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Exact augmented lagrangian approach to multilevel optimization of
large-scale systems |

ALESSANDRO DE LUCAT and GIANNI DI PILLOY

An approach based 6n the exact augmented lagrangian function is developed for the
optimization of large-scale systems composed of interconnected units. The decom-
position and coordination strategies are examined and various schemes of upper-
tevel coordination are proposed, all of which are formulated as unconstrained

quadratic minimization problems. Convergence analysis is performed exploiting
an analogy with minimization by relaxation methods. Numerical examples are

reported.

1. Introduction
Optimization methods for large-scale systems are basic tools for solving real-

world problems. The wide range of applications covers different engineering areas
such as energy production and distribution systems, industrial process control,
economic planning systems, oversaturated traffic networks and water resources
systems (see, for example, Wismer 1971, Mahmoud 1977, Singh and Tith 1978, Haimes
1982). |

The common characteristic of these complex systems is that their mathematical
models are of large dimension, but structured. Usually this means that large-scale
systems have an underlying physical or functional structure of interacting constitu-
ents: a certain number of interconnected subsystems may thus be identified in the
analysis stage.

Motivated by the presenca of this structure, specific decomposition and coordin-
ation methods have been developed for the purpose of optimization. The practical
advantages of partitioning optimization tasks rely on the ease of solving, although
recursively, smaller and/or simpler subproblems. Early examples of this approach are
the decomposition algorithm of Dantzig and Wolfe (1961) n linear programming and
the multilevel algorithm for optimal control (Takahara 1965). The first formalization
of the multilevel methodology was given by Mesarovic et al. (1970), who stated two
principles of coordinability of subproblems.

In the mathematical programming framework, the first multilevel methods were
based on the lagrangian approach (Lasdon 1970, Schoeffler 1971), since the lagran-
gian function retains the separability of the problem formulation. A detailed
description of the model coordination, goal coordination and mixed methods can be
found in Titli (1972) and in Singh and Titli (1978), together with their extension to the
dynamical case. Duality gaps limited the effectiveness of these methods in the absence
of convexity assumptions. As augmented lagrangian theory was developed (see, for
example, Bertsekas 1976), its application to multilevel problems was investigated,
although resolving the dual gaps, this approach has the drawback of destroying
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separability, due to the added penalty term. To overcome this difficulty Steph-

anopoulos and Westerberg (1975) proposed a linear approximation of the non-
separable crossterms, while Watanabe et al. (1978) transformed these terms mto the

minimum of a sum of separable terms, obtaining a three-level strategy. INo convergence
results are reported in these papers, but the latter is supposed to be superior due to the

more efficient coordinafion process.

Findeisen et al. (1980), Stoilov (1977), Tatjewski and Mu:halak (1980) proposed
two new mixed methods based on a suitable augmentation of the Jagrangian function
without approximating terms or perturbing the problem. Both methods coordinate
the subproblems, predicting the value of a set of variables (the inputs or the outputs of
“the subsystems) together with the constraints multipliers and then updating so as to
balance the interactions. The coordinator task is formulated as a saddle-point
problem and single-level or two-level coordination algorithms are presented. The
multipliers are updated making use of the Hestenes—Powell rule. The main disad-
vantages of this approach are in the difficult definition of feasible sets for the
predictions and in the complications that arise for the coordination updates in the
presence of local inequality constraints where both interaction variables and control
inputs are present.

An alternative augmentation of the lagrangian function was proposed by
Bertsekas (1979), where local convexification is obtained simply by duplicating the
number of primal variables so as to preserve the separability of the problem. It is
worth mentioning that other approaches exist based on penalty functions (Tatjewski
1978) or on decomposing functions to be added to the ordinary lagrangian
(Brusilovski and Ostrovski 1983). The first is hampered by the known limitations of
penalty methods so that the use is restricted to cases where low accuracy is needed.
The second has properties similar to all convexification methods, but requires that the
feasible sets of the local variables be convex.

Differences in basic decomposition schemes and applicability conditions, lack of
convergence analysis and results and the application-oriented nature of multilevel
procedures made the classification and comparison of various methods a difficuit task.
Three theoretical papers have tried, almost successfully, to fill this gap: Cohen (1978,
1980) imbedded all the previous decomposition—coordination methods in a general
framework using the auxiliary problem and the relaxation concepts; Looze and
Sandell (1981) provided a local analysis of the iterative behaviour of the various
decomposition schemes by the use of non-linear splitting functions.

