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Abstract— We propose a sensor-based scheme for safe robot
navigation in a crowd of moving humans. It consists of two
modules, i.e., the crowd prediction and motion generation
module, which run sequentially during every sampling interval.
Using information acquired online by an on-board sensor, the
crowd prediction module foresees the future motion of the
humans in the robot surroundings. Based on such prediction,
the motion generation module produces feasible commands to
safely drive the robot among the humans by combining a
nonlinear Model Predictive Control (NMPC) algorithm with
collision avoidance constraints formulated via discrete-time
Control Barrier Functions (CBFs). We show the effectiveness of
the proposed approach via simulations obtained in CoppeliaSim
on the Pioneer 3-DX mobile robot in scenarios of different
complexity.

I. INTRODUCTION

Mobile robots used in service applications are required to
perform tasks – such as parcel delivery, patrolling, cleaning
and many others – in environments that are typically crowded
by moving humans. To successfully accomplish these tasks,
robots must be able to safely navigate among humans, which
poses as critical requirement the avoidance of collisions with
them. Fig. 1 illustrates an example of such scenario.

A variety of navigation methods in dynamic environments
exists in the literature, such as the artificial potential fields
method [1], the dynamic window approach [2], online ver-
sions of randomized planners [3], and techniques based on
the concept of velocity obstacles [4]. The latter category
also includes methods specifically designed for crowded
environments (see [5], [6]).

An appealing alternative to tackle the safe navigation
problem in dynamic environments consists in using Model
Predictive Control (MPC), which solves at each control
cycle an Optimal Control Problem (OCP) throughout a
finite horizon. MPC is indeed ideal thanks to its prediction
capabilities, the possibility of including constraints, and the
recent availability of efficient tools (such as acados [7])
for solving the OCP in real-time, even in case of nonlinear
MPC (NMPC). For these reasons, MPC has been adopted
in many methods for safe navigation. Methods proposed
in the context of structured environments leverage these
features to formulate simple bounds on the robot position
that guarantee collision avoidance [8], [9]. In unstructured
environments, sensor-based methods like [10] rely on decom-
position of the perception area in multiple convex obstacle-
free regions which, under the assumption that all obstacles

The authors are with the Dipartimento di Ingegneria Informatica, Auto-
matica e Gestionale, Sapienza Università di Roma, Via Ariosto 25, 00185
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Fig. 1. An instance of the considered problem. The robot must safely
navigate in the crowd of moving humans to reach the goal region (in yellow).

are stationary, confine the solution of the OCP. Other, more
general, methods impose full-fledged collision avoidance
constraints, by enveloping the robot and/or the obstacles (see,
for example, [11], [12]) with ellipsoids that are possibly
enlarged throughout the prediction horizon. Similar strategies
have been adopted also in the context of safe navigation for
nonholonomic vehicles [13] and humanoid robots [14] in
environments crowded by humans, which are approximated
as disc-shaped obstacles.

All the aforementioned MPC-based approaches include
collision avoidance constraints that depend only on infor-
mation about the distance from the obstacles. A constraint
of this kind is actually active (i.e., it influences the OCP solu-
tion) only when an obstacle is in the range of the prediction
horizon. As a consequence, the robot reacts to the presence of
the obstacle only in its proximity, which is clearly dangerous
especially in case of moving obstacles. To mitigate this
issue, a straightforward option consists in using a long
prediction horizon, at the expense of dramatically increasing
the time needed to solve the OCP. Other approaches use
collision avoidance constraints that consider, in addition to
the distance information, the robot-obstacle relative velocities
and the robot actuation capabilities [15]. Recently, Control
Barrier Functions (CBFs) [16] have been introduced as a
tool to enforce forward invariance of a safe set, which in
the context of safe navigation is the set of robot states
where a safety clearance from the obstacles is guaranteed.
Only few works (e.g., [17], [18], [19]) that include collision
avoidance constraints formulated via (continuous or discrete-
time) CBFs in an MPC scheme have been introduced. A
constraint of this kind considers not only the distance from
the obstacle, but also the rate at which the robot approaches
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it. As a result, the MPC exhibits the remarkable ability of
initiating avoidance maneuvers even when the obstacle is not
in the range of the prediction horizon, which can therefore
be chosen relatively short.

