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Abstract

The majority of local methods for solving kinematic re-
dundancy in maenipulators are not repeatable, i.e. non-
cyclic joint trajectories are generated when the end-
effector is required to trace a closed path. This results
in a joint motion with unpredictable or unstable char-
acteristics. Previous researchers have used a differen-
tial geometric approach to identify a condition for a
strategy to be repeatable. For a particular resolution
method, even if such condition does not hold in gen-
eral, there may ezist specific initial joint configurations
Jrom which a cyclic motion is obtained. In this paper,
the problem of achieving asymptotic cyclicity on a pe-
riodic end-effector task is considered. Starting from a
generic initial condition, we obtain convergence of the
Jjoint trajectory towards a cyclic evolution generated by
the chosen kinematic inversion scheme, initialized at a
repeatable configuration. This is achieved through a se-
ries of different on-line kinematic control schemes pro-
ducing either asymptotic or ezact end-effector tracking.

1. Introduction

Kinematic redundancy provides robot manipulators

with greater dexterity and improved capabilities over -

conventional structures. As a counterpart, the synthe-
sis of joint trajectories realizing a given end-effector
task implies a choice among an infinity of inverse kine-
matic solutions. The difficulty of this problem is in-
creased by the nonlinearity of the kinematic mapping.
Therefore, most redundancy resolution schemes are lo-
cal in nature, in that they incrementally specify joint
displacements by inverting the linear relationship be-
tween end-effector and joint velocities at a sequence of
points along the path.

A drawback of local resolution methods is that most
of them are not repeatable, i.e. non-cyclic joint trajec-
tories are generated when the end-effector is required
to trace a closed path. This is of course undesirable,
because unpredictable joint motions may override the
potential advantages of a redundant structure. In [1],
a differential geometric condition was identified for a
strategy to be repeatable, which implies the integra-
bility of the inversion scheme. Even if such condition
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does not hold for all arm configurations, there may ex-
ist initial joint settings from which a cyclic motion is
obtained.

In this paper, we tackle the problem of achiev-
ing asymptotic cyclicity for a given resolution strat-
egy on a periodic task. In particular, starting from a
generic joint configuration, convergence of joint evolu-
tion towards a cyclic trajectory is seeked. This refer-
ence trajectory is generated by the chosen kinematic
inversion scheme, initialized at a joint configuration
that satisfies the aforementioned condition. The prob-
lem is solved by introducing on-line kinematic control
schemes which guarantee asymptotic convergence to
the reference joint trajectory while the end-effector fol-
lows a given path. A number of alternative laws are
obtained, which differ for the structure of the feedfor-
ward and feedback terms, yielding exact or asymptotic
end-effector tracking.

In our analysis, we will consider simple Jacobian
pseudoinversion as resolution method, and modify this
basic scheme to attain asymptotic cyclicity; however,
the developments apply to any generalized inversion
technique. Also, the problem will be addressed at a
purely kinematic level. In fact, dynamic nonlinearities
may be cancelled by using a computed torque control.

An overview of the cyclicity problem is given in the
next section. Possible ways to achieve repeatability are
then discussed, motivating the need for on-line feed-
back laws. Several control schemes are introduced,
providing stability proofs as well as simulation results.

2. The cyclicity property

The differential kinematics of a manipulator with n
joints executing an m-dimensional task is expressed as

@)

where q is the joint variables vector, and p specifies
the end-effector location with respect to the particular
task. Denoting by k(q) the direct kinematic mapping,
J(q) = 8k/dq is the manipulator Jacobian matrix.
For a kinematically redundant robot, . > m and there
exists an infinity of joint velocities solving the linear
system (1) at a given q.

p=J(q4q, qeR'peR™



Consider instantaneous resolution laws of the form
(2

where G(q) is any generalized inverse of J (q), ie. a
matrix satisfying JGJ = J for any q. If J is full row
rank (or equivalently, if q is a nonsingular configura-
tion), then necessarily JG = L A common choice for
G in (2) is the Moore-Penrose pseudoinverse matrix
Jt, which provides the minimum norm solution.

