
Feasibility-Aware Plan Adaptation in Humanoid Gait Generation

Michele Cipriano, Marcos R. O. A. Maximo, Nicola Scianca, Leonardo Lanari, Giuseppe Oriolo

Abstract— Most available schemes used for humanoid walk-
ing rely on the separation into a planning phase, typically off-
line, and a Model Predictive Controller (MPC). Moreover, in
order for the MPC to work in real time, simplifying assumptions
are made both on the template model and on the constraints
so that the underlying optimization problem is a Quadratic
Programming (QP). The planner is unaware of the underlying
humanoid dynamics and of any disturbance acting on the
robot. We present an on-line Feasibility-Aware Plan Adaptation
(FAPA) module which can locally adapt footsteps (positions,
timings and orientation) in such a way that it guarantees
feasibility of the subsequent Intrinsically Stable MPC (IS-MPC)
stage. We present two versions of the proposed scheme: one with
a fixed regions assignment for placing the footstep and another
one where the regions are selected automatically through mixed-
integer programming. Simulation results show the effectiveness
of the FAPA scheme.

I. INTRODUCTION

Humanoid robot locomotion is a complex task that in-
volves multiple concurrent activities. It is usually tackled by
breaking it down into several subproblems and solving each
of them more or less independently. The first component is
in general a footstep planner, which determines a sequence
of footstep, e.g., leading the robot to some desired location.
This sequence of footsteps must be kinematically realizable
at least in terms of step lengths. The humanoid dynamics are
usually accounted for in a second stage, typically based on
Model Predictive Control (MPC), using a simplified robot
model which is used to generate Center of Mass (CoM)
trajectories. MPC, in its basic form, allows to perform real-
time footstep position adaptation [1] and obtain reactive
stepping so to reject pushes and impacts. However, in order
to be able to formulate the optimization problem as a
Quadratic Program (QP), constraints should be kept linear.
For this reason, most schemes only adapt footstep positions,
leaving out footstep orientation and step timing.

Several efforts to improve this basic paradigm have been
made. To include automatic step timing adaptation, one could
make the MPC nonlinear [2], [3], [4], [5], denying real-
time implementation or requiring significant compromise
in the control rate. A linear formulation is obtainable by

Michele Cipriano, Nicola Scianca, Leonardo Lanari and Giuseppe
Oriolo are with the Dipartimento di Ingegneria Informatica, Automat-
ica e Gestionale, Sapienza Università di Roma, Italy. E-mail: last-
name@diag.uniroma1.it.

Marcos Maximo is with the Autonomous Computational Systems Lab
(LAB-SCA), Computer Science Division, Aeronautics Institute of Technol-
ogy, Brazil. E-mail: mmaximo@ita.br.

Nicola Scianca has been fully supported by PNRR MUR project
PE0000013-FAIR.

Marcos Maximo has been partially supported by CAPES and CNPq
through grants 88887.717777/2022-00 and 307525/2022-8, respectively.

Fig. 1. An example simulation using the proposed architecture: the robot
is walking along a staircase while being subject to multiple pushes. The
adaptation module modifies position, orientation and timing of the footsteps
real-time to guarantee a successful execution.

considering only the duration of the first footstep [6], [7].
As for footstep orientation, this is also often ignored or
planned independently of the dynamics [1]. To couple ro-
tation decision with the dynamics, some schemes employ
non-convex optimization through nonlinear [8], [9] or Mixed-
Integer Programming (MIP) [2]. MIP can also be used to
alternatively select between multiple convex regions in which
to place the footsteps, which would otherwise constitute a
non-convex constraint [10], [11].

Our architecture is based on the Intrinsically Stable MPC
(IS-MPC) of [12], which involves an explicit stability con-
straint ensuring the boundedness of the CoM trajectory with
respect to the ZMP and is recursive feasibile. The feasibility
region, i.e., the state space region for which the constrained
QP admits a solution, can be used to enhance the scheme
capabilities by adapting the timing of the first step [6], or
to allow for non-convex regions [13] without burdening the
optimization problem of the MPC.

In this paper, we add an online adaptation module that can
locally adapt footsteps (positions, timings and orientation) so
to guarantee feasibility of the subsequent IS-MPC stage. The
Feasibility-Aware Plan Adaptation (FAPA) is thus dependent
on the system state and the dynamics of the chosen template
dynamic model.

We obtain the generality given by nonlinear constraints
without sacrificing much performance as the number of
variables in the planner is much lower than that of the
variables of the MPC, making it very fast and capable of
working in real time. Furthermore, we explore the inclusion
of integer variables, further increasing the range of situations
that can be covered.

