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Abstract

We consider the trajectory tracking control problem
for a 4-wheel differentially driven mobile robot mov-
ing on an outdoor terrain. A dynamic model is pre-
sented accounting for the effects of wheel skidding. A
model-based nonlinear controller is designed, follow-
ing the dynamic feedback linearization paradigm. An
operational nonholonomic constraint is added at this
stage, so as to obtain a predictable behavior for the in-
stantaneous center of rotation thus preventing exces-
stve skidding. The controller is then robustified, using
conventional linear techniques, against uncertainty in
the soil parameters at the ground-wheel contact. Sim-
ulation results show the good performance in tracking
spline-type trajectories on a virtual terrain with vary-
ing characteristics.

1 Introduction

Robotic autonomous navigation tasks in outdoor
environments can be effectively performed by skid-
steering vehicles [1]. Typically, these are 4-wheel dif-
ferentially driven (4wdd) vehicles in which rotational
motion is achieved by a differential thrust on wheel
pairs at opposite sides. One commercial example is
the ATRV-2 mobile robot by RWI (see Fig. 1). The
absence of a steering system makes 4wdd vehicles me-
chanically robust and able to move on rough terrains
with ease and good maneuverability. In applications
where the robot needs to move also on paved grounds,
skid-steering vehicles are preferred to tracked vehicles
because they do not corrupt the contact surface. Al-
though the dynamic behavior of 4wdd skid-steering ve-
hicles is similar to that of vehicles with tracks, the lit-
erature on autonomous navigation has focused mostly
on the latter class [2, 3].
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Figure 1: ATRV-2 mobile robot

When considering the problem of accurate trajec-
tory tracking, 4wdd vehicles are quite difficult to con-
trol. In fact, in order to follow a curved path, the
wheels need to skid laterally and cannot be tangent to
the desired path. Moreover, the instantaneous center
of rotation (ICR) of 4wdd vehicles may move out of the
robot wheelbase, causing loss of motion stability This
is different from car-like vehicles, whose ICR is always
theoretically fixed along the rear wheels axis [4]. From
the modeling point of view, the equilibrium equation
of the forces orthogonal to the wheels should be taken
into account and this prescribes the use of a dynamic
model for control design purposes, instead of a simpler
kinematic one.

In this paper, we present a robust trajectory track-
ing control system for 4wdd vehicles. After deriving a
dynamic model of a 4wdd vehicle, we design a model-
based tracking controller, by borrowing an approach
used for motion planning and control of nonholonomic



wheeled mobile robots [4, 5]. The basic idea is to spec-
ify the longitudinal coordinate of the ICR, in order to
force it to remain inside the robot wheelbase. Adding
this operational kinematic constraint, we proceed with
full linearization of the system via dynamic state feed-
back. The obtained closed-loop system is linear and
input-output decoupled, thus stabilization to a desired
trajectory is easily achieved by means of linear con-
trol techniques. However, the overall nonlinear con-
trol law depends on soil parameters [3]. We study the
effects of uncertain soil parameters on the dynamics
of the closed-loop system with respect to a specific
class of trajectories and propose then a robust con-
trol scheme that reject these disturbances. Simulation
results on tracking of robot trajectories over a virtual
terrain characterized by varying parameters are finally
presented.

2 Dynamic Modeling

We develop a vehicle dynamic model useful for control
design, neglecting some side effects introduced, e.g.,
by suspensions and tire deformation (see, e.g., [6]). In
particular, we make the following assumptions:

1. Rigid vehicle moving on a horizontal plane.
2. Vehicle speed below 10 km/h (about 6 mph).
3. Longitudinal wheel slippage neglected.

4. Tire lateral force function of its vertical load.

2.1 Skid-steering motion analysis

Define a fixed reference frame F(X,Y) and a moving
frame f(z,y) attached to the vehicle body, with origin
at the vehicle center of mass G (see Fig. 2). The center
of mass is located at distances a and b (usually, a <
b) from the front and rear wheels axes, respectively,
and is symmetric with respect to the vehicle sides (at
distance t).