In order to endow the robot with full autonomy, any
safe navigation framework invariably needs a method for
predicting the future motions of the surrounding humans
based on sensory information. In particular, this is essential
to fully exploit the prediction capabilities of an MPC scheme.
Existing human prediction algorithms are based on either
social-force (e.g., [20]) or data-driven models (e.g., [21]).
With both approaches, a training phase is required; this
makes their generalization often difficult. Moreover, learned
models are typically not robust to sensor noise.

In this paper, we propose a sensor-based scheme for safe
robot navigation in a crowd. It consists of two modules, i.e.,
the crowd prediction and motion generation module, which
run sequentially during every sampling interval. Using infor-
mation acquired during motion by an on-board sensor, the
crowd prediction module foresees the future motion of the
humans in the robot surroundings. Based on such prediction,
the motion generation module produces feasible commands
to safely drive the robot among the humans. The crowd
prediction module relies on a simple, yet effective, technique
based on Kalman filters (KFs), while the motion generation
module combines a real-time NMPC algorithm and CBF-
based collision avoidance constraints. To our knowledge, this
is the first work in which NMPC is combined with discrete-
time CBFs to devise a complete framework (including crowd
prediction) for safe robot navigation in a crowd. We show
via extensive simulations the superior performance of our
method over the typical approach of including distance-based
collision avoidance constraints in the NMPC.

The paper is organized as follows. Section II formulates
the considered problem. Section III gives an overview of
the proposed approach. The crowd prediction and motion
generation modules are described in detail in Sects. IV and
V, respectively. Simulation results are presented in Sect. VI,
while Sect. VII offers few concluding remarks.

II. PROBLEM FORMULATION

The situation of interest is shown in Fig. 1. A wheeled
mobile robot is assigned a navigation task, i.e., it must reach
a desired goal region G, in a workspace W populated by
a crowd of moving humans. In the following, we discuss
the considered problem referring to a differential drive robot
(see Fig. 2); however, the proposed approach can be easily
extended to other types of wheeled robots (e.g., car-like).

Since a differential drive robot is kinematically equivalent
to a unicycle [22], we choose as q = (x, y, θ) the config-
uration vector of the robot, where (x, y) are the Cartesian
coordinates of a point B located along the sagittal axis
at a distance b > 0 from the midpoint of the segment
joining the centers of the actuated wheels, and θ is their
common orientation. Assuming that the robot wheels roll
without slippling and taking as control inputs the angular
accelerations of the right and left wheel, denoted by ω̇R and

Fig. 2. The differential drive robot with the bounding circle considered
for collision avoidance (see Sect. V).

ω̇L, the kinematic model of the robot is given by

ξ̇ = f(ξ,u) =



v cos θ − ωb sin θ

v sin θ + ωb cos θ

ω

r
2 (ω̇R + ω̇L)

r
d (ω̇R − ω̇L)


(1)

where ξ = (x, y, θ, v, ω) is the state vector taking values in
a set D, collecting the configuration q and the robot driving
and steering velocities v and ω, u = (ω̇R, ω̇L) the control
input vector, r the radius of the wheels and d the distance
between their centers. We assume that the robot is always
aware of its current state ξ.

Denote by R(q) ⊂ W the volume occupied by the robot
at configuration q and by H(t) ⊂ W the volume occupied by
the humans at time t. The robot is equipped with an on-board
sensor – in particular, a laser rangefinder – through which
it continuously acquires information about its surrounding.
This information can be readily transcribed into a set S of
measured relative position of points on the humans detected
within the sensor field of view (FOV).

