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Abstract. We present a novel method for mobile robot navigation
among obstacles. Our approach is based on Nonlinear Model Predictive
Control (NMPC) and uses a dynamics-aware collision avoidance con-
straint. The constraint, built upon the notion of avoidable collision state,
considers not only the robot-obstacle distance but also their velocity as
well as the robot actuation capabilities. To highlight the effectiveness
of this constraint, we compare the proposed method with a version of
the NMPC that uses a constraint purely based on distance informa-
tion, showing that the first achieves better performance than the second,
especially when the robot travels at higher speed among several mov-
ing obstacles. Results indicate that the method can work with relatively
short prediction horizons and is therefore amenable to real-time imple-
mentation.

Keywords: Robot navigation - Mobile robots - Collision avoidance -
NMPC

1 Introduction

In service applications, mobile robots must be able to navigate a variety of
different environments. Apart from task fulfillment and kinodynamic feasibility,
collision avoidance during motion is an essential requirement. This makes the
use of real-time motion planning necessary.

In the literature, there is a huge number of motion planning methods.
In [4] the authors categorize direct motion planning approaches as grid-based
search methods [8,9], randomized probabilistic methods [15], artificial potential
fields [14] and approaches based on the solution of an Optimal Control Prob-
lem (OCP) [1]. This last category includes NMPC, which is increasingly used as
a motion generation technique. Using the robot dynamics as prediction model
and through appropriate state and input constraints, NMPC solves an OCP at
each time instant to compute an optimal motion which guarantees kinodynamic
feasibility and collision avoidance. Moreover, it can be applied to both single
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and multi-body robots with complex dynamics, a clear advantage over classi-
cal grid-based search approaches for navigation, such as the dynamic window
approach [9]. Finally, thanks to the constant increase in computational capabil-
ities and the use of solution approaches like real time iteration (RTI) [6] and
appropriate software packages for the solution of the OCP like ACADO [13], it
is possible to achieve real-time performance for NMPC.

Regarding the collision avoidance constraint, the structure of the environment
affects its formulation. In some structured environments, collision avoidance can
be often treated as a corridor navigation problem after proper reformulation of
the equations of motion, see [11,16]. However, in the general case this is not
possible. In [2], signed distance fields are used in order to generate collision-free
trajectories. In [21], the authors proposed a reformulation of the generic collision
avoidance constraint as a smooth nonlinear version more appropriate for numer-
ical optimization. In [18], a soft collision avoidance constraint is introduced that
considers obstacles described by general non-convex sets, while [7] emphasizes
the importance of hard collision avoidance constraints in real-time NMPC.

It should be noted that the collision avoidance constraints in the aforemen-
tioned works are purely distance-based, without any consideration of the dynamic
state of the robot. In an NMPC, the effectiveness of a distance-based collision
avoidance method will critically depend on the length of the prediction horizon
in relation to the robot actuation capabilities. The longer the prediction horizon,
the earlier an imminent collision can be detected and averted without significant
(sometimes prohibitive) actuation effort. On the other hand, real-time perfor-
mance obviously does not allow arbitrarily long prediction horizons. In practice,
since high-speed navigation requires the use of the robot dynamic model and
high control frequency, the maximum achievable prediction horizon on typical
robot processing platforms ends up being relatively short. Consequently, the
use of a purely distance-based collision avoidance constraint may jeopardize the
robot safety, since the danger of collision may be detected at a time when the
robot does not have the necessary actuation power to prevent it.

To ensure an adequate look-ahead capability, one should consider both the
robot state with respect to the environment and its actuation capabilities. In [3,
20], position, velocity and worst-case stopping time of the robot are considered in
order to maintain a minimum clearance between the robot and the environment.
In [10], the authors stress the importance of considering the whole robot state in
order to guarantee safety and introduce the concept of Inevitable Collision States
(ICS). In [17], the idea of ICS is exploited for anytime motion planning based
on RRT. In [12], workspace obstacles are represented as velocity obstacles over a
predefined time horizon, whose length depends on the robot state and actuation
capabilities and is such that the robot can always avoid collision with the obstacle
by a predefined maneuver. Finally, a forbidden velocity map is defined in [5] as
the set of the robot prohibited velocities associated to each obstacle based on
the state of the robot and its braking capabilities.