Let £, 9, 9 be, respectively, the longitudinal, lateral,
and angular velocity of the vehicle in frame f. In the
fixed frame F, the absolute velocities are

X] _ [#cosf—ysind] _ &

[Y} - [a’csin9+ycos9] = E(0) [y]
Differentiation with respect to time gives

x| _ E-90] _ o

] -roj o] e z]

where a; and ay are the absolute accelerations ex-
pressed in the moving frame f. At each instant the
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vehicle motion is a pure rotation around a point C,
the instantaneous center of rotation, in which the lin-
ear velocity components in f vanish. Its coordinates

Mk

The angular velocity 6 and the lateral velocity ¢ both
vanish during straight line motion, and the ICR goes
to infinity along the y-axis. On a curved path, the
ICR shifts (forwards) by an amount |z.|. When ¢ =0,
there is no lateral skidding. If z, goes out of the robot
wheelbase, the vehicle skids dramatically with loss of
motion stability.

Finally, note that the longitudinal velocity &; and
the lateral (skidding) velocity g; of each wheel (i =
1,...,4) are given by

By =y i—th  (left)

iy=d3 = &+t  (right) (1)
1=92 = y+ab (front)

Ys=9ys = y—0b0  (rear).

2.2 Equations of motion

The free-body diagram of forces and velocities is shown
in Fig. 2, with the vehicle having instantaneous posi-
tive velocity components & and § and negative velocity
Y. Wheels develop tractive forces Fy; and are subject
to longitudinal resistance forces Ry, for i = 1,...,4.
We assume that wheel actuation is equal on each side
so as to reduce longitudinal slip. Thus, it will always
be F,4 = Fy; and F,3 = Fy. Lateral forces Fy; act on
the wheels as a consequence of lateral skidding. Also,
a resistive moment M, around the center of mass is
induced in general by the F,; and R; forces.

For a vehicle of mass m and inertia I about its cen-
ter of mass, the equations of motion can be written in
frame f as:

may = 2F; +2F,— R,
may = -—F (2)
I§ = 2t(Fy — Fy3) — M,.

To express the longitudinal resistive force Rz, the
lateral resistive force Fy,, and the resistive moment
M,, we should consider how the vehicle gravitational
load mg is shared among the wheels and introduce a
Coulomb friction model for the wheel-ground contact.
We have

b mg

le—Fz2 - a+b7
a mg

=F = . —
FzS z4 a+b B



Figure 2: Free-body diagram

At low speed, the lateral load transfer due to centrifu-
gal forces on curved paths can be neglected. In case
of hard ground, we can assume that the contact patch
between wheel and ground is rectangular and that the
tire vertical load produces an uniform pressure distri-
bution. In this condition, R,; = f,.F,;sgn(&;), where
fr is the coefficient of rolling resistance, assumed in-
dependent from velocity [7]. The total longitudinal
resistive force is then

Re= 3 Rai = fr 75 (sgn(én) +ogn(d)). ()

Introducing a lateral friction coefficient yu, the lateral
force acting on each wheel will be Fy; = puF;;sgn(y;).
The total lateral force is thus

4
mg . ,
Fy=3_Fy=n oy (bognin) + asgntis)). (4
while the resistive moment is
M, = a(Fyl + Fyg) — b(Fyg + Fy4)
+t[(Rz2 + Re3) — (Ra1 + Rug)]
= 122 (sgn(y)) — sgn(ys))
+ fr t—mz—g (sgn(&2) — sgn(z,)) .

&)

The dynamic model can be rewritten in frame F,
introducing the generalized coordinates ¢ = (X,Y,6)
and matrix notation

Mg+ c(q,4) = E(g)T, (6)
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with
m 0 0 R;cosf — Fysinf

=0 m 0|, c(g,4) = | Resinf + F, cosf
0 0 I M.

and

cosf@/r cos@/r
E(q) = |sin8/r sin/r|, 7, =2rF,; (i=1,2),
t/r —t/r

being r the wheel radius, 7y and 75 the torques pro-
duced by the left and right side motors at the load
side, respectively. An ideal transmission factor is also
assumed.

