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THE REDUCED GRADIENT METHOD FOR
SOLVING REDUNDANCY IN ROBOT ARMS

A. De Luca and G. Oriolo

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
Via Eudossiana 18, 00184 Roma, Italy

Abstract. An efficient computational scheme for solving inverse kinematic problems in re-
dundant robot arms is presented. When following a given end-effector trajectory, successive
internal arm configurations are in general selected by local optimization of a given perfor-
mance criterion. Typically, joint displacements are derived using the Projected Gradient
method, involving pseudoinversion of the robot Jacobian and projection in its null-space.
However, this technique is computationally intensive. In this paper, an alternative approach
is proposed based on the Reduced Gradient method, which allows to deal explicitly only with
the redundant degrees of freedom. The superiority of this technique for solving redundancy
Is illustrated analytically in a simple case, and numerically by simulation of a four-link planar
arm. Optimization of various criteria like manipulability, available joint range, and distance
from obstacles is considered, giving quite satisfactory results. Also, possible generalizations

of the method are briefly discussed.
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INTRODUCTION

The complexity of tasks that advanced manipulators
are required to execute in a real-life environment asks
for robot arms with increased, human-like dexterity.
Robots should be able to move safely in a crowded
workspace, with objects to be manipulated and obsta-
cles to be avoided. Typical industrial examples of such
situations include spray painting of the inside of car
bodies and assembly tasks with multiple exchange of
forces/torques with the environment.

To acquire dextrous capabilities, the arm structure
should possess a number of degrees of freedom larger
than the one strictly needed for the general positioning,
i.e. should be redundant. In this case, the inversion of
the direct kinematic relation

p=f(q) (1)

between joint coordinates ¢ € R and task coordi-
nates p € RM, with N > M, yields an infinity of
solutions. At a differential level, one has

dp = J(q)dq,

with the Jacobian J being a non-square matrix.

(2)

In order to make the redundancy of the mechanical de-
sign really appealing, the robot controller should be
programmed so to exploit as much as possible these
extra degrees of freedom. The choice among the in-
finite number of joint trajectories realizing a given
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path of the end-effector can be done by optimizing a
suitable criterion. Indeed, it is desirable to achieve a
skilled robot performance with the minimum amount
of additional complexity.

Kinematic redundancy is mainly used to enhance the
functional workspace of the robot. In redundant arms
the crossing of kinematic singularities can be avoided
by internally reconfiguring the arm along the same
end-effector motion. This may be obtained by max-
imizing a criterion which measures the arm manip-
ulability (Yoshikawa, 1985; Klein and Blaho, 1985).
Optimization schemes are useful also when obstacles
are present in the robot workspace. While the end-
effector trajectory is already planned so to avoid colli-
sion, redundancy can be used to guarantee a collision-
free path for the whole arm, by means of various
distance criteria (Maciejewski and Klein, 1985; Bail-
lieul, 1986; Nakamura et al., 1987). There are also
forbidden regions directly specified in the joint space;
optimal avoidance of joint range limits has been con-
sidered by Liégeois (1977).

All the above techniques are based on the pseudoin-
verse of the Jacobian matrix, used to satisfy the end-
effector displacement, combined with the specification
of a null-space vector according to the chosen objec-
tive. Liégeois (1977) recognized this scheme to be the
transposition of the Projected Gradient (PG) method to
the robot inverse kinematic problem. The major flaw
of this optimization algorithm is that it requires a large
amount of computations. This limit was pointed out by
several authors who provided various improvements.



In particular, Klein and Huang (1983) suggested the
use of a Gaussian elimination technique within this
approach; Khalil and Chevallereau (1988) proposed a
different way for computing the pseudoinverse, while
Dubey ef al. (1988) implemented a faster numerical
scheme for a seven-dof robot with a spherical wrist.

An alternative and more efficient approach is pre-
sented in this paper, based on the Reduced Gradient
(RG) method for nonlinear constrained optimization.
The resulting scheme solves redundancy in a natural
way. In fact, only the extra degrees of freedom are
used for optimization, while the remaining joint vari-
ables are in charge of the task satisfaction. This allows
for large computational savings. In the following, the
redundancy resolution problem will be formally revis-
ited as an optimization problem. Comparison between
the RG and PG methods will be carried out both analyt-
ically and numerically, showing the inherent benefits
of the proposed approach.