Modules for online footstep adaptation using nonlinear
optimization have been proposed [14], but not in conjunction
with MPC. Our approach is not only designed to work along20

23
 IE

EE
-R

AS
 2

2n
d

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 H

um
an

oi
d

Ro
bo

ts
 (H

um
an

oi
ds

) |
 9

79
-8

-3
50

3-
03

27
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HU
M

AN
O

ID
S5

71
00

.2
02

3.
10

37
51

46

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on January 09,2024 at 15:29:08 UTC from IEEE Xplore. Restrictions apply.

q

pswg*

*pc

pc pc q q

P
P

candidate

footstep subplan

adapted

footstep subplan

swing foot trajectory

kinematic

control

Fig. 2. A block scheme of the proposed architecture. The candidate footstep subplan P̂ is adapted by the FAPA module, guaranteeing the feasibility of
IS-MPC. The IS-MPC module receives the adapted footstep subplan P , and generates a desired trajectory of the CoM p∗

c , which is used by the kinematic
controller, together with the desired trajectory of the swing foot p∗

swg, to generate the desired joint velocities q̇∗.

with the MPC module, but it specifically aimed at enhancing
its capabilities.

The remainder of the paper is organized as follows.
Sect. II gives a general formulation of the problem. Sect. III
introduces some preliminary notions. Sect. IV details the
MPC formulation. Sect. V describes both versions of the
proposed FAPA: without and with integer variables. Sect. VI
shows and discusses some simulations. Finally, Sect. VII
presents concluding remarks and future extensions.

II. PROBLEM FORMULATION

The proposed architecture is shown in Fig. 2. An external
candidate plan is provided, which in this paper will be
either a basic plan to demonstrate simple motions, or a plan
generated by randomized exploration [15] for more complex
environments. A subplan, i.e., a portion of the candidate plan,
is given as input to the scheme at each timestep.

The basic components of the considered scheme are:
• a Feasibility-Aware Plan Adaptation (FAPA) block, that

can modify locally the high-level footstep plan;
• an IS-MPC gait generation block that generates

CoM/ZMP trajectories based on the output of FAPA;
• a kinematic controller that realizes at the joint level the

generated CoM and swing foot trajectories.
While the high-level footstep plan is designed considering

the humanoid’s kinematic limitations, it is entirely unaware
of its dynamics and is not informed by the robot state since
it is fully generated off-line. To make up for this deficiency,
the FAPA module performs a local adaptation of the planned
footsteps before these enter the IS-MPC stage.

This adaptation is based on a gait feasibility constraint
that guarantees feasibility of the next IS-MPC stage while
trying to match the original plan. It can concurrently change
the footstep positions, orientations, as well as step timings.

To formulate this constraint, we leverage the feasibility
region of IS-MPC, i.e., the subset of the state space where
the problem is feasible at a given time. While in previous
analyses we provided approximate closed-form expressions
for these region bounds, here we rather define the feasibility
region in an implicit form with the nonlinear dependency on
the footstep positions, orientations, and step timings.

The fact that the feasibility of the MPC can be efficiently
captured by the expression of this constraint is a crucial
aspect of the formulation, because it means that the scheme
can harness the power of nonlinear optimization without

burdening the MPC itself, which remains linear and can run
at a high rate. The nonlinear optimization part is external to
the MPC, which allows the number of variables to be kept
small and thus to keep the computation time manageable.

We propose two versions of the FAPA module, that differ
by the optimization problem required for their implemen-
tation. In particular, the first version only uses continuous
optimization, while the second one also employs discrete
variables and is formulated as a Mixed Integer Nonlinear
Program (MINLP). Being the latter very general it can be
used to account for more adaptation scenarios, e.g., in which
the footsteps can also be moved to different terrain patches
than the ones assigned by the high-level planner. As will be
discussed extensively in Sect. VI, the second version is more
demanding in terms of computation time, but we present it
as a proof of concept as we strongly believe it can be made
to work in real time with proper code optimization.

III. PRELIMINARIES

In this section we describe the environment and the
structure of the footstep plan used in our scheme.

A. Environment

The considered environment is a world of stairs, i.e.,
constituted by flat horizontal regions. The robot is allowed to
walk across different regions if these are relatively close in
height, and if there is sufficient available surface to step on
them, otherwise they will constitute obstacles to be avoided.

The arrangement of these regions is assumed to be known,
and it is processed and encoded in the following way:

• regions are reduced in size so that they represent
the collision-free area available for the center of the
footprint. This is done by performing a Minkowski
difference between each flat region and the area swept
by a footprint (accounting for all possible footstep
orientations);

• after reduction, non-convex regions are subdivided into
non-overlapping convex polytopic patches.

A patch P is identified by the inequality A(P)p ≤ b(P),
where A(P) ∈ RV (P)×2 and b(P) ∈ RV (P) define a
polytope (with V (P) vertices) and p = (x, y)T is a generic
2D point. In this way, non-polytopic portions of ground (e.g.,
round edges) are approximated, but the number of vertices
can be arbitrarily large. Since each patch P is flat, its height
is denoted simply as z(P).

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on January 09,2024 at 15:29:08 UTC from IEEE Xplore. Restrictions apply.

B. Footstep plan

The high-level footstep plan is a sequence of can-
didate footsteps f̂ , each identified by the tuple f̂ =
(x̂f , ŷf , ẑf , θ̂f , T̂ss, T̂ds). For each planned footstep f̂

• x̂f , ŷf and ẑf are the coordinates of its center;
• θ̂f is its orientation around the z axis;
• T̂ds and T̂ss are the durations of its double support and

single support phases, respectively;
• we denote by Π(f̂) the patch that contains the footstep,

i.e., the patch P such that1

(x̂f , ŷf)
T ∈ P, ẑf = z(P).