3 Trajectory Control
3.1 Operative nonholonomic constraint

We start by observing that z. (the z-axis projection of
the instantaneous center of rotation) cannot be larger
than a. If this happens, the vehicle would skid along
the y-axis thus losing control. In order to have the
vehicle move properly, one should have then

|-2. <a.

0

Therefore, we can introduce the following operative
constraint

J+dof =0, 0<dp<a,
or, in terms of generalized coordinates,
X
[—sind cosé do] |Y | =A(g)g=0. (7)
6

This relation represents a nonholonomic constraint
that can be attached to the dynamic model (6) for
control design purposes. When this constraint is en-
forced, the robot dynamics becomes

Mg +c(q,q) = E(q) + AT(9)X, (8)

where ) is the vector of Lagrange multipliers corre-
sponding to eq. (7).
Admissible generalized velocities ¢ can be expressed
as
G=5S(@m neR?, (9)

where 7 is a pseudo-velocity and S(g) is a 3 x 2 full
rank matrix, whose columns are in the null space of

A(q)7 e'g' )

cosf —sinf
S(q) = | sinf cosd
U



We can differentiate (9) and eliminate A from eq. (8)
so0 as to obtain the reduced dynamic model (dropping
dependencies)

g = Sn

i = (STMS)T ST (Br— MSn—c). (10)

3.2 Partially linearizing static feedback

Following [8], if we apply the nonlinear static state-
feedback law

r=(STE)" (S"MSu+ STMSn+5Tc), (1)
where u = (u1,us) is the vector of new control vari-

ables, system (10) becomes a purely (second-order)
kinematic model

g = Sn
n = u.

In our case, the control law (11) has the explicit
form

i z (mul + 203 + Rz) 1
[7'1] e a ((m+715) u2-:7"5771772+Fy~%)
72 z (mul + 20 + Rz)
L+’"—;§tg‘l ((m+ TI‘{) uz — Fmne + Fy - %{f |
12)
and gives
):( = cosfn, —sinfn,
Y = sinfn +cosfns
n o= w
2 = up.

3.3 Fully linearizing dynamic feedback

We show next that, by choosing a particular output,
egs. (13) can be fully linearized and input-output de-
coupled by means of a dynamic state feedback.

For, we choose as linearizing outputs the position of
a point D placed on the z-axis at a distance dy from
the vehicle frame origin

[X-l—docose}
z= ,

Y +dgsin8 (14)

and add one integrator on the input u; (dynamic ex-
tension)

'LL1. = f
£ = u (15)
Uz = Uz,
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where £ is the controller state and v, and vy are the
new control inputs.

By applying the standard input-output decoupling
algorithm (see, e.g., [9]), we differentiate eq. (14) until
the input v explicitly appears. We obtain
[cos& ZMmsing J

v

sin @ —315771 cos @
{ 32;&72 sinf — 313-77117% cosf :l

—a%éng cosf — 313-1]177% sin @

I

a(g,n)v + B(q, ).

Since

1
det [a(gq,n)] = —gm

we have that the decoupling matrix o is nonsingular
iff the vehicle longitudinal velocity 7; is different from
zero. Whenever defined, the control law

v=a"t(g,n)[r - Blgn)], (16)

where r is the trajectory jerk reference, yields
¥=r, (17)

i.e., two independent input-output chains of three in-
tegrators.

Combining egs. (15) and (16) gives the following
input-output decoupling and fully linearizing dynamic
controller

€ = cosfry+sinfry + Emn}
G
u = & (18)
uy = %ll (sinéry —cosfrs) — ,%5772-

We note that the limitation 77 # 0 does not avoid to
achieve good tracking performance by means of con-
troller (18), as long as the trajectory is persistent.