OPTIMAL REDUNDANCY
RESOLUTION

For a redundant robot arm the optimal choice of joint
configurations can be defined by the following nonlin-
ear optimization problem:

'mglx H(q), st f(q—-p=0. (3)

H(q) is a generic objective function, while the vector
constraint in (3) follows — for the given task — from the
direct kinematics of the arm. Typically, this optimiza-
tion problem cannot be solved in a closed-form and an
iterative process has to be devised. Starting from an
initial point q° in the joint space, an update is defined
as:

If q° is the actual arm configuration at some initial
instant, the iterates (4) generated by the chosen opti-
mization algorithm can be taken as reference values to
be tracked by a closed-loop robot controller.

When p is constant, the solution of (3) is the optimal
posture q* for the specified end-effector location. The
optimization process will produce a sequence of inter-
mediate joint configurations providing a self~-motion
of the arm. This is true as long as the constraint is
never violated.

If a variable p, i.e. a trajectory for the end-effector,
is specified, (3) is transformed into a succession of
subproblems obtained by discretizing the end-effector
path into a sequence {p*}. Letting dp* = p¥*! — p¥,
the k-th subproblem becomes of the form:

max H(q*+dq), st. f(q*+dq)—(p*+dp*) = 0.
q

(5)
Any optimization algorithm can be used for solving

(5). In general, some iterations will be needed to find
an exact solution to each subproblem, so that use of
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this scheme in real-time is possible only if the algo-
rithm is extremely fast. Therefore, dq" in (4) is usu-
ally chosen as the first iterate computed toward the op-
timum of (5).

One way of determining dq ¥ is by use of the Projected
Gradient method (Luenberger, 1984), namely by pro-
jecting the gradient of H(q) onto the tangent space of
the constraint. Since RY = N(J)®R(JT) holds, the
displacement dq* is obtained as the sum of two vec-
tors from these complementary subspaces. The pro-
jection matrix onto the null-space of the Jacobian is

PAI—-JtJ, whereJ ' isthe pseudoinverse of J (Boul-
lion and Odell, 1971). Hence, the PG update results in

dq* = Jtdp* + [1 - J1 1V H(q*),  (6)

where Vq H é(¢9H /8q)7 and all matrices are evalu-
ated at q*.

The computations involved in (6) are quite cumber-
some for redundant robots with several degrees of free-
dom. In general, the pseudoinverse of J is in fact ob-
tained via a singular value decomposition technique.
When the Jacobian has full row rank, J ¥ can be eval-
uated more directly as J* = JT(JJT)™". However,
this still requires a product of matrices and a M x M
matrix inversion. Moreover, the N x N projection ma-
trix P has rank equal to (N — M) —the rank deficiency
being a considerable waste of information.

REDUCED GRADIENT METHOD

An alternative method for solving (5) is based on the
observation that the actual number of free variables in
the problem is only N — M. Therefore, the search for
an optimal displacement dq* can be more efficiently
performed within a reduced space of joint variables.
This leads to the Reduced Gradient method, for which
a preliminary assumption is needed.

Nondegeneracy Assumption. At every specified p,
there exists a q € RY such that f(q) = p, for which
a partition can be found

q=(9%,q), 9q.€RY q,eR" ¥,

yielding a nonsingular matrix

Ve f(@) = JJ(q). A

This assumption restricts the admissible end-effector
poses, discarding those for which the Jacobian nec-
essarily looses full row rank. According to the parti-
tion of q, the Jacobian matrix is decomposed into two
blocks (Ja, Js), so that the differential relation (2) can
be rewritten as

dp = Ju.(q)dq, + Js(q)dq,. (7N

The Implicit Function Theorem is invoked to locally
explicitate the constraint f(qs,q) — p = 0. This



provides an expression for the basic joint variables q,
in terms of the independent variables q, and of the
known end-effector pose p:

9 = 9(qs, P)- (8

From the same Theorem, an expression is found for
the derivative of (8) with respect to qs:

—=-J'J. (9)

The reduced gradient of the objective function H(q)
with respect to qy is defined as the gradient of the func-

tion H’(qb)éH(g(qb),qb). From the chain rule

Vq.H’(qb)=[—(J;1Jb)T I]VqH. (10)

At iteration k, for the independent joint variables q; a
step is taken in the reduced gradient direction:

da;f = Vo, H'(q)). (11)
The displacement for the basic joint variables q, is
then chosen so to satisfy (7):

dqf=J'dp* — (J7'Indqf. (12

The overall update of the RG method can be written in
a compact form as:
} VqaH(q"),

dq: _ Ja_1 k
[dqb"] B [ 0 ]dp +[
(13)

where J Ré.];ljb. This should be compared for com-
plexity with the update (6) of the PG method. It is
worth noting that neither the pseudoinverse J ' nor the
projection matrix P are needed in (13). As a matter of
fact, only one key matrix — i.e. Jg — has to be deter-
mined. The computational burden is essentially lim-
ited to the inversion of the M x M matrix J,, which
is directly available as part of the robot Jacobian.

It should be stressed that the PG and the RG meth-
ods do not provide in general the same updates in the
overall space of joint configurations. The asymptotic
rate of convergence is similar for the two methods, al-
though for most problems the RG method will con-
verge faster (Luenberger, 1984). Each iteration of the
RG is much less time-consuming, so that its use in on-
line implementation is more convenient.

JrJE —Jr
-Ji 1

The basic scheme outlined above can be further im-
proved. In fact, for a given set of basic variables q,,
the inversion of the matrix J, in (12) may become ill-
conditioned, thus affecting the convergence rate of the
algorithm. To overcome this problem, the whole set
of joint variables is explored at each iteration, and the
basic variables q, are chosen so to give the best con-
ditioned J, matrix, e.g. using the absolute value of the
determinant as a measure.
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Another limiting factor, which is common to all meth-
ods based on the local linearization of the constraints,
is that the generated update is feasible only up to the
first order. Uncompensated numerical errors build up,
resulting in a deviation from the desired end-effector
path. The inclusion of a correction procedure consid-
erably improves the constraint satisfaction. An addi-

—k ~—k
tional move dq = (dq,,0) is performed in the di-
rection orthogonal to the tangent plane at q*

—k
dq, = -J;'(q¥)eF!,

with e¥*! = f(q**!) — p¥*!. In principle, this step
should be repeated several times to restore feasibil-
ity, especially when the constraint curvature is large.
However, very good results were obtained by a single
correction step. Atiteration k, the complete update for
g, becomes:

dqf=J;'(dp* — ¥y — (371 3y dgf.  (15)

This correction procedure makes the method inher-
ently more robust, in much the same way as feeding
back the cartesian error does in a closed-loop control
scheme.

(14)

Finally, note that in (11) a unit stepsize was assumed
along the reduced gradient direction. To improve con-
vergence properties, a stepsize o # 1 could be taken,
either constant or generated by a line search.

ANALYTIC RESULTS

In this section, a simple redundant robot will be used to
illustrate how the RG method for solving redundancy
leads to an efficient computational scheme. Moreover,
it will be shown that, for the class of robots with only
one degree of redundancy, the RG and PG methods
generate the same search directions when used for op-
timizing a self-motion.

Example 1 (3-R Robot). Consider a planar robot arm
with three rotational joints, for which the degree of re-
dundancy of the end-effector positioning task is one.
For simplicity, all links are assumed of equal length .
Using as coordinates g; the absolute joint angles, re-
ferred to the z axis, the direct kinematics becomes

pz=l(ci+ca+c3), py=1(s1+s2+s3) (16)

where the shorthand notation s; := sing;,¢; := cos ¢;
is used. The Jacobian matrix is

—S2 —S3

J(q)=1-|% (17)

c1 c2
Note that a minor of this matrix, composed of columns
i and j, is nonsingular iff s;_; := sin(g — g;) is
nonzero.
Assuming full rank for the Jacobian, the pseudoinverse

J* and the null-space projection matrix P are com-
puted as: '

8181-2 t+ 8383-2

JT = A €181 + 3832
S181-3 + 8282-3

l [0232_1 + €383
C181-3 + C282-3

82871+ 83831 }



L[ s smasm2 saso
2
P=—]s3_1832 83_1 $2-183-1
2
S2-183-2 52-183-1 554

where A = s?_, + s2_, + sZ_,. These two matrices,
used in (6), fully define the PG method.