In this work, we take inspiration from the ICS concept to define the notion
of Avoidable Collision State (ACS), i.e., a state from which the robot can avoid
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collision with a certain obstacle. Building on this, we propose an NMPC method
for real-time motion generation which enforces collision avoidance through a
constraint which essentially requires the robot to be in an ACS at all times.
Extensive simulations on a differential-drive robot navigating in both static
and dynamic environments clearly show the superiority of the proposed NMPC
method with respect to distance-based formulations, especially when the robot
must navigate at high speed in environments cluttered with moving obstacles.
In particular, it is shown that, thanks to its dynamics-aware nature, the novel
constraint works well with relatively short prediction horizons, making real-time
performance achievable even on low-cost computational platforms.

The paper is organized as follows. Our navigation problem is formulated in
Sect. 2. In Sect. 3 we outline the proposed NMPC approach, while in Sect. 4 we
formally define the concept of ACS and derive the associated collision avoid-
ance constraint. Simulation results for a differential-drive robot are presented in
Sect. 5. Finally, some concluding remarks are offered in Sect. 6.

2 Problem Formulation

Consider a robotic system whose configuration g (the vector of generalized coor-
dinates) takes values in an n-dimensional configuration space C. The robot is
assumed to be subject to k& Pfaffian nonholonomic constraints, expressed as
AT(q)q = 0, with AT(q) € R**". After some manipulation [19], the dynam-
ics of the robot can be written in state-space format as follows

_ B Glq)v
& =Flmw) = (Ml(q)(E(Q)u - m(q, V))> ’ (1)

with the state defined as x = (q,IJ)7 where v is the vector of the m = n — k
robot pseudovelocities, and the control input u € R™ is the vector of generalized
forces applied by the m robot actuators. In the right hand side of (1), G(q) is a
matrix whose columns span N (A% (q)), and we have set

being B(q) € R™*™ the inertia matrix, n(q, ¢) € R™ the vector of velocity and
gravitational terms, and S(q) € R"*™ the matrix that maps the actuator forces
to forces performing work on the generalized coordinates.

We emphasize that the above dynamic model is general and appropriately
describes mobile robots as well as robot manipulators, mobile manipulators and
so on. In the particular case of an unconstrained (free-flying) robot, we simply
have G(q) = I,, and v = g.

The robot moves in an N-dimensional (N = 2,3) workspace W, populated
by static and/or dynamic obstacles. We shall denote by R(g) C W the volume
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occupied by the robot at configuration g, and by O,(¢) C W the volume occupied
by the j-th obstacle at time ¢ (j = 1,2,...).

A navigation task is assigned to the robot in terms of a vector y € ), which
describes the position of a representative point on the robot and is related to
the configuration via a forward kinematic map y = k(q). The task is to drive y
to a desired position y4 in the workspace.

Our problem is to generate in real-time a motion that:

1. drives the robot from any starting configuration g, to any configuration real-
izing the task, i.e., a configuration belonging to C,4, where C, = {q € C :
k(q) = ya};

2. is kinodynamically feasible, in the sense that it is consistent with model (1)
and respects existing constraints on both x (e.g., joint and velocity limits)
and u (e.g., torque bounds);

3. avoids collisions between the robot and the obstacles, i.e., R(q) N O;(t) =0,
forall t and j =1,2,....

As for the information available for solving the problem, it is assumed that
the robot is always aware of its own state and that an on-board sensor provides
the position and velocity of all obstacles located inside the sensor field of view.

3 The Proposed NMPC Approach

Our approach relies on the use of an NMPC algorithm for real-time motion
generation. NMPC solves an OCP at each discrete time instant; to allow efficient
numerical solution, each OCP must be reduced to a Nonlinear Program (NLP).