The footstep plan P̂ is computed off-line, and at each time
tk a subplan P̂ l of size F+1 is extracted, where l is the index
of the first footstep of the current subplan (at tk), and F a
fixed parameter. The subplan contains the next F candidate
footsteps:

P̂ l =
{
f̂ l, . . . , f̂ l+F

}
.

The FAPA block, which performs footsteps adaptation, mod-
ifies P̂ l in the adapted subplan P l, i.e., in the input of the
IS-MPC block

P l =
{
f l, . . . , f l+F

}
.

After every iteration, if adaptation took place (i.e., P l

differs from P̂ l), the algorithm performs a footstep plan
override, i.e., the corresponding portion of the high-level
footstep plan is substituted with the adapted subplan P l. Note
that the remaining part of the plan (after the index l+F) is
unchanged, so if the adaptation makes the robot stray from
the initial path it will later try to catch up. This behavior is
often acceptable, but might sometimes be undesirable, and
can be improved in future versions if we allow the high-level
planner to replan on-line (see [15]).

IV. GAIT GENERATION VIA IS-MPC

We first illustrate the IS-MPC block in order to introduce
concepts that are necessary to explain the FAPA block.

We describe the prediction model, the constraints, and the
optimization problem to be solved. Furthermore, we give an
expression for the feasibility region of IS-MPC in a suitable
form to be used by the proposed scheme.

A. Prediction Model

The prediction model is derived from balancing moments
around the ZMP. To allow vertical motion of the CoM, some
works [16] use the VH-IP model, in which height variations
cause a change to the natural frequency of an inverted pendu-
lum. This makes the prediction model nonlinear, negatively
impacting performance. It is however possible to generate 3D
trajectories using a linear model if we constrain the systems
to obey the linear dynamics

p̈c = η2(pc − pz) + g, (1)

1Note that this patch is unique because the environment is subdivided
into non-overlapping patches.

Z

Fig. 3. 3D balance: the ZMP pz must be inside the pyramid Z .

as in [15], where pc = (xc, yc, zc)
T is the CoM position,

pz = (xz, yz, zz)
T is the ZMP position, η is a design

parameter2 and g = (0, 0,−9.81)T [m/s2] is the gravity
acceleration vector. In order to have smoother trajectories,
we dynamically extend (1) by having the derivative of the
ZMP ṗz , instead of the ZMP itself, be the input of the model.

Through the change of coordinates pu = pc + ṗc/η,
the dynamics of the unstable component (also divergent
component of motion [17] or capture point [18]) can be
highlighted:

ṗu = η(pu − pz) + g/η.

Despite this unstable dynamics, the CoM trajectory is
bounded with respect to the ZMP if the following stability
condition is satisfied:

pk
u = η

∫ ∞

tk

e−η(τ−tk)pz(τ)dτ − g

η
, (2)

where the superscript in pk
u indicates that the variable is

sampled at time tk.
The MPC module works over discrete time-steps of dura-

tion δ, over which the input ṗz is constant, i.e., ṗz(t) = ṗk
z

for t ∈ [tk, tk+1). The prediction model (1) is used to
forecast the evolution of the system over a control horizon
Tc = Cδ, while we assume to know the footstep plan over
a preview horizon Tp = Pδ, with P ≥ C.

Relating the dynamics of the CoM to those of the ZMP
is essential since the latter encodes information about the
realizability of ground reaction forces, and thus provides a
criterion for balance. A common way to extend the basic 2D
balance criterion consists in prescribing the 3D ZMP to be
inside a 3D pyramid Z (see Fig. 3), having the base defined
by the contact surfaces and the CoM vertex [19], [15].

B. ZMP Constraint

The IS-MPC block receives the adapted subplan P l and
uses it to construct ZMP constraints. As described in the
previous subsection, the criterion for balance is satisfied if
the ZMP belongs to the pyramid Z . However, enforcing this
condition directly would lead to a nonlinear constraint in the

2The parameter η should be chosen by taking into account the desired
resting height of the humanoid, because eq. (1) has an equilibrium when
CoM and ZMP are vertically displaced by g/η2.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on January 09,2024 at 15:29:08 UTC from IEEE Xplore. Restrictions apply.

MPC because the vertex of the pyramid is the CoM of the
robot. Thus, we adopt a conservative approximation called
the moving constraint.

The moving constraint requires for the ZMP to be at
all times within a convex polyhedron of fixed shape, in
our case a box of dimensions dx, dy and dz centered in
pmc = (xmc, ymc, zmc), which we call the moving box.
Along the prediction, the moving box can translate but not
rotate, and its center moves in such a way that it is always
fully contained within the 3D pyramid Z (see Fig. 5 in
[20]). The vector Xk+1

mc = (xk+1
mc , . . . , xk+C

mc)T collects the
x coordinate of the center of the moving box in the control
horizon.