The non-cyelicity phenomenon was first discussed
in [2] for the pseudoinverse solution. With the end-
effector tracing a closed path, a drift in the joint po-
sition was observed at each cycle completion. Such
drift converged to zero in some cases, but in general
no limit behavior was observed. A mathematical ex-
plaination of this was given for a 3R planar robot, in
terms of the non-integrability of a Pfaffian constraint
associated with the pseudoinverse solution.

The generalization of this result was obtained by
Shamir and Yomdin [1], who established a condition for
a generalized inverse G to yield a repeatable resolution
scheme. In particular, let g1, . ..,gm bethe columns of
matrix G, and A(q) be the distribution identified by
the m vector fields g1(q),. .. ,gn(q) [3]. Assume that
a closed path is to be executed in a simply-connected
region of the cartesian workspace. Then, a necessary
and sufficient condition for cyclicity is that A is invo-
lutivel. We will refer to this as the involutivity condi-
tion (IC). The IC implies the existence of an invariant
m-dimensional integral manifold M for A, to which
all joint trajectories are confined. Since the kinematic
mapping is one-to-one on M, the produced joint mo-
tion is cyclic.

The above integrability condition can be analyti-
cally checked, once a mechanical structure and a gen-
eralized inversion strategy have been chosen. For most
choices of G in (2), such condition does not hold in
general, i.e. for any value of the joint position q. The
corresponding resolution method must then be con-
sidered non-repeatable. However, there may exist a
set Q% of joint configurations where the IC holds, and
which is invariant under G. From these configurations,
cyclicity is propagated throughout the motion: initial-
izing (2) at any q(0) = gr € Qg the joint posture
q: is recovered after each end-effector cycle. Qg will
be called the set of repeatable configurations for G.
Starting from a q(0) ¢ Q% results in a nonzero drift.

Further studies on the characteristics of the joint
drift have been conducted in [4], where numerical sim-
ulations showed that the drift has predictable proper-
ties in some situations. A more rigorous investigation

q=G(q)D,

1 The distribution A is involutive if and only if the Lie
bracket [gi,g;] € span{g,...,8n}, for any i, j, where

[&i &3] = (9g;/ x)g; — (08:/0x)g;.
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is carried out in [5]. By defining a drift density mea-
sure, it is possible to identify initial configurations pro-
ducing a stable drift under pseudoinverse control, with
the aid of a Lyapunov analysis.

Indeed, the fulfillment of all these mathematical
conditions for a generalized inverse matrix G depends
also on the robotic structure under consideration. In
fact, the same strategy may be repeatable for some
manipulators and not for others. As an example, pseu-
doinverse control is always repeatable for planar struc-
tures with only prismatic joints, but is not in general
for other robotic structures. Even for the same manip-
ulator, different choices of joint generalized coordinates
will yield different sets of repeatable configurations, be-
ing a change of coordinates equivalent to the use of a
weighted generalized inverse G’ # G. As an exam-
ple, we derived in [6] the repeatable configurations of
a 3R planar arm under pseudoinversion performed in
relative coordinates; these are different from the re-
peatable configurations obtained in [1] using absolute
coordinates.

Equation (2) is not the general solution to system
(1), because a joint velocity vector belonging to the
null space N'(J) could be added, or

®3)

However, we show next that in general such a choice
rules out repeatability. For this, a slightly different
argument will be used to derive the conditions of [1].
When joint motions generated by a resolution strat-
egy on closed end-effector paths are cyclic, this strat-
egy defines an inverse kinematic function [7l. As a
consequence, there exists an (n—m)-dimensional holo-
nomic constraint on generalized coordinates and the
joint evolution is restricted to an m-dimensional man-
ifold M. In view of this, repeatability of the resolution
scheme implies that the corresponding dynamic sys-
tem is not accessible?, since its accessible state space
must have dimension m < n, coinciding in fact with
M itself. A necessary condition for k-accessibility
(i.e. to a k-dimensional set) is that the distribution
A(q) = span{f(q), £1(q), - -, &m(q), and all repeated
Lie brackets} has dimension k in an open and dense
subset of the state space [8].