Denote by H the prediction horizon, by ¢ the sampling interval and by N =
H/6 the number of control intervals in the prediction horizon. We also denote
by @); and uy); the predicted robot state and control input at the discrete time
instant ¢y, computed at t. The decision variables of the NLP to be solved at
time ¢;, are the control inputs {ugo, . . ., ugn—1} and the states {xyo, .. ., Ty N }-

Our objective is to drive the task error to zero while using the least possible
control effort. Denoting the predicted task error at tx1; as eg|; = Ya — Yrs, with
Yi|; the position of the representative point at ¢j;, the running cost can then
be expressed as:

Viei(®gi wrps) = eZ‘iQeW + Ui Py + up) R,
while the terminal cost will be
Vi = e} Jo v PN Y
kN (Tr|N) = e n@nek N + Y n PNYk|N-

Here, Q, P and R are positive definite weighting matrices for the task error,
the velocity of the representative point and the control effort throughout the
prediction horizon, while Q and Py are positive definite weighting matrices
for the task error and the velocity of the representative point at the final time
instant.
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The NLP to be solved at time instant ¢ is then:

N-1
min Z Vk\i(mkﬁ,uk\i) + Vk|N(5’3k|N)

U0y UK|IN—1) 4
Tklo)- Tk N =0

subject to:
wk‘o — T = 0
Zpjiv1 — F(@ppisup)) =0, i=0,...,N—1

:Bmingwkﬁgxmaxa ZZO,aN
uminéukﬁgumaxa i:Oa---aN_l
collision avoidance constraints atty, ..., tgp+N

where xj represents the current robot state, F(-,-) represents the right-hand-
side of a discrete state-space model of the robot obtained via numerical integra-
tion (typically under the assumption of piecewise-constant control inputs), while
Tmin,s Lmax aNd Umin, Umax are respectively the lower/upper bounds on the state
variables and on the control inputs.

As for the collision avoidance constraint, which is the main contribution of
this work, it is discussed in full detail in the next section.

4 Collision Avoidance

The proposed collision avoidance constraint hinges upon the notion of Avoid-
able Collision State (ACS), i.e., a robot state from which it is possible to avoid
collisions. In this section we will first give a formal definition of what an ACS is,
and then derive the corresponding collision avoidance constraint. Although all
computations are presented in a 2-dimensional workspace, the extension to the
3-dimensional case (e.g., for application to UAVs) is straightforward.

4.1 Preliminaries

The notion of ACS is obstacle-specific, in the sense that it characterizes the
possibility for the robot to avoid a certain obstacle. In view of this, we first need
to identify the obstacles for which there is an actual danger of collision given the
current state of the robot.

We are going to use bounding spheres for both the robot and the obstacles.
In particular, we take the smallest sphere that contains the robot volume R,
and denote its radius by p and its center by R. The position vector of R in
the world frame is denoted by = and is related to the robot configuration via a
forward kinematic map r = o(q). For its velocity we have: » = J(q)v where
J(q) = 00(q)/0gG(q). Similarly, we use a sphere of radius p; to envelop the
generic obstacle O;, denoting its center by O;, the corresponding position vector
by o; and its velocity by 6;. Finally, let n; be the unit vector pointing from R
to Oj, and r; = r — 0, be the relative position of R with respect to O}, so that
the corresponding relative velocity is ;. Refer to Fig. 1 for illustration.
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7 collision
\, cone

Fig. 1. Obstacle O; is considered dangerous for the robot at a certain time if the
relative velocity 7; of the robot with respect to the obstacle lies inside the collision
cone.

Now, augment the obstacle sphere by the radius of the robot sphere, denoting
by pa,j = pj + p the total radius. The collision cone is the cone defined by R
and the tangents from R to the augmented obstacle. Obstacle O; is dangerous
at time ¢ if 7;(¢) lies inside the collision cone (see Fig.1). Simple geometrical
arguments lead to the following condition for an obstacle to be dangerous:

o ATl — P2

h(m,{'):n . -
! 25l [l

>0 (2)
where &; = (0;,0;) is the j-th obstacle state.