Because of its constant orientation in the prediction, at
each time we can choose the orientation of the axes to
align with the orientation of the moving box (taken as the
orientation of the current support foot) and obtain a ZMP
constraint that is decoupled along the 3 axes. Focusing on
the component along x, we can write it as

Xm,k+1
z ≤ Xk+1

z ≤ XM,k+1
z , (3)

where Xk+1
z = (xk+1

z , . . . , xk+C
z)T is a vector of predicted

ZMP positions, and Xm,k+1
z and XM,k+1

z are the ZMP
bounds along the prediction. By defining

Z =

δ 0 · · · 0
δ δ · · · 0
...

...
. . .

...
δ δ · · · δ

 , z =

1
1
...
1

 ,

Xk+1
z can be expressed as

Xk+1
z = ZẊk

z + zxk
z , (4)

where Ẋk
z = (ẋk

z , . . . , ẋ
k+C−1
z)T is the vector of ZMP

velocities, i.e., the decision variables. The ZMP bounds along
the prediction can be expressed as

Xm,k+1
z = Xk+1

mc − z
dx
2
, XM,k+1

z = Xk+1
mc + z

dx
2
. (5)

The center of the moving box pmc must be expressed in
terms of the subplan P l. First we define the piecewise-linear
sigmoid function

σ(t, ti, tf) =
1

tf − ti
(ρ(t− ti)− ρ(t− tf)) ,

where ρ(t) = tδ−1(t) is the unit ramp. σ(t, ti, tf) is 0 before
ti, 1 after tf , and it transitions linearly in the interval [ti, tf].
This function is useful to represent the transition between
consecutive footsteps.

Xk+1
mc can be written as

Xk+1
mc = MX l

f +mxl
f , (6)

where X l
f = (xl

f , . . . , x
l+F
f)T collects the footstep posi-

tions. M ∈ RC×F is a mapping matrix whose elements
Mij are defined as

Mij = σ(tk+i, t
l+j
s , tl+j

s + T l+j
ds)

− σ(tk+i, t
l+j−1
s , tl+j−1

s + T l+j−1
ds),

(7)

and m ∈ RC is a vector whose elements mi are given by

mi = 1− σ(tk+i, t
l
s, t

l
s + T 1

ds),

where tls is the starting time of the l-th step and

tjs = tls +

l+j−1∑
λ=l

(
Tλ
ds + Tλ

ss

)
.

C. Stability Constraint

The stability constraint is derived from the stability con-
dition (2). We focus here on the x component, but the other
components can be similarly derived (see [15]).

Since the MPC has a limited control horizon we split the
integral at tk+C . Before tk+C the stability condition can be
expressed in terms of the decision variables, while after it
must be conjectured. We adopt the anticipative tail x̃z [12] to
get an approximation of the ZMP trajectory after the horizon:

η

∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ = xk
u − c̃kx,

where xk
u is the x-component of pk

u and

c̃kx = η

∫ ∞

tk+C

e−η(τ−tk)x̃z(τ)dτ.

The second step is to make the decision variables appear
explicitly, i.e., the ZMP velocities Ẋz over the control
horizon, by computing the integral over a piecewise linear
ZMP trajectory. The final form of the constraint can be found
in [12]. For the purpose of this analysis, we will use the
compact expression

sT Ẋz = bkx + xk
u, (8)

where s ∈ RC and bkx ∈ R denote respectively a vector and
a scalar whose explicit expressions can be recovered from
the cited reference.

D. IS-MPC Algorithm

IS-MPC solves, at each time tk, the following QP problem:

min
Ẋk

z ,Ẏ k
z ,Żk

z

∥Ẋk
z ∥2 + ∥Ẏ k

z ∥2 + ∥Żk
z ∥2 + β∥Xk+1

z −Xk+1
mc ∥2

+ β∥Y k+1
z − Y k+1

mc ∥2 + β∥Zk+1
z −Zk+1

mc ∥2

subject to:
• ZMP constraints (3)
• stability constraints (8)

In the cost function, the first three terms act as regulariza-
tion while the remaining attempt to bring the ZMP as close
as possible to the center of the moving box, with a strength
modulated by the weight β.

The first sample ṗk
z = (ẋk

z , ẏ
k
z , ż

k
z) of the optimal sequence

is used to integrate the prediction model and the resulting
CoM position pk+1

c is sent to the kinematic controller
together with a suitable swing foot trajectory that allows to
reach the target footstep position at the proper time.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on January 09,2024 at 15:29:08 UTC from IEEE Xplore. Restrictions apply.

E. Feasibility Region

The feasibility region is the region of the state space in
which the IS-MPC optimization problem is feasible.

Proposition 1: IS-MPC is feasible at time tk if

sTZ−1(Xm,k+1
z −zxk

z)≤xk
u+bkx≤sTZ−1(XM,k+1

z −zxk
z),

sTZ−1(Y m,k+1
z −zykz)≤yku+bky≤sTZ−1(Y M,k+1

z −zykz),

sTZ−1(Zm,k+1
z −zzkz)≤zku+bkz ≤sTZ−1(ZM,k+1

z −zzkz).
(9)

Proof. We focus the proof on the inequalities for the x com-
ponent, as the logic, for the other components is identical.
The bounds of the feasibility region along x are given by

xk,b1
u = sTZ−1(Xm,k+1

z − zxk
z)− bkx,

xk,b2
u = sTZ−1(XM,k+1

z − zxk
z)− bkx.