3.4 Linear stabilization for tracking

It is easy to complete the control design for eq. (17) us-
ing a exponentially stabilizing state feedback for each
integrator chain with input r;. For ¢ = 1,2, we choose

i =zdz-}—km(zdz—zz)+km(zdl—zz) +kpi(zd’i_zi)7 (19)

where the gains are such that A3 4 kg A% + ks A + kpi
(i = 1,2) are Hurwitz polynomials, z4(t) is the desired
smooth reference trajectory, and z, Z and Z can be
evaluated in terms of ¢, 7 and &.

The state-feedback control law (19) can be seen as
an output-feedback linear controller having two (re-
alizable) minimum-phase zeros, characterized by the



S (8.5, 67) f(8.4)

Figure 3: Linear control scheme for tracking

gain ratios &y /k, and k,/k,, and a feedforward action
depending on %y (see Fig. 3). The resulting control
scheme has the open-loop transfer function

F(s) = C(s) - P(5) = (kas? + kys + kp) - ;13 (20)

4 Robust Control Design

In case of perfect knowledge of the ground-wheel con-
tact parameters, the control law (12) perfectly com-
pensates for the terrain factors and leads to the kine-
matic system (13) for which trajectory tracking is eas-
ily achieved by means of the dynamic controller (18)
and the stabilizer (19).

When R, Fy, and M, are unknown (because of
1 and fr) or just incorrectly estimated, the vehicle
closed-loop dynamics will still be nonlinear and cou-
pled. The influence of an error on the terrain factors
estimate is a torque disturbance that should be re-
jected by a proper robust control design.

4.1 Disturbance analysis

Let R, Fy, M, be the estimated values of the terrain
factors. Then, the implementable control law is still
given by (12) with these estimates in place of the real
values. The resulting system, in place of (13), is

X = cosfn —sinfn,
Y = sinfn +cosfne
6 = —4m (21)
m o= urte
2 = uz+tey
where
1 /-
o = L(a-r)
m

dé - A;[r A[T
@ = m—dg:*f((Fy‘d—o)‘(Fy‘d[,))-

If we suppose that the vehicle moves on a (unknown)
uniform terrain, the above disturbances will be con-
stant.

When we apply the dynamic controller (18), €;
and e; will affect the resulting nominal integrator
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chains (17) in a special way. Beside the output (14),
we have

cosf@m
sin @ ny

5 §cosb + g-mpsind cos @

z = 0 ¢ €1,
€siné — J-ming cos 6 sing | !

and
¥ o= pa d%znz sin 0 diulm sin @ al
—d_“772C050 —m cos €2

The way each integrator chain is affected by the dis-
turbances is depicted in Fig. 3, with f#(6,m;) and
f3(8,m, €1, €2) following from the above expressions for
Zyand % (1 =1,2).

From standard linear system analysis and Fig. 3, it
follows that, even for constant disturbances fi and f3,
the steady-state error of the controlled output will be
different from zero.

4.2 A modified linear controller for dis-
turbance rejection

Consider a desired trajectory made of a straight line
path with a kth order (canonical) polynomial timing
law, i.e.,

k h
t

za1(t) = ZC”H’ z42(t) = co + pzar(t),
h=0 )

where p is a proportionality factor.

Suppose that the closed-loop control system is of
type k, i.e., is asymptotically stable and has zero
steady-state error for a (k — 1)th order canonical in-
put (see, e.g., [10]). As a result, when t — oo, the
vehicle orientation 8 will converge to a constant value
8, its steady-state longitudinal velocity n; will be a
(k — 1)th polynomial function of time, while 7, will go
to zero. Therefore, disturbances f! will become con-
stant whereas disturbances f} will be at most (k—1)th
polynomial functions of time. In order to reject those
disturbances at steady state, the linear stabilizer C(s)
in eq. (20) (equivalently, eq. (19)) should be modified
so as to include k cascaded integrators.

If we focus on trajectories built up with 3rd order
splines, we can design a controller that accomplish the
goal of robust trajectory tracking by using three in-
tegrators. Taking advantage of a state feedback from
vehicle position and velocity (which is equivalent to the
presence of one realizable zero), and selecting two pairs
of complex zeros, a real zero, and two real poles the
resulting closed-loop system can be stabilized. Sum-
marizing, the transfer function of the robust stabilizing



controller will have, for each input-output channel, the
structure

(s +a) H?zl(s2 + 2wniis + w2;)
s3(s+p1)(s + p2) )
22)

Note that the above analysis holds only in the case
of a straight line path, while for other kind of paths
the disturbance equations are quite difficult to ana-
lyze. Nevertheless, the performance of the linear sta-
bilizer (22) is satisfactory also for more general trajec-
tories as illustrated in the following section.