4.2 Avoidable Collision States

By definition, to avoid an obstacle which is non-dangerous at time t the robot
simply needs to keep its course. Therefore, we only need to characterize the
possibility of avoiding obstacles that are dangerous at t. In particular, we will
say that the robot is in an Awvoidable Collision State (ACS) with respect to a
dangerous obstacle if there exists at least one trajectory that originates from the
current state, is kinodynamically feasible and avoids collision with the obstacle.

In principle, to conclude that a state is an ACS we should check all feasible
trajectories emanating from it, until we find at least one that avoids collision.
However, such a potentially exhaustive study is incompatible with a real-time
application. We shall therefore look at one specific motion and ask ourselves if
the robot can avoid collision during that motion. If the answer is positive, then
it can be concluded that the current state is certainly an ACS.

In particular, in the presence of an obstacle O; which moves along a given
direction with constant speed and is dangerous at time t, we consider the robot
moving in such a way that at each time instant ¢’ > ¢ its relative velocity with
respect to the obstacle, 7;(t'), projected on the original direction of collision,
n;(t), decreases with a constant rate .



222 S. G. Tarantos and G. Oriolo

During this motion there will be eventually a time instant, denoted by t,,, in
which the projection of the robot relative velocity on the original direction of
collision will be zero, i.e. nf(t)fj(tv) = 0. A sufficient condition for this motion
to be collision-free is:

n () (o;(t") —r(t) > paj, V' €[t ty].

Denoting by ~(t) the robot-obstacle clearance and considering that at time ¢ the
relation n? (t)(0;(t) —r(t)) = v(t) + pa,; holds, after simple substitution of p, ;,
the condition for collision-free motion becomes:

ng (t)(r;(t') —r;(t) < (1), W' € [tt,]. 3)
Note that inequality (3) defines an admissible half-plane for the relative position
of R with respect to O; in which the robot has to remain for all ¢’ € [t,t,] (see
Fig. 2).

In order to ensure that the considered motion can be implemented by the
robot we will investigate whether the required deceleration of R, i.e. ¥ = n;(t)c,
projected on the robot actuation space lies within the actuation limits.

Throughout the considered motion, the position of R, projected on the orig-
inal direction of collision n;(t) is described at time t’ > t as

nT (Ar(t) = nf ()r(t) + nf (RO 1)+ ot — 1) (4)

and its projected velocity as

nT ()7t = nT ()7 (t) + a(t’ —t). (5)

J )

As for the obstacle, the position of O; at t' > t projected on the original
direction of collision is

nj (H)o;(t') = nj (t)o;(t) + nj (t)o;(t' — ). (6)

By solving the system of equations (3) for the equality, (4), (5) and (6), with
t’ = t,, we obtain the minimum required deceleration of the robot in the original
direction of collision: )
1 (nj (6, —7(t)))

‘T ()

Note that o depends on both the robot and the j-th obstacle state. Considering
that the acceleration of R is:

i = J(q)v + J(q)v (7)

and that from (1) we can express v as:

v =M '(q)(E(q)u — m(q,v)), (8)

we can obtain the required control inputs for this deceleration by substituting
# = n;(t)a and (8) in (7). Using the Moore-Penrose pseudoinverse, we get



A Dynamics-Aware NMPC Method for Robot Navigation 223

admissible h
half-plane

Fig. 2. The admissible half-plane for the relative position of robot R with respect to
the obstacle O; at time ¢, t’ € [t,t,].

the minimum norm control inputs needed in order to apply the deceleration
#=mn;(t)a to R:

ua(@,&5) = (J(@M (9)E(q))' B(z, ¢;), 9)

where
B(z, &) =n;(t)a — J(q)v + J (@M~ (q)m(q,v).

So the motion is kinodynamically feasible if the following condition is satisfied:
Umin S ua(wagj) S Umax- (10)

This condition can be used as a constraint in order to guarantee that the robot
is always at an ACS.