Then, if xk
u is inside the feasibility region, it is possible to

express it as a convex combination of the two bounds, i.e.,

xk
u = αxk,b1

u + (1− α)xk,b2
u , α ∈ [0, 1]. (10)

Consider the following ZMP velocity trajectory:

Ẋk
z = αZ−1(Xm,k+1

z −zxk
z)+(1−α)Z−1(XM,k+1

z −zxk
z).

(11)
We will show that this particular trajectory satisfies both
the stability constraint and the ZMP constraints. As for the
stability constraint, multiply both sides of (11) by sT and
plug in the definitions of xk,b1

u and xk,b2
u to obtain

sT Ẋk
z = (α(xk,b1

u + bkx)) + (1− α)(xk,b2
u + bkx)).

Using (10), this is equivalent to the stability constraint (8).
To prove satisfaction of the ZMP constraint. Left-

multiplying (4) by Z, the chosen ZMP velocity trajectory
can be rewritten as

Xk
z −zxk

z = α(Xm,k+1
z −zxk

z)+ (1−α)(XM,k+1
z −zxk

z),

which simplifies to Xk
z = αXm,k+1

z +(1−α)XM,k+1
z , and

therefore the ZMP constraint (3) is satisfied.
In the following section, we will describe how to use the

feasibility region to formulate a constraint for the FAPA
module, and thus ensure that the output of FAPA can be
used by IS-MPC to construct a feasible QP.

V. FEASIBILITY-AWARE PLAN ADAPTATION

The FAPA module runs in real-time and performs a local
adaptation of the subplan P̂ l, including their timing. We now
describe the constraints and the optimization problems that
define the adaptation procedure.

A. Kinematic Constraint

The j-th footstep f j is ensured to be kinematically feasi-
ble by limiting its displacement with respect to the previous

v1

v2v3

v4

(xj{1,yj{1)

(xj,yj)admissible
region

x

y

O

Fig. 4. Admissible region of the kinematic constraint in the x-y plane.

footstep f j−1. In practice we constrain the geometric com-
ponents of f j to be within the admissible region

nT
1

(
pl+j
xy − pl+j−1

xy −R(θl+j−1
f)v1

)
...

nT
V

(
pl+j
xy − pl+j−1

xy −R(θl+j−1
f)vV

)
 ≥ 0,

∆zm ≤ zl+j − zl+j−1 ≤ ∆zM,

∆θm ≤ θl+j − θl+j−1 ≤ ∆θM,

(12)

with R(θl+j−1
f) a 2D rotation matrix, ni the vector normal

to the i-th segment of the convex region computed as

ni =

(
0 −1
1 0

)
R(θl+j−1

f)(vi+1 − vi),

and vi being the vertices defining the convex polygon
(different depending whether the support foot is left or
right), shown in Fig. 4. Furthermore, ∆m

z , ∆zM, ∆θm, and
∆θM define limits for the foot reachability over vertical
displacement and relative orientation.

B. Timing Constraint

Single and double support duration are subject to mini-
mum and maximum duration constraints

Tmin
ds ≤ T l+j

ss ≤ Tmax
ds , Tmin

ss ≤ T l+j
ds ≤ Tmax

ss , (13)

where the bounds Tmin
ds , Tmax

ds , Tmin
ss , Tmax

ss are chosen in
such a way to avoid excessively fast trajectories that might
be difficult to track, as well as very slow steps that could
result in quasi-static motion.

C. Patch Constraints

We describe alternative versions of this constraint, as we
will later compare the module using either of them, both
in terms of the quality of the resulting plan and of the
computational load. The first version of the constraint simply
restrict the (l+j)-th footstep to lie within its associated patch
Π(f l+j), which is the one originally chosen by the high-level
planner. This constraint can be written asA(Π(f l+j))

(
xl+j
f yl+j

f

)T

≤ b(Π(f l+j)),

zl+j
f = z(Π(f l+j)).

(14)

The second version of the patch constraint allows the
footstep to be moved to a different patch. To entertain
this possibility, we introduce binary variables in order to
formulate a mixed-integer constraint. This constraint defines

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on January 09,2024 at 15:29:08 UTC from IEEE Xplore. Restrictions apply.

a logical implication in which, if a certain binary variable
bl+j,κ is true, then a linear constraint must be verified:

bl+j,κ = 1 ⇒

A(Pκ)
(
xl+j
f yl+j

f

)T

≤ b(Pκ),

zl+j
f = z(Pκ).

(15)

This forces the (l+j)-th footstep to lie within the κ-th patch.
Since each footstep can only be inside a single patch, we also
impose

R∑
κ=1

bl+j,κ = 1. (16)

In MIP, logical implications can be implemented using
binary variables through the so-called big-M technique [21].
In this case, we rewrite (15) as
A(Pκ)

(
xl+j
f yl+j

f

)T

≤ b(Pκ) + (1− bl+j,κ)M1V (Pκ),

zl+j ≤ z(Pκ) + (1− bl+j,κ)M,

−zl+j ≤ −z(Pκ) + (1− bl+j,κ)M,
(17)

where M is a constant large enough to relax the constraints if
bl+j,κ = 0 and 1V (Pκ) is a row vector with V (Pκ) ones. We
define κ̂l+j as the index of Π(f̂ l+j). Note that this requires
turning the equality constraint into two inequality constraints.
Based on the patches of the candidate footsteps in P̂ l, we
also define candidate binary variables as

b̂l+j,κ =

{
1, if κ = κ̂l+j ,

0, if κ ̸= κ̂l+j .