Then, the problem of safe navigation in a crowd consists in
generating in real-time a robot motion, based on the available
sensory information S, that

1) is feasible w.r.t. the robot structure, i.e., it is consistent
with model (1) and respects existing limitations on
both state and input variables;

2) always avoids collisions with humans, i.e., R(q(t)) ∩
H(t) = ∅ at all time instants t;

3) eventually reaches the goal region G, i.e., point B of
the robot is brought inside G.

We emphasize that, for safe navigation the knowledge
about the humans future motion is essential. Obviously, in
the considered context, this is not available and has thus to
be predicted based on the available sensory information. This
aspect is therefore part of the considered problem.

III. PROPOSED APPROACH

To solve the problem described in Sect. II, we propose the
safe navigation framework outlined in the block scheme of
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motion generation
via NMPC

crowd prediction
via KFs

Fig. 3. Block scheme of the proposed safe navigation framework.

Fig. 3. It works in a digital fashion over sampling intervals
of duration δ and is constituted by two main modules, i.e.,
the crowd prediction and motion generation module.

At the generic time instant tk = kδ, the available sensory
information Sk and the current robot state ξk are passed to
the crowd prediction module. Based on this information, it
produces the set

Pk = {P 1
k, . . . ,P

M
k }

of the predicted motion of M humans over the time interval
[tk, tk+Tp], with Tp = Nδ its duration and N the number of
sampling intervals within it. In particular, the generic element
of Pk, i.e., the predicted motion of the generic human, is
defined as

P j
k = (pj

0|k, . . . ,p
j
N |k),

where pj
i|k is the predicted absolute position of the human

closest point at tk+i = (k + i)δ. Moreover, M represents
the number of humans that will be considered for collision
avoidance and is a byproduct of the crowd prediction module.

The predicted humans motion Pk are fed to the motion
generation module, together with the goal region G and the
current robot state ξk. This module relies on a real-time
NMPC algorithm to produce wheel acceleration commands
(ω̇R, ω̇L) for the robot. It uses a prediction horizon of
Tp (over which Pk is defined) and includes a CBF-based
collision avoidance constraint for each of the M humans
accounted in Pk.

In the following, we describe in detail the two modules.

IV. CROWD PREDICTION VIA KFS

This module receives in input the sensory information Sk

available at tk and the current robot state ξk. It outputs the
predicted motion Pk of M humans over [tk, tk + Tp].

To obtain this, it is essential to first choose which humans
in the crowd will be considered for collision avoidance,
whose future motion must therefore be predicted. We propose
two possible strategies to make this choice, which are de-
scribed in the following and illustrated in Fig. 4. Let K be a
user-specified maximum number of humans to be considered.

• K-Neighbors. This strategy considers for collision
avoidance the K nearest humans within the sensor FOV.

Fig. 4. Humans selected for collision avoidance by the K-Neighbors (left)
and K-Cones (right) strategy for K = 3. Green dots indicate the closest
point of the selected humans.

• K-Cones. This strategy conceptually divides the sensor
FOV in K cones of equal detection angle and considers
the nearest human within each of them.

The state at tk of the selected K humans is estimated
by means of an array of K KFs, called KF-1, . . . , KF-K.
In particular, consider the generic l-th human and collect
in a vector χl

k = (pl
k, ṗ

l
k) his state at tk, with pl

k and ṗl
k

the position and velocity of his closest point, which will be
estimated by the associated KF-l. Assume this closest point
moves omnidirectionally with constant velocity over the
sampling intervals; moreover, notice that the measurements
include only position information. Then, the state-transition
and output models can be represented by the discrete-time
stochastic system

χl
k+1 =

(
I2×2 δI2×2

02×2 I2×2

)
︸ ︷︷ ︸

A

χl
k + vk (2)

ζl
k =

(
I2×2 02×2

)︸ ︷︷ ︸
C

χl
k +wk (3)

where vk, wk are white gaussian noises with zero mean
and covariance matrices V k, W k, respectively; ζl

k is the
measured human closest point which needs to be carefully
extracted from Sk. Note that, since the available sensory
information is non-specific (i.e., it does not embed the notion
of human identity), the same KF can, in principle, estimate
the state of different humans at different time instants.