Note that the ACS property for a state is strongly related to its being safe
according to [10], i.e., not being an Inevitable Collision State (ICS). However,
the two properties differ in two aspects:

— The number of obstacles considered by the property. An ICS is defined with
respect to all the obstacles (or at least all the obstacles visible by the robot),
a practice that obviously increases the computational time, while the ACS
property is defined with respect to a specific (dangerous) obstacle;

— The way in which the property is established. To prove that a state is not
ICS, in principle one has to search the whole control input set (or a finite
subset [17]) to find a collision-free motion. On the other hand, to characterize
a state as ACS we only look at the relative velocity of the robot with respect
to the dangerous obstacle, and specifically investigate whether it is possible
to stop motion along the robot-obstacle direction before collision.
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4.3 Use of the ACS Condition in the NLP

Note that constraint (10) is suitable for enforcing collision avoidance since every
robot motion that leads to collision will violate the constraint before the collision
occurs. So we will use (10) in the proposed NLP applying it for each considered
obstacle, for each time instant throughout the prediction horizon. In order to
ensure that the constraint is inactive if non-dangerous obstacles are considered
and to avoid using if statements, we multiply u.(z,&;) as given by (9) by the
sigmoid function g(h(z,&;)) = 1/(1 4+ e M(®&)) with A being a constant value
that tunes the steepness of the sigmoid function, getting:

- f
wy(z, &) = g(h(z,€))) (J (@) M~ (q)E(q))' Bz, &)).
So the constraint that will be applied in the NLP is:
Upmin < ub(mk|ia€j7k|i) S Umax, =0,...,N, j=1...,n,, (11)

where §; 1|; is the state of the j-th obstacle at ¢jy; and n, is the number of the
considered obstacles in the NMPC.

5 Simulations

In order to show the effectiveness of the proposed method, we conducted a series
of simulations in various static and dynamic environments. All the simulations
were implemented in MATLAB on an Intel Core i9-9900K CPU at 3.60 GHz.
For the numerical solution of the NLP required by our NMPC, we used the RTI
scheme [6] implemented within the ACADO Toolkit [13].

The robotic platform used for our simulations is the differential-drive robot
shown in Fig. 3, having length [ = 0.60 m and width b = 0.30 m. The Center
of Mass (CoM) is located at the geometric center of the vehicle, which is also
the center R of the robot bounding sphere, whose radius is p = /12/4 + b? /4.
The rear wheels are located at a distance d = 0.25 m from the CoM, with a
caster wheel in front for static balance. The vehicle mass and moment of inertia
are respectively 50.0 kg and 1.41 kg-m?, making this a rather heavy vehicle. The
torque bounds for the wheel actuators are set to 2.5 Nm. The configuration
vector of this robot is ¢ = (z,y,6) and its dynamic model is that of a unicycle
(e.g., see [19, Sect. 11.4]). The robot representative point for the navigation task
is also placed at R. It is assumed that the robot is equipped with a line-of-sight
sensor (such as a laser rangefinder) with an infinite field of view.

We wish to compare the proposed NMPC method, which relies upon a
dynamics-aware (DA) collision avoidance constraint, with an NMPC that uses
a purely distance-based (DB) collision avoidance constraint. In both methods,
the NLP formulation is the same, apart from the collision avoidance constraint
which in DB takes the form:

||rk|i_0j,k}‘i|’2pa7j7 i:O?"'?N? j:17"'7n’03
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Fig. 3. The differential-drive robot used in simulation with its bounding sphere.

where 7; and 0, |; are the position of R and O; at ty, respectively. In both
NMPCs we consider the n, = 5 closest visible obstacles. The sampling interval
for real-time control is § = 31 ms in both cases.

The two methods have been tested in 50 different environments (25 static
and 25 dynamic), using 3 different values for the maximum driving velocity vy ax.
The maximum steering velocity is always set at wmax = 20/3 Umax rad/s. The
prediction horizons were chosen as large as possible to allow real-time perfor-
mance for the two methods. In particular, for the DB method the prediction
horizon is H = 0.992 s while for the DA method it is H = 0.93s; in fact the DB
method requires slightly less computations than the DA method.