Finally, (16) and (17) assume that every footstep may be
mapped to every patch, which requires F × R binary vari-
ables. However, since the computational load of a MIP is
largely related to the number of binary variables, we employ
a heuristic that allows a footstep f j to be assigned only to
the patches adjacent to Π(f̂ j).

D. Current Footstep Constraints

The first footstep in the subplan f l corresponds to the
footstep currently in contact with the ground, which means
that some of its components cannot be changed. In particular,
its geometric components should be constrained to be equal
to the corresponding components of f̂ l, i.e.,

xl
f = x̂l

f , ylf = ŷlf , zlf = ẑlf , θlf = θ̂lf . (18)

Note that, because of the footstep plan override, the com-
ponents of f̂ l are not the same as in the original plan, but
rather those adapted at the previous iteration.

If tk belongs to a single support phase, the double support
of the current step cannot be changed anymore because it is
already passed. This is expressed by the constraint

tk − tls > T l
ds ⇒ T l

ds = T̂ l
ds. (19)

Note that the implication in (19) is handled at the code level
and does not require introducing binary variables.

To avoid footstep changes when the swing foot is close
to touching the ground, when nearing the end we add the
following constraint:

T l
ds + T l

ss − tk + tls < tchange ⇒ f l+1 = f̂ l+1. (20)

E. Gait Feasibility Constraints

The gait feasibility constraints are introduced to ensure
that IS-MPC is feasible. They do so by constraining the
current state to be within the feasibility region (9).

The expression of the feasibility region (9) uses the ZMP
bounds, that clearly depend on the motion of the moving
box, and thus on the footsteps positions and timings. To
derive a constraint, we simply make this dependency explicit
by plugging (5) and (6) inside (9). Focusing on the right
inequality of the x component, this results in

xk
u + bkx ≤ sTZ−1

(
MX l

f +mxl
f + z

(
dx
2

− xk
z

))
.

(21)
The y and z components, as well as the left inequalities result
in analogous expressions, which we omit for space concerns.

F. Feasibility-Driven Plan Adaptation Algorithm

We present two different versions of the FAPA algorithm.
The first one is not allowed to move footsteps from a different
patch to the one in the original plan, and is thus referred to
as Fixed patches FAPA (F-FAPA). The second one is instead
allowed to choose different patches, and goes under the name
of Variables patches FAPA (V-FAPA).

The decision variable over the planning horizon are col-
lected as

X l
f = (xl

f , . . . , x
l+F
f), Y l

f = (ylf , . . . , y
l+F
f),

Zl
f = (zlf , . . . , z

l+F
f), Θl

f = (θlf , . . . , θ
l+F
f),

T l
ds = (T l

ds, . . . , T
l+F
ds), T l

ss=(T l
ss, . . . , T

l+F
ss),

Bl =

 bl,1 . . . bl,L
...

. . .
...

bl+F,1 . . . bl+F,L

 ,

while the corresponding candidate values are identified by
the vectors X̂ l

f , Ŷ l
f , Ẑl

f , Θ̂l
f , T̂ l

ds, T̂
l
ss, B̂

l, similarly defined.
F-FAPA solves the following problem, with decision vari-

ables U l = (X l
f ,Y

l
f ,Z

l
f ,Θ

l
f ,T

l
ds,T

l
ss):

min
U l

wx∥X̂ l
f −X l

f∥2 + wy∥Ŷ l
f − Y l

f ∥2+

wz∥Ẑl
f −Zl

f∥2 + wθ∥Θ̂l
f −Θl

f∥2+
wds∥T̂ l

ds − T l
ds∥2 + wss∥T̂ l

ss − T l
ss∥2

subject to:
• kinematic constraints (12), for j = 1, . . . , F
• timing constraints (13), for j = 0, . . . , F
• fixed patch constraints (14), for j = 1, . . . , F
• current footsteps constraints (18), (19) and (20)
• gait feasibility constraints (21)

Since F-FAPA does not have binary variables, it can be
implemented using a regular nonlinear solver (i.e., ipopt).

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on January 09,2024 at 15:29:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. F-FAPA in the empty scenario. The robot is walking in a straight
line and is pushed at time 4.5 s (slightly before the first snapshot). Green
footsteps represent the original candidate plan, while the footsteps that are
actually executed are shown in grey. Red footsteps represent the current
adapted subplan. The two bands on the bottom show the nominal and
adapted timings (green for double support and blue for single support).
The same color scheme is used for the rest of the figures.

