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Abstract

We present a local approach for planning the motion
of a car-like robot navigating among obstacles, suit-
able for sensor-based implementation. The nonholo-
nomic nature of the robot kinematics is explicitly taken
into account. The strategy is to modify the output of
a generic local holonomic planner, so as to provide
commands that realize the desired motion in a least-
squares sense. A feedback action tends to align the
vehicle with the local force field. In order to avoid mo-
tion stops away from the desired goal, various force
fields are considered and compared by simulation.

1 Introduction

Motion planning for mobile robots in the presence of
obstacles usually deals with holonomic vehicles, that
can move in any direction of the free configuration
space [1]. Following a hierarchical approach, the spe-
cific kinematics of the robot is not taken into account
in the higher level planning phase. With this simpli-
fying assumption, two major approaches can be iden-
tified, namely algorithmic and incremental planning.
Methods of the first class search for a solution path
in the free configuration space, directly facing the com-
binatorial complexity of the problem. The associated
algorithms, although complete (i.e., a solution is found
whenever one exists), are often difficult to implement
and require a priori knowledge of the environment.
Incremental methods are heuristic in nature but
can operate in a feedback mode, thus being more suit-
able for sensor-based navigation through partially un-
known environments. With artificial potential field
methods, the robot moves under the local effects of re-
pulsive fields associated to obstacles and an attractive
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field pulling toward the goal [2]. The main limitation
is the arising of local miniéma in the total potential
field, where no descent direction exists for the motion.

Several modifications have been introduced to over-
come this problem, such as repulsive fields with elliptic
isocontours [3], biharmonic functions [4], navigation
functions [5] and numerical potential fields [6]. An-
other method that can avoid motion stops using only
local information is the vortex field method [7]: repul-
sive actions are replaced by vortical velocity flows so
that the robot is forced to turn around the obstacles.

On the other hand, wheeled mobile robots are
subject to nonholonomic (non-integrable) constraints
involving time derivatives of the configuration vari-
ables [8]. These constraints depend on the kinemat-
ics of the vehicle and limit the local mobility without
restricting in the large the accessibility of the whole
free configuration space. Due to the nonholonomy,
the design of feasible trajectories and of stabilizing
control laws to a desired goal configuration is fairly
complicated. Open-loop commands that exactly drive
the mobile robot to the goal are easily obtained when
the kinematic equations can be transformed in the so-
called chained form [9], e.g., for a car with N trail-
ers. Moreover, since continuously differentiable feed-
back schemes cannot stabilize a nonholonomic system
to a given configuration [10], more complex discontin-
uous [11] or smooth time-varying [12] feedback control
laws have been propesed. All the above techniques do
not consider the presence of obstacles.

Methods that solve the planning problem for mobile
robots by taking explicitly into account both the non-
holonomic constraints and the presence of obstacles
have been proposed in [13-16]. In [13, 14], a two-stage
approach is proposed for a car-like robot: a complete
path avoiding obstacles is generated first with a con-
ventional (holonomic) planner, and then decomposed
and approximated with feasible segments complying
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with the nonholonomic constraints. Shortest paths of
bounded curvature were obtained in [15], while a dis-
cretization of the configuration space is used in [16].
A common requirement of this class of methods is the
a priori knowledge of the environment, so that the so-
lutions are inherently off-line.

There is indeed a lack of work considering all the
following aspects together: (i) nonholonomy of the
wheeled vehicle kinematics, () presence of obstacles,
(%) a priori unknown environment, with local infor-
mation acquired by sensors, (%v) on-line feedback con-
trol solution. In [17], we proposed an algorithm work-
ing under these assumptions for a robot with unicycle
kinematics. Heuristic rules have been used in [18] for
a car-like robot so as to guarantee collision avoidance.

In this paper we extend the results of [17], propos-
ing a nonholonomic planner for a car-like vehicle
among obstacles. Both front- and rear-wheel driving
are considered in a unified model. Suitably defined
artificial force fields are used as holonomic planner.
Their output is filtered through the vehicle kinemat-
ics, so as to realize the desired cartesian motion in a
least-squares sense. A feedback scheme is used to de-
fine reference values for the remaining free variables,
in order to align the vehicle to the local field.