We assess the performance of the two methods by taking into account the
success rate as well as the quality of the motion according to the following
criteria: (1) time ¢, needed for the robot to reach the goal, (2) control effort
Jr = fgq | 7][?dt, (3) length I, of the resulting path, (4) duration of the longest
iteration dmax and (5) average iteration time §.

Video clips of representative simulation results are shown in the accompany-
ing video, also available at https://youtu.be/LS57E8jGoJk.

5.1 Static Environments

In the first group of simulations, the robot moves in 25 environments, each
occupied by 10 static obstacles (e.g., see Fig.4). The robot starts from g5, =
(2, 2, 71'/3) and must reach y, = (167 15). Table 1 (top) summarizes the results
of the DA and DB methods averaged over the 25 environments, for increasing
values of the maximum driving velocity vmax.

For lower vyax the two methods behave similarly having also the same suc-
cess rate. An illustrative example of the robot motion with vy.x = 0.9 m/s is
given in simulation 1 of the accompanying video. However, when vy,.x = 1.2 m/s
the success rate of the DB method drops to 88% while the DA method is hardly
affected by the increase in the maximum velocity. Note that in this case, the
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Fig. 4. Motions generated by the two methods in one of the static environments, with
Umax = 1.2 m/s. The DB method (left) cannot avoid collision with an obstacle, whereas
DA (right) goes safely through the narrow passage and successfully reaches the goal.
See also simulation 2 in the accompanying video.

Table 1. Averaged results over 25 environments for the proposed dynamics-aware
(DA) method vs the distance-based (DB) method. Top: static environments, bottom:
dynamic environments.

Static Environments

DB DA
Vmax [m/s]; ts [s] | 0.9; 0.93 | 1.1; 1.116 | 1.2; 1.209 | 0.9; 0.93 | 1.1; 1.116 | 1.2; 1.209
success rate (%) | 96 96 88 96 96 92
tg [s] 27.16 24.29 25.07 26.63 24.76 23.98
Jr [104 szZS] 1164.63 | 1495.56 1763.30 1046.58 | 1397.92 1601.14
lp [m] 19.56 20.12 20.85 19.51 19.96 20.48
Omax [ms] 25.21 25.15 25.46 26.84 27.55 27.11
5 [ms] 15.31 14.26 13.67 16.40 15.96 15.50

Dynamic Environments

DB DA
Umax [m/s]; ts [s] | 0.9; 0.93 | 1.1; 1.116 | 1.2; 1.209 | 0.9; 0.93 | 1.1; 1.116 | 1.2; 1.209
v, [m/s] 0.45 0.55 0.6 0.45 0.55 0.6
success rate (%) |72 64 40 80 84 80
tg [s] 29.65 25.52 24.38 30.61 29.78 27.19
Jr [104 szzs] 1766.29 | 2001.42 2009.93 1625.94 | 2171.06 2510.07
lp [m] 20.37 20.69 20.77 20.62 21.83 21.31
Smax [ms] 26.16 | 25.65 26.14 28.18 | 28.56 28.85
5 [ms] 1547 | 14.63 14.19 16.87 | 16.64 16.40
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stopping time! ¢, is significantly larger than the prediction horizon. This shows
that under these conditions, unlike DA, a robot navigating with the DB method
would require either a longer prediction horizon or greater braking capabilities
in order to navigate safely. A representative example of the behaviour of the two
methods is shown in Fig.4 (also see simulation 2 in the accompanying video).
In particular, it shows the trajectories generated by the two methods in one of
the static environments with vy = 1.2 m/s. The DB method (left) runs into a
collision while passing through a narrow passage, because the robot has accumu-
lated too much speed in the initial part of the motion and avoiding the imminent
collision would require more than the available torque (this corresponds to an
unfeasibility for the NMPC). On the other hand, the DA method (right) starts
the avoidance maneuver earlier thanks to the dynamics-aware constraint, which
can detect a violation before the distance-based constraint does; therefore, DA
is able to go through the narrow passage and reach the goal safely.