As a further development we propose in this paper a method based on recent
results in non-linear programming, namely, the exact augmented lagrangian approach
introduced by Di Pillo and Grippo (1979, 1982) and Lucidi (1985), which consists of
adding to the lagrangian function a penalty term on the whole subset of the first-order
necessary conditions corresponding to equalities.

In particular, it was shown by Di Pillo and Grippo (1979) that, under suitable
hypotheses, the solution of an equality constrained problem of the form:

minimize J(s)
subject to g{s)=0, sek”

and the corresponding Lagrange multiplier ¢ e R™, can be found by computing the
unconstrained minimum, with respect to s and ¢, of the function |

S(s, 6) = J(s) + o7g(s) + n &)1 + | M()(VI(s) + Vels)o) |
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for a value of the penalty coefficient # larger than a threshold value #* > 0 and for an-
appropriate choice of the matrix M(s) such that MVg is an m x m non-singular matrix,
where Vg denotes the transpose of the Jacobian matrix of the constraints.

The extension of the proposed approach to non-linear programming problems

with inequality constraints:
minimize J(s)

subject to g(s) <0, sek”

was studied in Di Pillo and Grippo (1982) and in Lucidi (1985) by using the device of
converting inequalities to equalities via squared slack variables. In particuolar it was
shown in Lucidi (1985) that the solution of the above problem can be obtained by the
unconstrained minimization, with respect to se R" and o€ R™, of the continuously

differentiable function:
T(s, o) = J(s) + 6T [g(s) + Y(s, o) ¥(s, o)] + nll gls) + Y{s, 6)¥ls, 0)}|*

%(VJ (s) + Vg(s)o) + y2 G*(s, o)o :

+ H

where

yi(s, 0) = —min {O, g:i{s) + i}
27

G(s, 0) = diag {g,(s)}
Y(s, o) & diag { y;(s, o)}

for a given value of y > 0, y # 0 and a value of # larger than a threshold value #* > 0.
In both cases, the search for a saddle point of the ordinary lagrangian is replaced

with the search for an unconstrained minimum of S(s, ) or TT(s, o).
Applications of this approach to the large-scale non-linear problems formulated in

§8 2 and 3, followed by a suitable decomposition, allows us:

(a) to solve the problem by a general multilevel method with an efficient
coordination process without the need of convexity assumptions;

(b) to look at multilevel methods as a straightforward generalization of well-
known minimization by relaxation methods;

(c) to derive simple convergence analysis and an acceleration procedure for the
proposed algorithm,

The paper is organized as follows. In §2, we consider an exact augmented
lagrangian-function approach to the equality constrained large-scale problem. Sec-
tion 3 describes the proposed method, that is, the decomposition of the exact
augmented lagrangian function and the coordination algorithms, for the more
general large-scale problem with both equality and inequality constraints. Con-
vergence analysis based on an analogy with minimization algorithms using relaxation
is developed in § 4. Section 5 is dedicated to two numerical examples taken from the
literature. Conclusions are drawn in § 6 together with a discussion of the obtained

resuits.
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2. Large-scale equality constrained problems
We consider a large-scale optimization problem given in the following form.

Problem 1

min f(x, ¢) = i filxi, €)

i=1

subject to  z; =t;(x;, ¢;)
N
x,:: Z Hijz_fj I.:I,_z,...,N
i=1

where x;e R™, z,e R¥ and ¢;e R™ are the ith subsystem interaction inputs and outputs
and the ith local control vector; the f;: R™ x R™ — R are local objective functions and
(i R™ x R™ —»R* are the input-—output subsystem models. The H; are (n; x k;)
interconnection matrices whose elements are 0/1.

Problem 1 can be interpreted as the task of regulating N (usually large)
interconnected static systems, minimizing the sum of the local (generally non-linear)

cost functions.

Remark 1

The subsystem linear interconnections imply no loss of generality, since all non-
linearities can be included in the subsystem models. By a suitable definition of
subsystems one can also assume that each (scalar) output is connected to at most one

(scalar) input.

Remark 2

Usually it is assumed (Titli 1972) that each and every output is connected to one
and only one input of a different subsystem, thus the matrix H, whose blocks are the
H;., is an orthonormal matrix, that1s, H~ I = HT Local feedbacks are included in the

subsystem models so that H; =0, for all . |
Problem 1 can be rewritten in a more compact form as

min f(x, ¢)
_ Hx,0)—z
subject to glx, ¢, z} = =0
 Hz—x |
where
x&[xT ... xiI"eR*, n= )
i=1
and analogously, ze R*, ce R™; furthermore, t 2 [¢] ... (5] eR*and HZ {H;}, an

(n x k) matrix. Following Remark 2, we set from now on k=n, A “i=HT
Let the following assumptions hold for Problem 1, where Q is a given compact
subset of R" x R™ x R".