2 Car-like robot kinematics

We refer to the car-like robot model depicted in Fig. 1.
As usual, front and rear axles are collapsed respec-
tively in a front and rear median wheel, reducing the
model to that of a bicycle or, equivalently, of a uni-
cycle with one trailer. We assume pointwise and pure
rolling contact between the ground and the wheels.
Let P = (z,y) be the position of the front wheel,
P, = (z,,y,) the position of the rear wheel, ¢ the

distance between the two wheels, 8 the orientation of

the robot w.r.t. the z-axis, ¢ the steering angle, and

Figure 1 — Car-like robot model
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B = 8 + ¢ the heading angle of the front wheel w.r.t.
the z-axis. Moreover, denote by uy and u, the velocity
of the front and rear wheel, respectively, and by ug4 the
steering rate of the front wheel.

The coordinates of the two points P and P, are
related by the rigid body constraint

z = xz,+4Lcosh
y = yr+Lsinb. M

Depending on which wheel is active, we distinguish
between rear-wheel and front-wheel driving. We are
interested in obtaining a model format that is valid
for both types of driving.

Rear-wheel driving. The kinematic equations can be
written in the form

i, = u,cosf

Yr = u,sinf

0 = wu,tano (2)
¢ = ug.

Defining two new system inputs uy and us through
Up = U3COSQ (3)
uy sin
L (4)

and using egs. (1), model (2) can be transformed in

I

Ug

i = wujcosf
¥y = wusing
6 = wsin(3-0) (5)
,3 = Uu2.
Front-wheel driving. The kinematic equations are
& = wugcos(d+¢)
y' = uf sin(0 + ¢) (6)
0 = ussing
¢ = Ug.
Letting
uf =u (M

and uy as in eq. (4), model (6) takes the form (5).

Note that, by dropping the third equation, egs. (5)
formally represent the kinematic model of a unicycle.
We will develop motion control algorithms directly for
model (5), independently of which is the driving wheel.

3 Control law

In general, the motion of a wheeled mobile robot is
described by the kinematic model

X = G(X)u, (8)



where X € IR" is the vector of generalized coordinates,
and u € R™ (m < n) is the control input vector.
Equation (8) represents an underactuated mechanical
system, with less inputs than generalized coordinates.

Given any desired smooth trajectory Xy(t) (feasible
or not), a straightforward approach is to design the
input command w using the pseudoinverse control law

u=GHX)Xys = [GN(X)CX)'CT(X)Xa (9)

This solution locally minimizes the error (Xg — X)
in a least-squares sense. If the desired velocity Xd is
feasible at the current X, eq. (9) will result in zero
velocity error. In order to balance error components
and to handle nonhomogeneous units, the state X can
be pre-weighted or, equivalently, a weighted pseudoin-
verse can be used. Note that the pseudoinversion (9)
gives the command input u as a feedback law depend-
ing on the current state X.
Consider now the car-like model (5) and define

T

X= (10)

Yy
ald |’
B8

where a > 0 is a weighting real number. By egs. (5)
the pseudoinverse of G(X) takes the form

#(x) — 1 .
Gr(X) = 1+ a2sin®(8 - 6)
cosf sinfB asin(8—49) 0
0 0 0 1+ a?sin®(8 - 0)

and the feedback law (9) for tracking a desired trajec-
tory Xgq = (xa,Yd, al64, B4) becomes

#qc08 8 + ygsin B + a0y sin ¢
—3 (11)
1+ a?sin’ ¢
Uy = ﬁd. (12)
When ¢ = {0, £x}, the desired 64 has no effect on u;.

In order to apply the control law (11-12), we need
to specify the desired values for Z4, ¥4, 64, and G;.