V-FAPA solves the following problem, with decision vari-
ables which now include the binary variables Bl that is
W l = (X l

f ,Y
l
f ,Z

l
f ,Θ

l
f ,T

l
ds,T

l
ss,B

l):

min
W l

wx∥X̂ l
f −X l

f∥22 + wy∥Ŷ l
f − Y l

f ∥22+

wz∥Ẑl
f −Zl

f∥22 + wθ∥Θ̂l
f −Θl

f∥22+
wds∥T̂ l

ds − T l
ds∥22 + wss∥T̂ l

ss − T l
ss∥22+

wb∥B̂l −Bl∥22
subject to:
• kinematic constraints (12), for j = 1, . . . , F
• timing constraints (13), for j = 0, . . . , F
• variable patch constraints (16) and (17), for j =

1, . . . , F
• current footsteps constraints (18), (19) and (20)
• gait feasibility constraints (21)

Since V-FAPA contains the binary variables B it is im-
plemented as a MINLP.

VI. SIMULATIONS

We ran four simulations in MATLAB, using CoppeliaSim
to kinematically visualize the resulting motions. The system
is an AMD Ryzen 9 5900X (4.8 GHz, 12 core) with 16
GB DDR4 3600 MHz running Ubuntu 22.04 LTS. IS-MPC
runs at 100 Hz and is solved using quadprog, while FAPA
runs at 10 Hz and is solved using the CasADi interface.
In CasADi, we used ipopt for F-FAPA, and bonmin
for V-FAPA. We also ran tests with the commercial solver
knitro, to compare the performance (see Table I).

All the simulations use the following parameters: δ =
0.01 s, Tc = 2.0 s, Tp = 4.0 s, η = 3.6 s−1, β = 100,
the size of the moving box are dx = dy = dz = 0.035 m.

Fig. 6. F-FAPA in the 2-patches scenario. The robot is walking in a straight
line and is pushed at time 4.5 s (slightly before the first snapshot). Since
changing patches is not allowed, the magnitude of the push that can be
tolerated is quite small, compared to that of the other simulations.

Fig. 7. V-FAPA in the 2-patches scenario. The robot is walking in a straight
line and is pushed at time 4.5 s (slightly before the first snapshot). Now
the robot is allowed to adapt the footstep position to the other patch, and
is able to tolerate a stronger push.

F = 3, v1 = (0.28, 0.13)T m, v2 = (0.2, 0.43)T m,
v3 = (−0.12, 0.43)T m, v4 = (−0.2, 0.13)T m, ∆m

z =
−0.10 m, ∆M

z = 0.10 m, ∆m
θ = −0.4 rad, ∆M

θ = 0.4 rad,
Tmin
ds = 0.3 s, Tmax

ds = 0.5 s, Tmin
ss = 0.5 s, Tmax

ss = 0.7 s,
tchange = 0.1 s, M = 100, wx = wy = wz = wθ = wds =
wss = 1.0 and wb = 0.01. Simulation videos are available
at https://youtu.be/4_QYsZH1E7Y.

Simulations take place in 3 different scenarios: empty,
which is completely flat with no obstacles, and is represented
using a single patch; 2-patches is constituted by two patches
at different heights (0 and 0.06 m); stairs has a total of 7
patches of increasing height. While walking, the robot is
subject to impulsive pushes (lasting 0.01 s), transformed in
equivalent acceleration imparted on the CoM.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on January 09,2024 at 15:29:08 UTC from IEEE Xplore. Restrictions apply.

Algorithm Solver Average [s] Std dev. [s] Max [s]
F-FAPA ipopt 0.0207 0.0041 0.0467
F-FAPA knitro 0.0144 0.0032 0.0329
V-FAPA bonmin 0.3164 0.2075 1.2098
V-FAPA knitro 0.0316 0.0393 0.3985

TABLE I
PERFORMANCE METRICS OF F-FAPA IN THE empty SCENARIO AND

V-FAPA IN THE 2-patches SCENARIO, USING DIFFERENT SOLVERS.

In the first simulation, the robot is walking forward in
the empty scenario. At 4.5 s it receives a 15.6 m/s2 push in
the direction (−2,−1, 0), that without FAPA would make
the MPC infeasible. F-FAPA reacts by adapting footstep
positions, orientations and timings concurrently, allowing the
MPC to recover feasibility. Figure 5 shows nominal and
adapted footsteps, trajectories and step timings.

In the second simulation (shown in Fig. 6), the scenario is
2-patches, and the robot must climb a step. Upon receiving
the push, the footsteps do not change significantly, because
the F-FAPA algorithm is not allowed to move the footstep
to the other patch. As a result, the tolerable push is smaller,
i.e., 7.8 m/s2.

In the third simulation (shown in Fig. 7), the scenario is
still 2-patches, but now the scheme is using V-FAPA. When
the push is perceived, the first predicted footstep is moved to
the lower patch, and as a result the increase of the tolerable
push intensity is very significant, i.e., the same as in the
empty scenario.

In the last simulation, the robot is moving through a more
complex environment constituted by a long staircase. While
climbing, the robot is subject to multiple pushes, triggering
several footstep adjustments. Figure 1 shows a stroboscopic
view of the motion.

To discuss the real-time applicability of the scheme, we
report performance metrics in Table I. The solvers used
are ipopt and knitro for F-FAPA, and bonmin and
knitro for V-FAPA. knitro is faster overall, but ipopt
still demonstrates good performance for F-FAPA, compat-
ible with real-time requirements. For V-FAPA, bonmin is
clearly too slow, while knitro has an average performance
that is real-time on average, but some outliers violate the
requirements. Since all results in this paper are simulated,
real-time performance is desirable but not critical. However,
it is necessary for hardware implementation, which is why
we will be working to guarantee real-time performance in
future works.