Assumption 1. The functions f; ¢ are twice continuously differentiable with respect to the
variables x and ¢ on R" x R™.

Assumption 2. The gradients of the constraints are linearly independent at every point
(x, ¢, z) in the compact subset €.
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The lagrangian function for Problem 1 is defined as:
L(x, ¢, z, 4, p) 2 f(x, ¢) + AT (t(x, ¢) — z} + p" (Hz — x)

where AeR", pe R" are the Lagrange multiplers.
An exact augmented lagrangian function for this problem is

S(x, ¢, z, A, p; p} 2 Lx, ¢, z, 4, p) + n{{|ilx, ¢) — z||*> + | Hz — x}|?)
+ | M(x, ¢, 2)VL(x, ¢, z, 4, p)}}* (1)

where M is a 2n x (2n + m) matrix whose elements are twice continuously differen-
tiable and VL denotes the gradient of L with respect to (x, ¢, z). Then, under the

hypothesis that the matrix MVg is a 2n x 2n non-singular matrix in €, the
unconstrained minima of function S in & x R® x R" for 5 larger than a threshold value
n*, which depends on the compact set Q, yield the solutions of Problem 1 contained n £

and the corresponding Lagrange multipliers.
A proper choice of the matrix M for this case is indicated by the following

proposition.

Proposition 1
If the matrices V. t;,i=1,..., N have full column rank, that is

rank [V.;; 1=k, <m;

and if the matrix M(x, c, z) 1s chosen as

M(x, ¢, z) = p'/? 0 Vit 0 , u>0 2)
=, 0 O
then the matrix MVg is non-singular.
Proof
Since
V.2 | V.t —I,
Ve={Vgl|=1|Vst O
Vel |-, H _

N
and V.t = diag (V,.t;} is of rank k= ) k;=n, then by direct computation
i=1

VTVt O
V.t I,

— —

MVg = pul/?

is a 2n X 2n non-singular matrix,

The hypothesis of the above proposition is a condition of the local controllability
kind: every subsystem has to be regulated by a number of effective control inputs not
less than the number of local interconnection outputs. This is a standard hypothesis
usually verified in a non-trivial large-scale system; it is the same needed for the
classical model coordination approach (Singh and Titli 1978). By straightforward
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calculation of VL= [V .LTV_.LTV,LT]" and substitution of (2) in the expression of S,
we have:

S(x, ¢, z, A, pym, i) = f(x, &)+ AT(t(x, ¢) — z) + p" (Hz — X)
+q(lt{x, ) — z||* + [|Hz — x||?)
+ u([| VT (Vof + VDI + IV f + V. th—pl¥) (3)

The solution of Problem 1 can then be found by minimizing (3) with respect to
x, ¢, z, A, p. This can be accomplished by the following two-level iterative procedure,

where H, 2[H;;, H;, .. Hyl

(a) For fixed values 7, p minimize S with respect to x, ¢, 4; this problem splits into
N independent low-level problems:

]Tliﬂ Sf(x,_': Ciy E'.;: ;['i: Iﬁ; s .tu)

XinCir i
where
SHx:, Cis 2y Ay B s 1) = S0, €2) + Ai {8ilx, €0} — 23)
+ pr(HZ = x;) + 1(lt(xi, ¢) — 212 + 1 Hz — %)
+ f(IVet] (Voo fo 4 Vetid P + 1V fi + Vitidi — Bill*)
(4)

(b) At the coordination level, use the low-level solutions X, ¢, A and minimize S
with respect to z, p.

This way of treating different variables separately allows both a decomposition of §
and a very simple second-level task. In addition, due to the quadratic dependence of
S on z,p, the coordination is a well-behaved problem. We have the following

expressions for the gradients and the Hessian of S with respect to the coordinating
variables:

V.S=H"p — 1+ 2n(2z — t{x, ¢) — H'x)
V,S=Hz—x+2up—V,.flx,¢)— V. t{x, c}A)
[dani, HT
vizz,p}s =
H  2ul

. ()

-

The Hessian matrix is positive definite for g > 0 and # sufficiently large, thus implying
that the first-order necessary conditions at the coordinating level:

V,S=0, V,$=0

are also sufficient for a minimum with respect to z and p, for every value of the first-
level variables ¥, @ and 1. Furthermore the Hessian matrix {5} is easily invertible. We

have analytically:

Harirl

2ul —H*
—H 4nl, |

1

2 S —1 __
W{Efﬁl ] 8,“??—1[

The coordinator task can be accomplished by a Newton iteration which gives new



Multilevel optimization of large-scale systems 163

updates 7 and p in the closed form:

i 1

7 Z [ V.S(% ¢ 2 7, p)
A e _[vijz.p}S] ; =
_,p_J I_p_J _VPS(I: €, Z, ’;'iv: p)_|
7 1 [2u, —HT]]  T+200(x &)+ H'X) -
5| Sum—1| —H 4y, || T+ 2uV.f(X,C)+ V,Hx, &x)

—— -y

i oul —HT || H 5+ 47
8um—1| —H 4nl, || Hi +2pp

p—rm— — T —

1 2ul . —H! A+ 2n(t(x, )+ H'X)
8un—1| —H  dnl, || X+ 2V, f(X,C)+ VX, E)L)_

(6)

A basic two-level algorithm for solving Problem 1 by means of the proposed exact
augmented lagrangian function may now be given.

Algorithm 1
Step 1. Choose #, u and a starting point in the extended space of primal and dual
variables; label it by 0 and set k& = 0.

Step 2. Solve the N low-level subproblems for fixed 2, p*:
min $(x;, ¢;, 2% A, pf), i=1,2,...,N

Xi,Ci A

and denote by x¥*!, &+, A% 1 the minimizing values.
Step 3. Calculate z**1, p* L by (6) for x=x*T1,e=c*"1, A=2"1

Step 4. If some stopping criterion is safisfied, then set

x$=xk+1. C*ﬁ£k+1' Z*zzk-t-l. p$mpk+1. 1*=Ak+l
and stop; else set k =k + 1 and go to Step 2.

A feature of this algorithm is that it is unaffected by the number N of interconnected
systems. Notice also that for decomposing the function § it would be necessary to fix
only the interconnection outputs z at the second level; inclusion of p as a coordinating
variable allows a more balanced partition of tasks among levels at practically no
additional cost for the coordination procedure. As for every multilevel method, 1t
should be noted that independent solving of subproblems at the lower level can take
advantage of any special local structure such as linearity or convexity, so that each
subsystem can be optimized by the appropriate method (numerical or analytical). The
convergence properties of the above algorithm will be discussed m § 4.

Comparing this approach with the one based on augmented lagrangians (Findei-
sen et al. 1980), it should be noted that no direct substitution has been made of x 1n
terms of z (or vice versa) using the interconnection equation explicitly; our choice,
despite the increase of dimensionality of the local subproblems, is motivated by the

following observations:

(a) no such direct substitution is possible when local 1nequality constraints are
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present, unless they were separable in terms of controls and interconnection
inputs {Tatjewski and Michalak 1980);

(b) the appealing coordination process (6) can only be obtained because of this
duplication of variables, which further preserves separability of the problem

formulation.

3. Large-scale problems with both equality and imequality constraints
A more general large-scale optimization problem includes, beside the equality

constraints considered in Problem 1, additional local inequality constraints of the
form:

vx;,c;) <0, i=12,...,N

where v;: R™ x R™ - R", Transforming these inequalities via squared slack variables
into |

X, ¢)+ Yy, =0, i=1,2,.. N

with y;e R, ;2 diag {y;;, j=1,...,r;}, and using a compact notation, we are lead
to consider the following.

Problem 2
min f(x, ¢)
) Hx,c)—z )
X, C, Z
subject to g(x, ¢, z, y) = Hz — x = ':gl( -------- )} =0
................ g-(x, ¢, y)
_v(x, c)+ Yy
N
where Y& diag {Y}, y&{y7 ... yxl%s v2[v] ... vy}'eR and r= ) r. The
=1

lagrangian function for Problem 2 is defined as:
L(x,¢, 2, ¥, 4, b, p) & f(x,¢) + AT (tx, ¢) — 2) + p"(Hz — x) + p"(v(x, ¢) + YY)

where pe[R" 1s the Kuhn—Tucker multiplier.
Given a compact subset Q of R* x R" x R", the following assumptions are

assumed to hold for Problem 2.

Assumption 3. The functions f, t, v are twice continuously differentiable with respect to
the variables x and ¢ on R* x R™,

Assumption 4, The gradients of the active constraints are linearly independent at every
point {x, ¢, z) in the compact subset Q.

Assumption 5. Define the index set J{x, ¢} as
JH(x, ¢) £ {j:v{xic;) = 0}

The Mangasarian—-Fromowitz regularity assumption then holds on Q, that 1s, for any
{x, ¢, z}eQ

2n h'i

Z 0 Vg1 x + Z Z‘ijvuij=0

k=1 i=1 jeJi
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with ﬁj;‘-z:(} forall je J, i=1, ..., N, implies that ﬁf}z OQforalljeJ’, i=1,..., N and
o, = 0for k=1,..., 2n; here g, , denotes the kth component of g; and the gradients are
taken with respect to the primal variables (x, ¢, z).