C'(s) = (kys + ky)

5 Simulation Results

Numerical simulations of the tracking controller made
of egs. (12), (18), and (22) were performed with
SIMULINKTM | ysing the mechanical data character-
izing the ATRV-2 robot. The vehicle dimensions are
a = 0.37 m, b = 0.55 m, 2t = 0.63 m, while the wheel
radius is r = 0.2 m. The vehicle mass is m = 116 kg
and its inertia is I = 20 kgm?. The maximum achiev-
able velocity is 2 m/s, while torque saturation for each
motor occurs at 125 Nm, so that the maximum al-
lowed torques 71 and 7 for each side of the vehicle are
250 Nm.

The desired trajectory is zq = t, 249 = —0.002t% +
0.1t2 + 0.1t for ¢t € [0,50] sec, assigned to a point with
do = 0.18 m in eq. (14). The vehicle starts from the
origin of frame F' with a heading 6(0) = 10°, i.e., it is
initially out of the desired trajectory. Initial longitudi-
nal and lateral (skidding) velocities are £(0) = §(0) =
0.5 m/s, with angular velocity 6(0) = —2.2 rad/s.

Figure 4: Fields of soil parameters p and f,.

In order to validate the robustness of the tracking
controller, we have simulated a virtual square (planar)
terrain of side 50 m, with varying values of the friction
coefficient x4 and of the rolling resistance coefficient f.,
as shown in Fig. 4. The nonlinear controller uses in-
stead constant estimates of soil parameters fi = 0.895
and f, = 0.1. The real values of 4 and f, encountered
by the vehicle during its motion are plotted in Fig. 5.

The parameters of the robust linear stabilizer (22)
are pr = 9, pp =5, a = 1.5, wyy = 1.5, {1 = 0.8,

0 ) 10 15 20 25 30 35 40 45 50

Figure 5: Actual values of y and f, during motion

w2 =1, & =1, k, = 65, and k, = 1.5k, while
£(0) =0 in eq. (18).

Position and velocity errors are shown in Fig. 6,
while the acceleration error and control torque behav-
ior are presented in Fig. 7. Figure 8 shows a stro-
boscopic view of the vehicle tracking the desired tra-
jectory on the virtual terrain. Gray levels indicate
different values of soil parameters.

Position Error Velocity error
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Figure 6: Position and velocity errors

The controller is able to recover from the initial
error and stabilizes the vehicle to the desired trajec-
tory, even if soil parameters are variable during mo-
tion. While position and velocity errors are rapidly
compensated and remain very small, changes in soil
parameters are more visible in the acceleration error,
as expected. Note finally that the torques behavior
is rather smooth, with initial peak values well within
their feasible limits.
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Acceleration Eror Torque Behavior
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Figure 7: Acceleration error and torque behavior

Figure 8: Stroboscopic view of robot motion

6 Conclusions

A robust controller for trajectory tracking of 4-wheel
differentially driven vehicles has been presented. The
control design minimizes unwanted lateral skidding,
by imposing the longitudinal position of the instanta-
neous center of vehicle rotation. The controller is able
to handle uncertain soil parameters.

The reported work constitutes one module of a more
complex planning and control architecture that is go-
ing to be implemented for an ATRV-2 mobile robot.
Among the extensions that should be included, we
mention the control of 3D motion on uneven terrains
and the use of global positioning sensors for measur-
ing the actual robot state. For the latter problem, we
have already simulated the presence of noise and/or

transmission delays on state measurements, as would
happen when using a GPS or a gyroscope for this pur-
pose. Tracking performance remains satisfactory up
to 60 ms delay and 10 cm peak position noise.
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