Uy

4 Local trajectory generation

Let an artificial force field be defined in the cartesian
workspace so as to pull the robot toward the target
position while avoiding obstacles. We suppose that
this field is given by the superposition of an attractive
component, acting only on the front wheel (i.e., the
reference point (z,y)), and of a component aimed at
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Figure 2 - Forces and torque acting on the robot

keeping the robot away from the obstacles, acting on

both wheels. Analytical forms for the fields will be

discussed in the next section. Referring to Fig. 2, let

Fy = (Ffqe,Fry) and F. = (F,;, F.,) be the force

acting on the front and rear wheel, respectively.
Defining X, = (2, yr, ¢£8, 8), we have

X, = J(X)X,

where, from egs. (1) and (10), the Jacobian has the
form

1 0 {¢sing O
0 1 —fcos@ O
IX)=149 o 1 0
00 0 1

By the wirtual work principle, a force F,. on the rear
wheel is equivalent to a force F} on the front wheel
and a torque Mpy acting on the vehicle orientation, as
given by

}‘,3 Fr,:: FT,E
F? F, F,
Ly | =J7 LS - ry
My |77 X0 = o(F, o sind — F,, cos8)
Mg 0 0
(13)
Hereafter, we shall indicate with
F, T r _
F = Fy =F!+Ff—Fr+Ff
M = M

the total force and torque performing work on the z,
y, and 6 coordinates. )

The desired values 4, ¥4, and 8, are selected as the
natural motion in quasi-static conditions arising from
the above force field, i.e., from eq. (13)

Iq :
. = =k M, 14
[ Iy ] keF 64 i (14)

with kf > 0. As a result, the control input u; is
completely defined by eq. (11) and (14).



Figure 3 — Choice of 84: B, — 8 < m/2 (left) and
Ba — B > /2 (right)

We must still define the steering command ug in
eq. (12). To this end, we will determine a desired
angle (34 such that, aligning 3 to (4, the robot tends
to move in the direction of the field. With reference
to Fig. 3, when F # 0, 84 will be defined as the angle
B, of the direction of the force F, up to a rotation of
m rad. When F' = 0 but M # 0, one should select 54
so as to allow the rotation of the robot. If both F and
M are zero, the robot is at rest. Therefore, we have
two possible situations.

Case F # 0. We have
Ba = ATAN2(F,, F;).
For 34, we choose the differentiable expression
Ba = B — arcsin(sin(8 — fa)),

so that 8y — (3 is an acute angle (see Fig. 3). In order
to let 8 track (34, we impose

d
G5B~ Ba) +ks(B~Pa) =0, kg>0.  (15)
The parameter ks determines the readiness of the

steering subsystem, and hence the dynamic range of
the steering command uz. We have

d, . o i . F,F - FF,
7 (B — Ba) = sign(cos(B — Ba))(B — TFiE )
and
F & o o2&
z = VF [ . :I N VF = 5 Py .
[&] y 5 B

Recalling eq. (5), and defining sign(0) = 1, we obtain

— ks(B — Ba) Uy cos 3
4= Sgn(os(@-52)) T TEIE L v FEIVE [sm(ﬂ L
16
as a steering control law. n
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Case F = 0. If this situation arises with both Fy and
F. being zero, the robot will rest and we can park the
steering wheel at any desired angle ¢4. Otherwise, we
choose the desired direction 3, as the angle formed by
vector Fy with the z-axis

Ba = ATAN2(Fy,y, Fy.z)-

Then, we define

[ B—arcsin(sin(B — Ba)), if Ff=—F#0,
ﬂd‘{9+¢g, if F; = F, =0,
a7
and
uy = —kp(B8 — Ba)- (18)

In the case of rear-wheel driving, if F' = 0 choice (17)
may lead to problems when F} is almost orthogonal
to 8. In this case, ¢ would tend to 7% and the robot
would stop. We overcome this problem by saturating
the term arcsin(sin(8 — 8,)) to £7/4 in eq. (17). =

The following theorem gives a stability result for the
proposed control scheme in the absence of obstacles
and under mild hypotheses on the force field.