VII. CONCLUSIONS

We presented a module for adapting positions, orientations
and timings in such a way to enhance our IS-MPC scheme,
using a gait feasibility constraint. Simulated results show that
the plan is adapted in a very flexible way in reaction to strong
pushes. In our MATLAB prototype, the performance is fully
compatible with real time in the case of F-FAPA, while not
yet in the case of V-FAPA. We believe that an optimized C++
implementation will be able to meet real-time requirements.
Future work will be aimed at fully accommodating these
requirements, as well as including the high-level planner [15]
inside the architecture so that global replanning is possile.

REFERENCES

[1] A. Herdt, N. Perrin, and P. B. Wieber, “Walking without thinking about
it,” in 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2010, pp. 190–195.

[2] M. R. O. A. Maximo and R. J. M. Afonso, “Mixed-integer quadratic
programming for automatic walking footstep placement, duration, and
rotation,” Optimal Control Applications and Methods, vol. 41, no. 6,
pp. 1928–1963, 2020.

[3] N. Bohórquez and P.-B. Wieber, “Adaptive step duration in biped
walking: A robust approach to nonlinear constraints,” in 17th IEEE-
RAS Int. Conf. on Humanoid Robots, 2017, pp. 724–729.

[4] S. Caron and Q.-C. Pham, “When to make a step? tackling the timing
problem in multi-contact locomotion by topp-mpc,” in 17th IEEE-RAS
Int. Conf. on Humanoid Robots, 2017, pp. 522–528.

[5] A. Ibanez, P. Bidaud, and V. Padois, “Emergence of humanoid walking
behaviors from mixed-integer model predictive control,” in 2014
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2014, pp.
4014–4021.

[6] F. M. Smaldone, N. Scianca, L. Lanari, and G. Oriolo, “Feasibility-
driven step timing adaptation for robust MPC-based gait generation in
humanoids,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
1582–1589, 2021.

[7] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, “Walking
control based on step timing adaptation,” IEEE IEEE Trans. on
Robotics, vol. 36, no. 3, pp. 629–643, 2020.

[8] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and
P. Souères, “A reactive walking pattern generator based on nonlinear
model predictive control,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 10–17, 2017.

[9] N. Bohórquez and P.-B. Wieber, “Adaptive step rotation in biped
walking,” in 2018 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2018, pp. 720–725.

[10] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu,
D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Fernández-López, and
C. Semini, “Simultaneous contact, gait, and motion planning for robust
multilegged locomotion via mixed-integer convex optimization,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 2531–2538, 2018.

[11] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS Int. Conf. on
Humanoid Robots, 2014, pp. 279–286.

[12] N. Scianca, D. De Simone, L. Lanari, and G. Oriolo, “MPC for
humanoid gait generation: Stability and feasibility,” IEEE Trans. on
Robotics, vol. 36, no. 4, pp. 1171–1178, 2020.

[13] A. S. Habib, F. M. Smaldone, N. Scianca, L. Lanari, and G. Oriolo,
“Handling non-convex constraints in mpc-based humanoid gait gener-
ation,” in 2022 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2022, pp. 13 167–13 173.

[14] J. Ding, X. Xiao, and N. Tsagarakis, “Nonlinear optimization of step
duration and step location,” in 2019 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2019, pp. 2259–2265.

[15] M. Cipriano, P. Ferrari, N. Scianca, L. Lanari, and G. Oriolo,
“Humanoid motion generation in a world of stairs,” Robotics and
Autonomous Systems, vol. 168, p. 104495, 2023.

[16] S. Caron, A. Escande, L. Lanari, and B. Mallein, “Capturability-
based pattern generation for walking with variable height,”
arXiv:1801.07022, 2018.

[17] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional
bipedal walking control based on divergent component of motion,”
IEEE Trans. on Robotics, vol. 31, no. 2, pp. 355–368, 2015.

[18] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in 6th IEEE-RAS Int. Conf. on
Humanoid Robots, 2006, pp. 200–207.

[19] T. Sugihara, Y. Nakamura, and H. Inoue, “Real-time humanoid motion
generation through ZMP manipulation based on inverted pendulum
control,” in 2002 IEEE Int. Conf. on Robotics and Automation, vol. 2,
2002, pp. 1404–1409.

[20] A. Zamparelli, N. Scianca, L. Lanari, and G. Oriolo, “Humanoid gait
generation on uneven ground using intrinsically stable MPC,” IFAC-
PapersOnLine, vol. 51, pp. 393–398, 2018.

[21] R. J. Afonso, M. R. O. A. Maximo, and R. K. Galvão, “Task allocation
and trajectory planning for multiple agents in the presence of obstacle
and connectivity constraints with mixed-integer linear programming,”
Int. Journal of Robust and Nonlinear Control, vol. 30, no. 14, pp.
5464–5491, 2020.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on January 09,2024 at 15:29:08 UTC from IEEE Xplore. Restrictions apply.