Looking at the other performance criteria of Table 1, one can observe that on
the average the DA method produces trajectories that are slightly shorter and
less energy-consuming than the DB method. As a counterpart, the DB method
shows a slightly reduced duration of the longest iteration mainly due to the
simplicity of the collision avoidance constraint.

5.2 Dynamic Environments

The second group of simulations take place in 25 dynamic environments, each
occupied by 10 static and 10 moving obstacles. The moving obstacles are zigzag-
ging at a speed v, = Umax/2, with direction changes of 7/3 (toward the robot)
after traveling a distance of 4.9 m. The results are presented in Table 1 (bottom).

The success rate of both methods is affected by the presence of the moving
obstacles. However, the DA method is much more effective than the DB method,
with success rates over 80% while DB goes as low as 40%.

Once again, for the lowest vy, the DB method has its higher success rate, yet
lower than the DA method. In simulation 3 of the accompanying video we show
the robot moving in a dynamic environment with vy.x = 0.9 m/s. Nevertheless,
the success rate of the DB method decreases as vyay increases and plummets
to 40% for vmax = 1.2 m/s, revealing that the presence of moving obstacles in
combination with fast robot motion affects significantly its performance. This is
due to the fact that the maneuvers needed for collision avoidance become now
more demanding, since a worst-case scenario may require the robot not only
to stop, but also to accelerate in the opposite direction in order to avoid an
imminent collision. Thus, by the time an imminent collision is detected in the
DB case, there may not be enough actuation capability left to avoid the obstacle
explaining why the DB method has such a low performance even in the case of
the lowest maximum velocity. On the other hand, the DA method guarantees

! By stopping time ¢, we denote the minimum time that a robot traveling on a straight
line with speed vmax needs in order to stop.
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Fig. 5. Snapshots of the motion generated by the two methods in one of the dynamic
environments, with vmax = 1.2 m/s. As in the static environment, the DB method
cannot avoid collision with an obstacle, whereas the DA method safely navigates to
the goal. See also simulation 4 in the accompanying video.
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that the robot is at all times in an ACS. As a result, the robot is able to veer
off collision paths earlier.

For illustration, Fig.5 (see also simulation 4 in the accompanying video)
shows the behavior of the two methods in one of the dynamic environments
through a series of snapshots. Again, we have here vy, = 1.2 m/s. As in the
static environment case, the DB method is not aware of the robot dynamic state,
and therefore cannot prevent the collision with the moving obstacle. On the other
hand, the DA method effectively reaches the goal avoiding nearby obstacles;
note in particular how the early reaction in the presence of a moving obstacle
averted the impending collision, and its elaborate avoidance maneuver in front
of a moving obstacle combining a reverse motion and a quick reorientation.

In an attempt to further assess the effectiveness of the proposed method,
we tested the performance of the two methods in a more cluttered version of
the dynamic environment, increasing the number of moving obstacles to 15.
The obstacles are zigzagging at a speed of 0.4 m/s, with direction changes of
7/3 (toward the robot) after traveling a distance of 4.9 m. The robot maximum
velocity 18 vpmax = 1.2 m/s. This simulation, whose results are only shown in
simulation 5 of the accompanying video for compactness, confirms that the robot
controlled by the dynamics-aware NMPC method safely reaches its goal even in
this challenging environment, while the distance-based NMPC fails.

6 Conclusion

We have presented a novel real-time NMPC for robot navigation in environ-
ments populated by static and/or moving obstacles. Inspired by the concept
of inevitable collision state, we defined the notion of ACS (avoidable collision
state) and, based on this, formulated a hard constraint on the robot state guar-
anteeing that it can execute a collision avoidance trajectory in the presence of
a dangerous obstacle. The method was compared with an NMPC that considers
a purely distance-based collision avoidance constraint. The comparative simu-
lations showed that the proposed method is generally more effective, especially
when the robot navigates at high speed in cluttered dynamic environments.

Future work will be aimed at testing the proposed method on multi-body
mobile robots (namely, mobile manipulators), which are already included in the
class of robots considered in this paper. Another interesting possibility is to
extend the proposed approach to flying robots.
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