To apply the RG method, any partition of the joint vec-
tor q yielding a nonsingular matrix J, can be chosen.
For instance, assuming s # 0, let q, = (q1,¢2)
and q; = g3, which results in the partition of J

s [
C3

Therefore, the matrix characterizing the RG method is

—38]
C1

—387
c2

Ja=l-[ } (18)

1

T
JT =
B s

[s2-3 s3-1]. (19)

The reader may appreciate the simplicity of this
derivation, which confirms the improvement obtained
with the RG method. In this case, a step is computed
as

-1
dq* = [J‘(‘) } dp*+

—82
1 2-3
) —83-1

521 s34

][—32—3 —s3_1 s2-1]1 VqH(q5).

Indeed, similar expressions are obtained (modulo an
index permutation) when a different set of basic vari-
ables is chosen.

Example 2 (Self-motions of robots with N — M = 1).
For the class of robot arms with one degree of re-
dundancy, the Jacobian can always be partitioned as
J = (Jq,jb) in which, under the non-degeneracy as-
sumption, J, is an (N — 1) x (N — 1) nonsingular
matrix, while j, is just a column. Suppose that, at
a given end-effector location p, a self-motion is per-
formed to extremize an assigned criterion H(q). In
this case dp = 0, and the only relevant matrix in the
PG method is the matrix P = T — J'J. The follow-
ing expression holds for the pseudoinverse of a matrix
partitioned as J (Boullion and Odell, 1971)

|

where 2 1 /(1+jF(JIT)1jy). After some manip-
ulation it can be shown that the projection matrix takes
the form

_ 2 [N AT =37
k=8 [ =370 1 ’

3t = [Ja'l (I = Biif (I ) (20)

Bif (JJ )

(21)

Comparing this with the expression (13) of the RG
method, as applied to self-motions, it is easy to see
that

dq pg = B -dqpe. (22)
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Therefore, the two methods provide in this case the
same direction in the joint space, up to the iteration-
dependent scaling factor 8. This was not unexpected,
since for these robots the null-space of the Jacobian is
one-dimensional. It is possible to show that this scal-
ing factor is equivalently rewritten as

2
det® J, <1

= @@@Im S (%)

B

This general result applies indeed to the previous ex-
ample.

NUMERICAL RESULTS

The proposed redundancy resolution method has been
applied to a 4-R planar robot arm with all links of unit
length (see Fig. 1), both for internal self-motions and
for end-effector trajectories. For positioning tasks, this
robot has two degrees of redundancy and thus it is suit-
able to fully illustrate the different behavior of the RG
and the PG methods. Using absolute joint coordinates,
the Jacobian of this arm is

—83
c3

—382 —84

. (24)

—s1
J(q@) = [ 8
Different objective functions H (q) were tested for op-
timization. In order to maximize the joint range avail-
ability, the criterion proposed by Liégeois (1977) was
used. For the 4-R arm, this is written in terms of abso-
lute coordinates as

4 _
Hl(q)=_%z((q;_—q£€i>z, (25)

Omi — Oms

where [0y, ;, 0] is the admissible range for joint 4
and 0; is its center. In the first term of the summation,
go = 0. For obstacle avoidance, the case of a small
disc centered at (z,0) has been considered. In par-
ticular, z is such that only interference with the fourth
link can occurr. Properly modifying the criterion pro-
posed by Baillieul (1986), it was chosén to maximize