The full crowd prediction procedure, outlined in Fig. 5,
consists of the three stages described in the next subsections.

A. Data Association

Measurements extracted from Sk are associated to the KFs
according to the adopted selection strategy.

When adopting the K-Neighbors strategy, an iterative pro-
cedure is involved to extract from Sk a subset Zk containing
the measured absolute position of the closest points on the K
nearest humans. Such procedure relies on the assumption that
the planar projection of the occupancy volume of any human
in the crowd is always contained in a bounding circle having
radius ρH . At the l-th iteration, the measured relative position
of the point that is the closest to the robot is extracted from
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Fig. 5. Conceptual scheme of the crowd prediction module.

Sk, expressed in absolute coordinates (using ξk), and added
to Zk; then, the center of the bounding circle of the l-th
human is computed via simple geometrical considerations
and all positions of points lying within it are removed from
Sk. The procedure terminates as soon as the number of
elements in Zk reaches K (|Zk| = K) or Sk becomes
empty (Sk = ∅). Finally, the extracted |Zk| measurements are
associated to as many KFs of the array using the maximum
likelihood technique (see [23]), while a void measurement
ζk = ∅ is associated to each of the remaining K−|Zk| KFs.

When adopting the K-Cones strategy, each cone is sepa-
rately considered. Denote by Sl

k the subset of Sk containing
the measured relative position of human points lying within
the l-th cone. If this is not empty (Sl

k ̸= ∅), the measured
relative position of the point that is the closest to the robot is
extracted; then, expressing it in absolute coordinates (using
ξk) produces the measurement ζl

k to be associated to KF-l.
Otherwise, a void measurement ζl

k = ∅ is associated to KF-l.

B. State Estimation

The l-th KF receives the associated measurement ζj
k at tk

and has memory of the previous state estimate χl
k−1, the last

valid measurement ζ̄l that it received and the time instant t̄l

at which this was received. Both ζj
k and χl

k−1 can be either
valid (ζj

k ̸= ∅, χl
k−1 ̸= ∅) or void (ζj

k = ∅, χl
k−1 = ∅).

Moreover, KF-l has an associated finite state machine (FSM),
depicted in Fig. 5, that governs its operation. It consists of
four states, i.e., Idle, Start, Active, Hold, described in the
following, together with the actions to be taken according to
the received measurement and the KF memory in order to
produce the state estimate χ̂l

k.
▶ Idle. The KF is inactive, i.e., χ̂l

k−1 = ∅.
• If ζl

k ̸= ∅, χ̂l
k is initialized as χ̂l

k = (ζl
k,0) and

the FSM state becomes Start.
• Otherwise, χ̂l

k = ∅ and the FSM state remains Idle.
▶ Start. The KF is initializing the state estimate.

• If ζl
k ̸= ∅, χ̂l

k is set as χ̂l
k = (ζl

k,
1
δ (ζ

l
k − p̂l

k−1))
and the FSM state becomes Active.

• Otherwise, χ̂l
k = ∅ and the FSM state becomes

Idle.
▶ Active. The KF is actively generating the state estimate

based on valid measurements.
• If ζl

k ̸= ∅, χ̂l
k is generated applying the standard

prediction-correction procedure. First, the state pre-
diction and covariance matrix are generated as

χ̂l
k|k−1 = Aχ̂l

k−1

Σl
k|k−1 = AΣl

k−1A
T + V k.

(4)

Then, the innovation νl
k, i.e., the difference be-

tween the measured and the predicted output, is
computed as

νl
k = ζl

k −Cχ̂l
k|k−1 (5)

and it is checked whether its norm does not exceed
a predefined threshold ν̄.
– If

∥∥νl
k

∥∥ < ν̄, the state estimate and covariance
matrix are corrected as

χ̂l
k = χ̂l

k|k−1 +Gl
kν

l
k

Σl
k = Σl

k|k−1 −Gl
kCΣl

k|k−1,
(6)

with Gl
k the Kalman gain matrix computed as

Gl
k = Σl

k|k−1C
T
(
CΣl

k|k−1C
T +W k

)−1

and the FSM state remains Active.
– Otherwise, χ̂l

k is reset as χ̂l
k = (ζl

k,
ˆ̇pl
k−1) and

the FSM state becomes Start.
• Otherwise, χ̂l

k is generated using (4–6) by setting
ζl
k = ζ̄l in (5) and the FSM state becomes Hold.