As for system (2), if p is interpreted as input vector,
the m columns of the generalized inverse matrix G are
the input vector fields, while no free evolution term is
present. Since G is full column rank away from singu-
larities, distribution .A has at least dimension m. For

q=G(@p+ (I-G(@)I(@)v, veR"

2 A dynamic system § = £(q)+> ., &i(q)u; evolvingon a
n-dimensional smooth manifold @ is said to be locally acces-
sible if the set of reachable states from any point contains a
non-empty open (hence of dimension n) set of @. The vector

field f(q) is also termed the system free evolution.



system (2) to be m-accessible, the involutivity of the
columns of G is then required. Thus, the repeatabil-
ity condition of [1] is recovered. Coming to (3), assume
that the null space vector is a function of the joint vari-
ables only, i.e. v = v(q). In this case, (I-GJ)v = f(q)
is a free evolution vector in the null space of J. Since
R(G)+N(J) = R™, the dimension of the distribution
A(q) is at least m + 1, and repeatability cannot be
achieved in any case. If instead v = L(q)p, where L is
a generic n X m matrix, (3) may be rewritten as

4= (G +(I-GJL))p. 4)
This is equivalent to (2) with a different generalized
inverse G’ = G + (I — GJL). Again, the involutivity
of the columns of G’ is needed for (4) to be cyclic. We
will come back to this in Section 3.

The above reasoning shows that no null space veloc-
ity is allowed in (3) if a repeatable scheme is desired,
unless it is chosen as a linear term in p. Thus, there is
no loss of generality in studying the cyclicity problem
restricted to resolution schemes (2).

3. Ways to achieve cyclicity

Suppose that a particular strategy (2) used to generate

joint trajectories is not repeatable for the given initial

arm configuration qg. Our objective is to modify or

complete the resolution strategy in order to achieve a

cyclic behavior on closed end-effector paths. Hence-

forth, we will refer for illustration to the case G = J i,

and denote the corresponding set of repeatable config-

urations simply by Q”. All the following can be indeed
repeated for any generalized inverse.

In principle, there are two alternative approaches
to obtain cyclic redundancy resolution from a given
PéQ:

(i) modify the structure of the resolution scheme (2)
so to render qg repeatable for the new strategy, or
ezact cyclicity;

(i4) design a kinematic feedback control law to pro-
duce convergence of the joint variables towards a
cyclic trajectory (one starting from a configura-
tion in Q"), or asymptotic cyclicity.

In turn, two options are available for case ().

A first possibility is to start with the general solu-
tion of equation (1) as in (3), or

q=J'(qQ)p+ (1-I'(q)I(q))v. (5)

In (5) it is necessary to specify v as a linear term in
p if cyclicity is desired, as previously shown. Being
this choice equivalent to using a different generalized
inverse (see (4)), the linear mapping v = L(q)p has
to be chosen in such a way that the set of repeatable
configurations includes qq. This is strongly related to
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the Extended Jacobian method [9], which in fact gives
the expression of v so to make qq repeatable, as shown
in the following.