3
Hy(q) = |Bsa — ) savil. (26)

i=1

Finally, a test with a manipulability measure was car-
ried out. For the 4-R arm an index which is equivalent

to the classical v/det JJT of Yoshikawa (1985) is

3

H3(q) = Zs%ﬂl)—-i :

i=1

(27)

In the first numerical example the end-effector path is
given as a straight line from (2.93,1) t0 (2.5,0.7).
The cartesian path is discretized with 200 samples and
should be executed without violating the joint limits,
which are set at +90° of relative angle between suc-
cessive links. At the starting point, the arm configu-
ration is q = (15°,—15°,0°,90°), with the fourth



joint at its upper limit. Figures 2 to 5 show the evo-
lution of the four relative joint angles when using the
PG method, the RG method or simple pseudoinver-
sion (PS). For the first two, maximization of H, is per-
formed. The PS solution, plotted for comparison, vi-
olates the fourth joint limit since it naturally produces
the minimum norm displacement of the joints. Instead,
both PG and RG methods remain feasible along the
whole path, although the latter seems to behave better
in driving the fourth joint away from its limit. Note
that, in correspondence to changes of the set of basic
variables, a sudden slope variation occurs in the RG
joint path.

In the second simulation, the robot task is to follow
a vertical line from (3.41,1.41) to (3.41,—0.3), in
presence of adisc obstacle of radius r = 0.1, located at
z = 3.1. The arm starts with q = (0°,0°,45°,45°),
The natural motion generated without any optimiza-
tion, i.e. using the PS method, crashes as expected into
the obstacle (Fig. 6). On the contrary, Fig. 7 shows the
safe arm movement generated by the RG method max-
imizing the criterion H,. The amount of computation
needed for this obstacle avoidance scheme can be esti-
mated in approximately 12 trigonometric evaluations,
11 products and 10 additions for each iteration.

In the last numerical example, the arm performs a self-
motion to recover manipulability, while keeping the
end-effector fixed at the origin. The almost singu-
lar initial configuration q = (—3°,3°,177°,—-177°)
is shown in Fig. 8, together with the configuration
q = (—45°,45°,135°,-135°), where the index H3
assumes its maximum value. Both RG and PG op-
timization techniques yield this same final solution.
However, as indicated in Fig. 9, the RG method is
faster, achieving convergence within half of the PG
iterations. In this case, the set of basic variables is
(g1, g4) and does not change during the whole motion.

All simulations were performed with a constant step-
size @ = 0.1. Numerical evidence shows that, when
the correction term (14) is included, both RG and PG
methods are less sensitive to the actual stepsize value.

CONCLUDING REMARKS

A new computational scheme for solving redundancy
in robot arms has been presented, based on the Re-
duced Gradient optimization method. The applica-
tion of this technique to robotics relies on the phys-
ical intuition of the problem. The free selection of
basic variables provides an explicit command on the
choice of a particular inverse solution. In this re-
spect, this approach can be recasted in the framework
of inverse kinematic functions, as defined by Wampler
(1987). The RG method has been applied here for
local optimization of position-dependent criteria at a
kinematic level. However, this method may be used
also in global resolution schemes, as well as for revis-
iting other kinematic approaches like task-priority re-
dundancy resolution (Nakamura ef al., 1987). Due to
its generality, the presented scheme can be extended to
acceleration/torque resolution of redundancy (De Luca
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and Oriolo, 1989), taking into account the robot dy-
namic model. Work is also going on for avoiding ex-
plicit inversion of the matrix Jp — the main require-
ment of the method —, by the proper application of a
recently introduced closed-loop scheme for coordinate
transformations (Balestrino et al., 1988).
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Errata corrige

In Example 1 of section ANALYTIC RESULTS, the Jacobian pseudoinverse matrix J?
(see bottom of right column on page 135) should correctly read as

C282—1 + €383—1 S282-1 + 83831
I = |cisia+c3s3—2 81812+ 83832 | ,
C181-3 + C282-3 S181-3 + S282-3

while the projection matrix P (see top of left column on page 136) should correctly read
as

2
S3_2 §3-182-3 S2-183-2

§3-182-3 83?_1 32—581—3

§2-183—-2 S2-151-3 So_1




