0 at any time t ∈ [0, t f ]. Therefore,
our solution satisfies the minimum principle of Pontryagin
and the necessary conditions of optimality.

V. Numerical results

As reference motions, we have considered the three ex-
amples presented by Dahl in [8]. The parameters of the
considered two-mass system are m = b = 0.5 [kg], whereas
the bound on the input force is û = 1 [N]. The results are
summarized in Table I. We refer to the three sets of system
parameters (for different values of the stiffness k) as Case 1
to Case 3.

TABLE I

k ω α1 α2 r f τ f t f
[N/m] [rad/s] [rad] [rad] [m] [rad] [s]

1 2 2.032 1.528 2 2.27π 3.56
10 6.325 7.653 1.558 2 5.86π 2.91

100 20 26.803 1.567 2 18.08π 2.84

Our geometric control policy (29) yields exactly the same
solutions presented by [8]. It important to remark that those
optimal solutions were obtained through numerical optimiza-
tion. In contrast, we provide a closed-form solution to the
problem.
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Fig. 11. The first natural motion for Case 1: r f = π2 m, τ f = 4π rad.

In Figure 11, we show the time-optimal bang-bang control
for the first natural motion in Case 1 (k = 1 N m−1). The final
position, as given by (28) with n = 1, is r f = π2. In the top
part, we have plotted also the optimal switching function.

Figure 12 shows the time-optimal control law with three
switchings, the optimal switching function, and the two state
velocities that result from control policy (29) in Case 2
(k = 10 N m−1). The zero crossings of the switching function
match the switching instants of our control policy (29). This
confirms the conclusion about the achieved time-optimality
with our geometric approach.

VI. Conclusion
In this paper we highlighted the connection between a two-

mass system with an elastic joint and the two-body problem
in classical mechanics. Based on this insight, we introduced a
change of coordinates that decouples the complete dynamics
into a pair of single-body problems. This simplification
allowed us to apply pure geometrical reasoning to generate
and analyse minimum-time bang-bang solutions to the rest-
to-rest (RTR) motion problem under actuator torque bounds.
All solutions are provided in closed form. Further, we
introduced the concept of natural motions which are time-
optimal solutions to the RTR motion problem. These are the
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only RTR solutions where the minimum-time performance
of an elastic joint system matches that of a rigid joint.

The insight obtained from the natural motion analysis,
can be exploited to optimize the design of an elastic robot
joint. In fact, it is desirable that the natural motion of an
elastic joint matches its nominal motion. Only in this case,
the RTR motion in the elastic case can reach the motion
time performance of a rigid joint. Our framework can be
easily extended to account for limitations on joint deflections
and motor velocities. The natural motion concept could be
extended to include periodic motions, like in pick-and-place
robotic tasks. These issues will be the subject of future
investigations.

References
[1] D. Braun, M. Howard, and S. Vijayakumar, “Optimal variable stiffness

control: Formulation and application to explosive movement tasks,”
Autonomous Robots, vol. 33, no. 3, pp. 238–253, 2012.

[2] M. Keppler, D. Lakatos, C. Ott, and A. Albu-Schäffer, “Elastic
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