Assume that an additional task is imposed through
the (n — m)-dimensional constraint J,(q)§ = 0. The
velocity update can be computed as

=17 2], 0=[JO] o

provided that no singularities are encountered. Besides
kinematic rank singularities of J and J,, also configu-
rations where M(J) N N(J,) # 0, commonly known as
algorithmic singularities, must be avoided. It is possi-
ble to express solution (6) in the form (5), by properly
choosing v as a linear term in p. In fact, let

v=-Y1,J'p, with Y=J,a0-J3'7), (7
and note that Y is full row rank whenever J, is. By
substituting (7) in (5), it is easy to see that the addi-
tional constraint J.(q)q = 0 will be satisfied. Thus,
the Extended Jacobian method is equivalent to (5)
where v is given by (7). At this stage, repeatability
can be checked without the need of testing the IC. In
fact, the obtained motion will be cyclic iff J, is the Ja-
cobian of a function a(q). It follows that every exactly
cyclic strategy is equivalent to an Extended Jacobian
method [10]. The occurrence of algorithmic singulari-
ties may however limit its applicability, especially for
highly redundant structures.

A second —though actually equivalent— way to
modify the structure of (2) for exact cyclicity is to use
a non-constant matrix W(q) to perform a weighted
pseudoinversion. However, the construction of a ma-
trix W(q) providing an integrable weighted pseudoin-
verse JIN is quite cumbersome; a procedure based on
artificial compliance functions associated to the arm is
presented in [11].

For the asymptotic cyclicity approach (i), a simple
solution might be to recover a repeatable initial condi-
tion q" € Q" by performing a self-motion in advance,
L.e. without moving the end-effector. However, it can
be shown that this approach may not be feasible3; in
any case it implies a waste of time. A more efficient
solution is to achieve convergence of the joint variables
over time towards the cyclic trajectory that starts from
a repeatable q". This will result in a joint space drift
converging to zero. In most cases, fast convergence can
be achieved, so that the drift is already eliminated in
the first cycle; on subsequent cycles the joint motion
will be repetitive.

3 In general, it is not possible to perform a desired self-

motion by using only smooth feedback.



4. Asymptotic cyclicity via kinematic
control schemes

In this section, we introduce kinematic feedback con-
trol schemes which guarantee asymptotic convergence
to cyclic joint motions. These schemes may be used
for real-time control, since they generate joint trajec-
tories which may be directly fed to a computed torque
controller. Although reference accelerations are also
needed to this aim, we will address here the problem at
the velocity level, since the extension to second-order
schemes is straightforward.

Let the initial configuration go be not repeatable
with the pseudoinversion strategy. To obtain a refer-
ence trajectory q:(t) associated to a repetitive closed
path p;(t), we impose the IC* to find a repeatable con-
figuration qro. The joint trajectory generated by

a(t) = /0 Ha(pedr, a0 =ao (8

is cyclic by definition. Our objective is to achieve con-
vergence of the actual joint trajectory q(t), the one
starting from qo, to the reference q:(t). Note that an
initial cartesian error is allowed, i.e. po = k(qo) may
also not be on the desired path.

The basic idea is to generate a feedforward term on
the basis of the reference trajectory qr, while adding
a feedback action that smoothly drives the manipula-
tor arm towards the cyclic behavior. Different control
laws can be derived, depending on the chosen structure
for the feedforward and feedback terms. As the most
natural implementation of this approach, we propose

scheme I

q=J(q:)p: + K(a: — 9), ©)
where K is a positive definite matrix. The feedforward

term is simply the reference velocity dr, while the sta-
bilizing feedback is linear. The following result holds.

Proposition 1. The joint trajectory q:(t) is asymp-
totically stable for (9).

Proof. Define the error vector e = q-—q, and consider
the Lyapunov candidate

V= %eTe >0. (10)

Its time derivative along the system trajectories is

V = T[4 — It (q)pe — K(a: — q)] = —e"Ke <0,

(11)
where (8) has been used. V is zero only for e = 0,
implying asymptotic convergence. .

4 If no repeatable configurations exist, like for a PPR ma-
nipulator [6], this approach cannot be applied. A different

generalized inverse should then be used.
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In [6] it is shown how to design an acceleration scheme
with the same characteristics.