Theorem 1 In the absence of obstacles (F. =0), as-
sume a potential function U : IR? — IR is defined with
the following properties:

(1-) U(zgayg) =0
(2.) Ulz,y) >0, Y(z,y) # (z4,Yg)
(3.) VU(z,y) #0, Y(z,y) # (Tg,Yg)s

where G = (x4,Y,) 15 the goal position for the repre-
sentative point (x,y). Then, the force field

— -VU($7y)7 zf(:r,y) % (.’L‘ » Y, )7
Fla.y) = { 0, if (2,1) = (z3.35).

along with the control law (11-12) and the associated
definitions, drives the car-like robot (5) to G parking
the steering angle ¢ to a desired ¢g.

Proof. Define the Lyapunov-like function

1
V(I’yyﬁ) = U(ﬂ'»',y) + 5(6 - ﬂd)2~

Then, by egs. (5) and (15)

. ou .  0U . o

vV = %x"'_a"y‘y‘*'(ﬁ"ﬁd)(ﬂ“ﬁd)

= —(F,cos B+ Fysin B)u; — ka(B — Ba)*.

Since F, = 0, we have M = 0 and 64 = 0, and hence
from eq. (11) and (14)

5 (F; cos B + F, sin 3)?
4 1+ a2?sin’ ¢

V= —ks(8 - Ba)® 0.



If F # 0 and F is perpendicular to (cos 3, sin 3), then
B — B4 = £7/2, and hence V < 0. If F = 0, then

V =0iff 8 = Bq, or, by eq. (17), iff 4 = ¢4. By
LaSalle’s theorem, the result follows. .

Theorem 1 applies for example when F is the negated
gradient of a potential with paraboloidic profile

1
Uz,y) = EII(w—xg,y—yg)IP, (19)
or with conical profile

U(z,y) = [z — 24,9 — 9g)ll (20)

In the presence of obstacles, the force F,. acting on
the rear wheel may introduce some difficulties. As
F — 0, the desired direction B4 becomes undeter-
mined and the tracking defined by eq. (15) is im-
possible with bounded inputs (see also eq. (16)). In
order to overcome this shortcoming, we remove Bd
from eq. (15), setting ug as in eq. (18). In the per-
formed simulations, this modification did not appre-
ciably change the robot behavior.

5 Artificial force fields

In order to complete the design of the motion planner,
we have to define the way in which the forces acting
on the wheels of the car-like robot are generated from
the task environment (goal+obstacles).

For the goal attractive potential, we can either use
eq. (19) or (20) or, even better, a combination of the
two. In fact, an attractive force depending linearly
on the error norm (paraboloidic potential) becomes
very large at large distances from the goal, dominating
over the other forces acting on the robot. On the other
hand, such a field smoothly slows down the robot near
the goal, avoiding chattering phenomena.

For obstacle avoidance, three kinds of force fields
are considered, viz. repulsive, vortezr and circumven-
tive fields. For the sake of illustration, we describe the
fields generated by a single, simply connected obstacle
in the two-dimensional workspace.

Repulsive fields. An hyperboloidic repulsive potential
is defined at each point (z,y) as [2]

o — ) ifazy) <no

={ Y'\2(zy) m/ 29/ =
Urep(zv y) { 0’ else,

where n = n(z, y) is the minimum distance of the point
from the obstacle, 7y is the distance of influence of
the repulsive field, and v > 1 determines how fast the
potential decays away from the obstacle.
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Figure 4 — Obstacle polar coordinate frame

When the obstacles are modeled as circles (e.g., by
approximating real shapes acquired by sensors), let
(zo,y0) and r¢ be, respectively, the coordinates of the
center and the radius of the obstacle (see Fig. 4). It is
convenient to consider a polar coordinate frame (p,¥)
centered in (zg,y), with ¥ = 0 the direction of the
z-axis. The repulsive force becomes then

_1_.__1_7—112', if 7 < n,
Frep(p,9) = { 0:: Tlo) 7z v elsz, "o
with 7 = p — r¢ and iy = (cos ¥, sin 9). »
Vortex fields. Although vortex fields can be defined
for obstacles of generic shape [7], we describe here a
modification for the case of circular obstacles (or for
circles enclosing real obstacles). The idea is to build
a field similar to the velocity field described by the
steady flow of a liquid in the presence of a cylindrical
obstacle. Referring again to Fig. 4, let 9y be the angle
formed by vector (zg — Zo, Yg — Yo) With the z-axis.
A possible choice for the field is

[ sign(sin(9—10)) (L — 2)7"Lig, if n<m,
Fuor (e, 19)_{0, T else,

where i} = (—sind, cos¥). .
Circumuentive fields. Both fields described above have
some drawbacks. The first repels the robot in a direc-
tion which is orthogonal to the border of the obstacle,
often keeping it too far from the obstacle itself, while
the second may lead the robot to graze the obstacle.
Hence, it is advisable to have a field that is repulsive
close to the obstacle and vortical at larger distances.