▶ Hold. The KF is temporarily generating the state esti-
mate based on the last valid measurement ζ̄l.
• If ζl

k ̸= ∅, χ̂l
k is generated using (4–6) and the

FSM state becomes Active.
• Otherwise:

– if tk ≤ t̄l + T̄ , χ̂l
k is generated using (4–6) by

setting ζl
k = ζ̄l in (5) and the FSM state remains

Hold;
– else, χ̂l

k = ∅ and the FSM state becomes Idle.

C. Motion Prediction

Let X̂k = {χ̂1
k, . . . , χ̂

M
k } be the set of the M valid state

estimates, i.e., χ̂j
k ̸= ∅ (j = 1, . . . ,M ), among the K

produced by the KFs. Then, the set Pk = {P 1
k, . . . ,P

M
k } is

generated by computing each vector P j
k = (pj

0|k, . . . ,p
j
N |k)

under the assumption that the corresponding human closest
point will move with constant velocity ˆ̇pj

k over the time
interval [tk, tk + Tp], i.e., pj

i|k = p̂j
k + iδˆ̇pj

k (i = 0, . . . , N ).
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V. MOTION GENERATION VIA NMPC
This module receives in input the predicted humans mo-

tion Pk produced by the crowd prediction module, the goal
region G and the current robot state ξk. To generate the
control inputs (ω̇R, ω̇L) to be applied to the robot, it relies
on a real-time NMPC algorithm that enforces a discrete-
time CBF-based collision avoidance constraint throughout
the prediction horizon Tp for each of the humans accounted
in Pk.

In the following, we first present the NMPC algorithm and
then describe the adopted collision avoidance constraints.

A. NMPC Algorithm

At each control cycle, the NMPC solves a finite horizon
constrained OCP. For computational efficiency, the latter is
formulated as a finite dimensional Nonlinear Program (NLP).
To this end, the NLP uses the discrete-time version

ξk+1 = F (ξk,uk) (7)

of the robot kinematic model, obtained by numerically inte-
grating (1) assuming piecewise constant control inputs.

Let ξi|k and ui|k be, respectively, the predicted robot state
and control input at tk+i computed at tk. Collect in vectors

Ξk = (ξ0|k, . . . , ξN |k)

Uk = (u0|k, ...,uN−1|k)

the NLP decision variables at tk. Moreover, since the task is
to drive the point B of the robot to the goal region G using
the least possible control effort, let ηi|k be the predicted
position of B at tk+i, ηd the position of a representative
point of G and ei|k = ηd − ηi|k the predicted task error at
tk+i. Then, the running and terminal cost are

Vi|k(ξi|k,ui|k) = eTi|kQei|k + η̇T
i|kRη̇i|k + uT

i|kSui|k

VN |k(ξN |k) = eTN |kQNeN |k + η̇T
N |kRN η̇N |k

where Q, R and S are weighting matrices of appropriate
dimensions for the predicted task error, velocity of B and
control effort along the prediction horizon; QN and RN are
weighting matrices for the predicted task error and velocity
of B at the final time instant of the prediction horizon.

At this point, the NLP can be formulated as

min
Ξk,Uk

N−1∑
i=0

Vi|k(ξi|k,ui|k) + VN |k(ξN |k) (8a)

subject to
ξ0|k − ξk = 0 (8b)

ξi+1|k − F (ξi|k,ui|k) = 0, i = 0, ..., N − 1 (8c)

ξmin ≤ ξi|k ≤ ξmax, i = 0, ..., N (8d)

umin ≤ ui|k ≤ umax, i = 0, ..., N − 1 (8e)
collision avoidance constraints (8f)

where (8b) enforces the initial condition, (8c) the discrete-
time system dynamics, (8d–8e) the state and input bounds,
and (8f) collision avoidance throughout the prediction hori-
zon. The latter constraints are presented in the following.