Remark 1. Scheme I will guarantee asymptotic joint
cyclicity also when a nonzero initial cartesian error is
present. As a counterpart, even if the initial carte-
sian error is zero, it will increase in the transient phase
before converging to zero at steady-state. Note that
this error behavior is intrinsically related to the non-
linearity of the equations. The feedforward term in (9)
will introduce an end-effector transient error because
the pseudoinverse is computed along the reference joint
trajectory, not the actual one. Moreover, the feedback
term is clearly not contained in N'(J).

Remark 2. The simple kinematic scheme (9) can be
recasted in the framework of nonlinear regulation (3]
for the input-state-output system ¢ = u, y = k(q),
where the nonlinearity is concentrated in the out-
put map. This general theory allows, under suit-
able hypotheses, to design controllers achieving asymp-
totic output tracking while preserving internal stabil-
ity, even in the presence of unstable zero-dynamics
(12,13].

In view of Remark 1, some suitable modifications of
scheme I are proposed for the case of zero initial carte-
sian error. In this situation we would like to achieve
asymptotic joint cyclicity while ensuring ezact end-
effector tracking, i.e. maintaining zero cartesian error
at all instants. We argue that it should be possible to
reconfigure the arm while moving along the cartesian
path, as a ‘dynamic’ generalization of the concept of
self-motion.

One possibility is given by
scheme II

a=3a@)p: + (I- I (@I(@)K(a:—q). (12)
The filtering action of the Jacobian null space projec-
tion matrix (computed on the actual joint trajectory)
prevents the end-effector to be perturbed by the joint
error term. The resulting feedback is now truly nonlin-
ear. The feedforward term is still a source of cartesian
error, but this error magnitude is often negligible, as
will be shown in the numerical simulations. However,
only simple stability can be proven for this scheme.
Proposition 2. The joint trajectory q:(t) is stable for
the closed-loop system (12).

Proof . Consider the Lyapunov candidate

LV= %eTKe >0. (13)

Its time derivative is
V = eTK[& — 3t (q)p: — (I - I ()3 (@) K(a: — 9)]
= —eTK (I-J(q)J(q)) Ke < 0,
(14)

being the projection matrix positive semidefinite. =



Asymptotic stability cannot be proved since V =0
whenever Ke € N(I — J'J), or equivalently when
Ke € R(JT) (recall that N(J) @ R(IT) = R").
According to LaSalle’s Theorem for periodic sys-
tems [14], all trajectories will converge to the set
S={q:V(q) = 0}, but in this case does not provide
any further insight.

From (12), it should be noted that é = §; — g =0
in S. Thus, if a joint error is present at steady-state
motion, it is guaranteed to be constant. The invariance
of joint error implies that cyclicity has been achieved,
although on a lifted joint trajectory, resulting in a dif-
ferent end-effector path. If the cartesian error mag-
nitude is small, the performance of scheme II can be
considered satisfactory. This, however, suggests a more
robust control law as

scheme II1

4= J%(a:)(B: + Kpep) + (- IH(q)I(q)) K(a: —((}3’;)
with the end-effector error ep = p; — k(q), and a gain
matrix K, > 0. The inclusion of this cartesian correc-
tion is effective also in reducing joint errors, as will be
shown by simulation.

A more appropriate choice for the case of zero initial
cartesian error is

scheme IV

q=J3"(q)p: + (T - I'(q)J(a)) K(q: - q).

The feedforward is now reduced to the cartesian term
Pr, with the pseudoinverse evaluated on the actual
Joint trajectory. This control law will ensure exact
end-effector tracking at all instants, if the initial end-
effector error is zero. In particular, if multiple cyclic
Joint solutions exist, the control law (16) may allow to
‘switch’ between two of them while executing the as-
signed task. Similarly to (15), also scheme IV may be
improved by cartesian error feedback, resulting in

scheme V

(16)

q= JT(Q)(I.’: + erp) + (I - JT(Q)J(Q))K(Qr - (q))

17
The latter was extensively tested on several trajecto-
ries, providing exact end-effector tracking as well as
practical joint stabilization.