Consider the unit vectors respectively associated to
F rep and F vor

Ey = 1y
EF — sign(sin(d — 9o)) i3,

and the smooth weighting function

o(n) = (1 + #)l



which is monotonically decreasing from 1 to 0. The
rate of decay of o(n) depends on the parameter 7,.
We call circumuventive field the convex combination of
a repulsive and a vortical component

Lyl _1yy-1j
RO

In the presence of multiple obstacles, the total field
is obtained by adding the fields independently defined
for each obstacle.

6 Simulation results

We simulated the proposed planner for a car-like robot
moving among circular obstacles in a two-dimensional
workspace. The integration of the kinematic and plan-
ning equations was performed using Simulink and the
fifth-order Runge-Kutta method.

In Fig. 5 we report the results obtained with the
three fields proposed in Sect. 5 for a first simulation.
All of them are successful, even if the path generated
by the repulsive field (dotted line) is more erratic. We
have set vy =4, a =1, kg = 10, ky = 1, n, = 19/10,
while 3; was removed from eq. (15) by setting us as in
eq. (18). The region of influence around each obstacle
is represented with a circle. The attractive potential
is conical outside a circle of unit radius centered at the
goal, and paraboloidic inside.

While in the circumventive and the vortex field case
the robot reached the goal in about 10 s, with a re-
pulsive field this time resulted in about 20 s. How-
ever, in comparing these values it is fair to consider

-1 2 3 4 8 7

Figure 5 — First simulation: results with repulsive
(dotted), vortex (dashed), and circumventive (solid)
fields

Field Type | max|u,| | max|ug]
Repulsive 1.0145 5.9419
Vortex 28.8776 15.75
Circumventive | 5.3505 4.3648

Table 1 — Comparison of input dynamic ranges in the
simulation of Fig. 5

the dynamic range of the inputs, which are reported
in Table 1. Since the geometric paths are invariant
to time-scaling, the trade-off between traveling time
and input effort can be regulated by premultiplying
the inputs u, (or uy) and ug by the same factor k,.
In the second simulation (Fig. 6), the rightmost ob-
stacle of Fig. 5 was slightly shifted to the left. The re-
pulsive field method fails in this case, since the robot
meets a local minimum of the overall force field. In-
stead, the circumventive field successfully drives the
robot to the goal, thanks to its vortical component.
In the simulation shown in Fig. 7, the rightmost
obstacle was shifted further to the left. The vortex
field method fails as the robot touches the obstacle

Figure 6 — Second simulation: results with repulsive
(left) and circumventive (right) field method

" Mobile Rt Trajectary

Figure 7 - Third simulation: results with vortex (left)
and circumventive (right) field method
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(I Fyor]l — 00). This is avoided when the circumven-
tive field is used, thanks to its repulsive component.

7 Conclusions

We have proposed an integrated approach for locally
planning the motion of a car-like nonholonomic robot
among obstacles. The feedback component of the
scheme is able to stabilize the robot to a given carte-
sian position, in the absence of obstacles. The obstacle
avoidance action is obtained through a combined use
of repulsive and vortex fields. An additional command
is used to align the steering wheel with the force field.

Simulation results show that the proposed planner
performs satisfactorily in situations where high ma-
neuverability is not essential. Therefore, the planner
is more suited for navigation through a semi-cluttered
environment rather than for parking purposes with
limited clearance.

Future work includes the implementation of this
method on a laboratory prototype and its extension
to other vehicles, e.g. the car with N trailers.
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