Once the NLP is solved, the first control samples u0|k are
extracted from the obtained Uk and applied to the robot.

B. CBF-based Collision Avoidance

To guarantee collision avoidance, the proposed NMPC
incorporates constraints formulated via discrete-time CBFs.

Consider the smallest circle bounding the planar projection
of the robot occupancy volume R(q) at any configuration
q (see Fig. 2). Let ρ be the radius of this circle and C its
center, whose Cartesian coordinates c(ξ) depend on the robot
configuration q contained in the state vector ξ.

We say that a state ξ is safe, i.e., it is collision-free, w.r.t.
a generic human if the distance between the robot bounding
circle centered at c(ξ) and the human closest point p is at
least equal to a safety clearance ds > 0, i.e., ∥c(ξ)− p∥ ≥
ρ + ds. Accordingly, we define the safe set of robot states
w.r.t. a generic human as

C = {ξ ∈ D : h(ξ) ≥ 0}

where
h(ξ) = ∥c(ξ)− p∥2 − (ρ+ ds)

2.

It can be shown [18] that function h(ξ) is a CBF and, in the
discrete-time domain, it satisfies the condition

∆h(ξk,uk) ≥ −γh(ξk) (9)

with ∆h(ξk,uk) = h(ξk+1)− h(ξk) and 0 < γ ≤ 1.
By imposing condition (9) throughout the prediction hori-

zon for all M humans accounted in Pk, the CBF-based
collision avoidance constraints in (8f) can be explicitly
written as

∆hj(ξi|k,ui|k) ≥ −γhj(ξi|k), i = 0, . . . , N − 1,

j = 1, . . . ,M,
(10)

where

hj(ξi|k) = ∥c(ξi|k)− pj
i|k∥

2 − (ρ+ ds)
2,

with pj
i|k extracted from element P j

k of Pk.
Note the following points.
• Since the value of M can vary at each control cycle

between 0 and K, in a concrete implementation one
shall set up K collision avoidance constraints. During
operation, only the M constraints required at every sam-
pling interval will be activated. For sake of illustration
we omit discussion about the activation mechanism.

• The identity of the closest point of a certain human
might be different at different time instants. Such aspect
is not explicitly considered by our collision avoidance
constraints which, instead, involve only information
about the predicted future position of the point that
is the closest at tk. However, as we will show via
simulation results in Sect. VI, this is not an issue
for the proposed scheme thanks to (i) the real-time
capabilities of our implementation that allows high
control frequency and (ii) the use of a relatively small
value for γ that improves the ability to promptly react
to sudden changes in the robot surroundings.
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VI. SIMULATIONS

The proposed safe navigation method was implemented
in the CoppeliaSim environment as a C++ plugin. The latter
wraps a library implementing the NMPC algorithm generated
using the Python interface of acados [7]. In particular, the
corresponding NLP is solved via Real-Time Iteration [24].

The targeted platform is the Pioneer 3-DX mobile robot for
which r = 9.75 cm and d = 38.1 cm. It is equipped with an
Hokuyo URG-04LX laser rangefinder whose detection area
is aligned with the robot heading direction and has range
5 m and angle 240°, thus leaving a 120° blind zone behind
the robot. According to the robot physical characteristics, its
driving and steering velocities are bounded as, respectively,
0 ≤ v ≤ 1.2 m1 and |ω| ≤ 5.24 rad/s, while the angular
accelerations of the wheels as |ω̇R,L| ≤ 70 rad/s2.

