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1 Additional results on GP with Gramian re-
construction

Here we analyze the performance described in the last section of the paper,
to show that we achieve very good performances in linearizing the system by
reconstructing the unknown dynamics. When the system is exactly Feedback
Linearized it behaves as a chain of integrators, reproducing with high fidelity the
acceleration commands from the MPC. This is evident in Fig. 1, where the dis-
turbance (i.e., the unknown dynamics) is well estimated, while in Fig. 2, where
no online learning is used, it doesn’t occur. In Fig. 1, the learning transient
cannot be appreciated. It is due to the relatively high frequency (200 Hz) with
which we acquire new data and update the GP. In spite of the high frequency
(high with respect to the dynamics of the system), the last acquired training
data will be very close to the following query point, therefore, locally, the re-
gression will converge very fast to the actual disturbance signal. For the same
reasons, we just observe a learning transient in correspondence of discontinuous
points of the disturbance, as it is evident for the joints 6 and 7 in Fig.3. Nev-
ertheless, the GP regressor displays good performances in reconstructing the
disturbance signals for all the 7 joints.

2 Gramian Reconstruction

In this section we show in simulation the effectiveness of the Gramian in esti-
mating the joint accelerations. Numerical data shows that the approximation
works very well, with a mean reconstruction error of 10−11, as shown in Fig.4.
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Figure 1: Acceleration profile of the corrected model with respect to the asso-
ciated MPC reference.
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Figure 2: Acceleration profile of the nominal model with respect to the associ-
ated MPC reference.
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Figure 3: Prediction of the GP with Gramian reconstruction with respct to the
disturbance.
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10 -11 Error of gramian reconstruction of acceleration

Figure 4: Difference between the real and the reconstructed acceleration for
each joints.

3 Noisy torque measurements comparison

Standard inverse dynamics learning approaches define the training input as the
difference between the nominal torque and the measured one. One of the main
issues associated with classic methods is that they relies on noisy sensors to
gather data that inevitably affect the quality of the learned models. Moreover,
under certain conditions, a large sensor noise may prevent the algorithm from
learning the disturbance . This is the case when the disturbance signal is smaller
than the torque sensor noise

Ŷ = τmeasured ± στ − τnominal (1)

then

Ŷ = Ysignal ± στ (2)

where στ represent the torque sensor noise, τmeasured and τnominal are respec-
tively the measure and the nominal torque and Ysignal = τmeasured − τnominal.
If the magnitude of στ is larger than Ysignal it will be impossible to correctly
estimate the aforementioned signal. In Fig. 5 we simulated torque sensors with
a gaussian additive noise with a mean 1 and a variance 0.05. Due to the pres-
ence of noise is necessary to filter the signal. To this aim we designed a lowpass
filter, with a passband frequency of 0.1π · rad

#sample , in order to remove the high

frequency components (a comparison for each joint torque between the original
signal and the filtered one are shown in Fig 6). Even after the filtering operation
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Figure 5: GPs reconstruction of the model disturbances using torque sensors.
Comparing the results shown in this figure with the ones presented in Fig. 3
in this supplementary material, it’s noticeable that our algorithm, relying on
position measurements, outperforms the torque-based one.
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Figure 6: Comparison of dataset filtered, with noise and true values.

in Fig. 5, we can see that the prediction performances are worse than the ones
obtained with our method (see Fig. 3).
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