5. Simulation Results

The proposed kinematic control schemes will be illus-
trated by simulation on a 3R planar robot arm with
links of unit length. Pseudoinversion is performed us-
ing absolute joint angles (i.e. defined w.r.t. the z axis),
so that the repeatable configurations are given by [1]

@Gi=¢ O ga=gq3 oOr g =gq3 (18)
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In all tests, feedback gains were chosen so to yield the
best numerical results.

The performance of the various schemes has been
compared on an example with zero initial cartesian er-
ror. The end-effector should trace periodically, with
a cycle time of 1 sec, a circular path of radius 0.38 m
centered at (2.43,0.77), as in Fig. 1. The initial config-
uration of the manipulator is qg = (39°,16°,5°). The
Joint drift induced when solving redundancy from qq
by pure pseudoinversion (8) is evident from Fig. 2. The
cyclic trajectory used as reference is generated from
9:0 = (0°,30°,30°). This gives an initial error norm
llao — qro|| of approximately 48°.

Results obtained with scheme I are reported in
Figs. 34, using K = 10 - I. Convergence to the de-
sired joint trajectory is obtained within the first cycle.
Although the cartesian error is zero at the beginning,
its norm increases in the transient up to a value of
0.155 m, approximately one seventh of one link length.

In order to reduce this cartesian error, we have ap-
plied schemes IT and III. Figures 5-6 refer to scheme I1
with K = 150-1, and show that a non-negligible steady-
state joint error is produced, although the maximum
cartesian error is reduced in magnitude to 0.045 m.
Note that a constant joint error gives rise to a pe-
riodic end-effector one: the obtained joint motion is
cyclic along a trajectory which produces a slight oscil-
lation with respect to the reference circle. The effects
of the cartesian correction in scheme III are reported
in Figs. 7-8, where besides convergence to the desired
joint trajectory, rapid decay to zero of the cartesian er-
ror is shown, with a maximum transient error of 0.02 m
in norm. Here, K=150-Tand K, =101

Finally, schemes IV and V have been used to ac-
complish exact end-effector tracking at all instants. As
pointed out in Section 4, these schemes do not intro-
duce any cartesian error even during the joint stabi-
lization process. The result obtained at the joint level
with scheme IV and K = 50 - I is displayed in Fig. 9,
where the scale has been magnified. A small periodic
error is still present, with a peak value of about 0.15°.
Note that the oscillation has the same period of the
task trajectory. The best performance is obtained by
scheme V with K = 50-I and K, = 50 -1, as shown
in Fig. 10. Asymptotic convergence of the joint tra-
Jectory to the desired one is realized, always with zero
end-effector tracking error. This satisfactory behavior
was confirmed also in other simulations [6].

6. Conclusions

We have investigated the problem of how to achieve
a cyclic joint behavior in redundant robots perform-
ing cyclic tasks, motivated by the fact that most
singularity-free local resolution methods produce non-
repeatable joint motions. A controllability analysis of



the inverse kinematic system allows to recover the well-
known repeatability conditions of [1}, and to further
conclude that no null space velocity can be specified if
a repeatable scheme is seeked, unless it is chosen as a
linear term in the end-effector velocity.

The problem of achieving asymptotic cyclicity for a
given inversion strategy has been solved via suitable
kinematic controls, which guarantee convergence to
cyclic joint trajectories along the desired end-effector
path. Depending on the structure of the feedfor-
ward and feedback terms in the control law, a number
of different schemes were proposed, yielding exact or
asymptotic end-effector tracking. The provided stabil-
ity proofs as well as the satisfactory simulation results
confirm the advantage of using these simple control
strategies. Addressing the problem at a purely kine-
matic level is not restrictive, since dynamic nonlinear-
ities are not essential and may be compensated for by
using inverse dynamics, viz. computed torque control.
Also, following the approach in this paper, asymptot-
ically cyclic resolution schemes may be devised at the
acceleration level (6,15].
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