To assess the performance of the proposed method we
performed two simulation campaigns in which the envi-
ronment is populated by, respectively, a robot-friendly and
robot-unfriendly crowd depending on whether the humans
are aware of the presence of the robot (and try to avoid
collisions with it) or not. To simulate the motion of the
crowd, we assumed that each human moves along a sequence
of viapoints (locations of the environment) in a unicycle-
like fashion under the action of an artificial potential field
that attracts him towards his currently targeted viapoint while
repulsing him from the other humans (and from the robot in
the first campaign). Every time a human reaches a viapoint,
he stands there for a certain pause period. Moreover, each
human has his own maximum linear velocity. We emphasize
that the robot is not aware of such crowd behavior, but only
relies on sensory information.

In both campaigns, our aim was to evaluate the effect of
the choice regarding the selection strategy adopted in the
crowd prediction module, and also to compare our CBF-
based method with a purely distance-based (DB) approach
that is obtained by using

hj(ξi|k) ≥ 0, i = 0, . . . , N, j = 1, . . . ,M

in (8f) instead of (10). To this purpose, for each campaign,
we considered 12 simulation scenarios obtained by varying
(i) the number (5, 10 or 20) of humans in a 15×15 m envi-
ronment, (ii) the adopted selection strategy (K-Neighbors or
K-Cones), and (iii) the formulation of the collision avoidance
constraints (CBF or DB). For each of these scenarios, we run
50 different simulations, each time randomly generating the
initial configuration of the robot, goal region G, sequence
of viapoints, associated pause periods and maximum linear
velocity of each human.

All the simulations were performed on an Intel Core
i7-8700K CPU running at 3.7 GHz. In all of them, the
whole safe navigation scheme worked with a sampling time
δ = 0.05 s, while the prediction horizon was set to Tp = 2 s;
also, we used K = 3, b = 0.15 m, ρH = 0.8 m, γ = 0.3
and ds = 1 m. Whenever the NLP solved by the motion

1We chose to not use a negative value for the minimum driving velocity
in order to prevent the robot moving back in its blind zone.

# of
humans

selection
strategy

collision
avoidance
constraint

success
rate (%)

maximum
computation

time (ms)

5
K-Neighbors CBF 100 31

DB 92 28

K-Cones CBF 98 34
DB 90 29

10
K-Neighbors CBF 96 30

DB 86 33

K-Cones CBF 98 29
DB 72 34

20
K-Neighbors CBF 88 36

DB 64 36

K-Cones CBF 86 35
DB 48 41

TABLE I
PERFORMANCE DATA IN CASE OF ROBOT-FRIENDLY CROWD

# of
humans

selection
strategy

collision
avoidance
constraint

success
rate (%)

maximum
computation

time (ms)

5
K-Neighbors CBF 92 30

DB 90 31

K-Cones CBF 92 32
DB 84 27

10
K-Neighbors CBF 74 28

DB 62 28

K-Cones CBF 80 27
DB 68 31

20
K-Neighbors CBF 60 32

DB 38 30

K-Cones CBF 58 29
DB 40 31

TABLE II
PERFORMANCE DATA IN CASE OF ROBOT-UNFRIENDLY CROWD

generation module proved to be infeasible, we extracted
the control inputs for the current time instant from the last
available NMPC solution. Although in our simulations we
have rarely observed infeasibility issues, a deep investigation
of this aspect is part of our future work (see Sect. VII).

The results of the two simulation campaigns are reported
in Tables I–II, respectively, where we show the success
rate (we recorded a failure whenever a collision occurred)
and maximum computation time (including both crowd pre-
diction and motion generation modules) averaged over the
50 runs in each simulation scenario. Video clips showing
examples of generated motions are available at the link
https://youtu.be/iDdM6Ud9I4c.

In the case of robot-friendly crowd (see Table I), as
expected, for both our and DB method the success rate de-
creases as the number of humans populating the environment
increases. However, our method maintains higher success
rate even in the most challenging environment containing
20 humans, where we achieve a success rate higher than
85%, independently of the adopted selection strategy, while
the DB method fails in more than half of cases when
using the K-Cones strategy. Moreover, the table confirms the
real time capabilities of the proposed scheme, as maximum
computation time is always lower than the sampling time. We
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Fig. 6. Safe navigation in a robot-unfriendly crowd of 20 humans using the K-Neighbors strategy. Snapshots from a simulation.

KF- KF- KF-

Fig. 7. Safe navigation in a robot-unfriendly crowd of 20 humans using the K-Neighbors strategy. Plots of d̂l, ˆ̇plx, ˆ̇ply (l = 1, 2, 3), i.e., distance and
x,y-components of the velocity of a human estimated by KF-l. Gray zones indicate time intervals in which the corresponding KF was in the Active state.

Fig. 8. Safe navigation in a robot-unfriendly crowd of 20 humans using the K-Cones strategy. Snapshots from a simulation.

KF- KF- KF-

Fig. 9. Safe navigation in a robot-unfriendly crowd of 20 humans using the K-Cones strategy. Plots of d̂l, ˆ̇plx, ˆ̇ply (l = 1, 2, 3), i.e., distance and
x,y-components of the velocity of a human estimated by KF-l. Gray zones indicate time intervals in which the corresponding KF was in the Active state.

also report that, in our observations, most of the computation
time is spent by the motion generation module, while only
a negligible portion is used by the crowd prediction module.
This highlights the efficiency of the latter which, differently
from other existing methods, does not even need a training
phase.

The case of robot-unfriendly crowd (see Table II) is clearly
more challenging. In environments containing 10 and 20
humans, the success rate is significantly reduced compared

to the case of robot-friendly crowd. This is reasonable if
we consider that in this case a human can either approach
the robot from its blind zone and collide with it without
any possibility for the robot to react, or suddenly turn
towards it without giving the robot the chance to react in
time. However, the table reveals that, even in the presence
of a robot-unfriendly crowd, our method is clearly more
effective than the DB approach. Also in this case the real time
requirement is respected, as proven by the reported maximum
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computation times.
Figures 6 and 8 show snapshots from two simulations

obtained using, respectively, the K-Neighbors and K-Cones
strategy in a robot-unfriendly crowd of 20 humans. Figures
7 and 9 show associated plots. Clips are included in the
video. Comparing the snapshots, taken at same time instants,
it is possible to appreciate the identical placement of the
crowd and the different one of the robot, whose travelled
path results from the chosen selection strategy.

Although in terms of both success rate and computation
time we found no significant differences between the two
selection strategies, in practice the K-Cones strategy (as
can be seen from the plots corresponding to KF-1 and
KF-2 in Fig. 9) might consider for collision avoidance a
number of humans smaller than K even if K humans are
actually present in the sensor detection area, which could
obviously be disadvantageous. On the other hand, the K-
Cones strategy is a valid option when dealing with multiple
sensors having reduced detection angle. In this case, each
cone will correspond to a certain sensor and the presented
scheme can be applied without any significant modification.

Note that, even if we presented simulation results obtained
using K = 3, our approach can work with generic values of
K provided that this still guarantees real time performance.
The video also shows simulations obtained with K = 6.

VII. CONCLUSION

In this paper, we presented a sensor-based scheme for
safe robot navigation in a crowd of moving humans. At
each control cycle, the crowd prediction module foresees
the future motion of the humans in the robot surroundings
using the available sensory information. Then, the motion
generation module produces feasible commands for the robot
to safely drive it among the humans until a desired goal
region of the workspace is reached. For crowd prediction we
employ a simple, yet effective, technique based on Kalman
filters, while our motion generation strategy combines NMPC
and collision avoidance constraints formulated via discrete-
time CBFs.

Simulation results show that this combination can produce
sensible results in environments crowded by a varying num-
ber of moving humans. Moreover, we demonstrated that our
approach outperforms the typical one consisting in adopting
purely distance-based collision avoidance constraints.

Future work will address (i) the investigation of feasibility
properties of the NMPC and design of recovery strategies
in case of possible infeasibilities, (ii) the extension of
our method to environments containing (possibly unknown)
static obstacles, (iii) an in depth performance analysis of the
effect of the various parameters (e.g., K, Tp, γ).
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