Assumption 6. Strict complementarity holds at any Kuhn—Tucker pair (X, ¢, Z), (A, D, D)
such that (x, ¢, z) belongs to the compact set €.

An exact augmented lagrangian function can be constructed for Problem 2,
considering the presence of both equality and imequality constraints. We get:

T(x, ¢, z, 2, p, p) = f(x, ¢} -+ AT(t(x, ¢) — z) + p' (Hz — x)
+ pT(v(x, ) + Y{(x, ¢, p)y(x, ¢, p))
+ n(]|tx, €) — z||® + | Hz — x||? + fuix, ©) + Y{x, ¢, p)¥(x, ¢, p)[1*)

+ u(|VET VLI + Vg VL+y* V2 (x, o)pll®) (7)
where
2 _ - Pij . , )
yij(xicfpf) = — IInn {0: ufj(xici) + 2??}: ] = 11 PEE F TR S I& ARE N

Y(x, ¢, p)=diag {y;(xc;p0), j=1,..,1 i=1,.., N} . (8)

V(J\C, C)=diﬂ.g {ﬂij(xici), j= 1, vars l‘i, IE l,..., N}

VI denotes the gradient of L with respect to (x, ¢, z) while Vg, and Vg, denote the
transpose of the Jacobian matrix of the equality and inequality constraints. In all cases
derivatives are taken with respect to the primal variables of the given problem. We

have:

-

VL] [V f+Vtl+Vuop—p
VL= | VL | = V.f+V.itl+Vup
VL] | H'p—2 )
V.2 | vVt —I V]
Ve={Vgi={Vs 0 Vu
V.l |1 H' 0 |

Finally, back substitution of the explicit expressions of the y;;(x;c;p;) (8) into (7) yields:
T(x, ¢, 2, 4 P, 5 1 1, 7) = f (%, ©) + AT (8, €) ~ 2) + p" (Hz — x) + p o[, ©)
+n(lt(x, ©) — z)1> + | Hz — xI* + [[o(x, )l *)
+ BVt (Vof + Vitd + V.0p — p)
+ VANV [+ V.tA+V.wp) +(A—H'p)|?
+1l(p — HA) — (Vuf + V,2h + V,op — pII*
+ |V (V. f+ Vil + V. 0p—D)
+ VTV, f+ ViA+ V. p)+7*Vp|?)

N n | o) T
-1 |:m1n {(}, vy;(ic;) + 57;}11 (9

i=1 j=1
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Again, as for Problem 1, the unconstrained minima of function T1n Q x R x R* x [,
provided that » is larger than a threshold value #* depending on ), yield the solutions of
Problem 2 contained in Q and the associated Kuhn-Tucker multiphers.

The addition of the local inequality constraints implies a relevant complication in
the expression of T. Moreover, no analytic coordination is possible. Nevertheless by
fixing the vectors z (interconnection outputs), p (interconnection constraints multi-
pliers) and A (input—output equations multipliers) at the values zZ, p and 4 respectively,
T can be decomposed so that:

N
min 7T = min {min T} = in { Y min Ti}

Z,p.4 L x,0,p0 z,p.A Li=1 x5,

where
TI- - Ti(xi: Cis E_,, xﬁ: 'j'; Pi> 1 1, '},)
A fi0, ¢;) + ATt(xi, &) — Z) + pi (HiZ — x;) + plodx;, ¢;)

+ gt x;, ;) — Z 2+ | HiZz — 12 + odx;, €)]1)

+ u(IV 2 (Ve fi+ Vet + Vo 00— P
+ Vo i (Vo fi+ Votidi + Vooip) + (4, — HI )2
+ (i — HA)— (V. fi + Vo tid + Voo 00— p)II?
VT (V, fi 4 Voti + Voips — ) |
+V 0/ (V. fi + Vot + Vooip) + 7 Vi pill*)

ri . Z
— N Z [min {O: v{xic:) + ﬂ}] (10)
=1 21

with V; & diag {v;;, j=1,...,7:}.

QOur primary goal is to derive now a coordinator as simple as possible for
minimizing T with respect to z, p and A. For this to be achieved in a multilevel
framework, it i1s useful to introduce as many levels as necessary for having a
decomposed solution. Of course, the more the levels used to obtain the solution, the
slower the procedure should be. On the other hand, the decomposition should be
carried out so that each level subproblem is easy to be solved. Notice that the exact
augmented lagrangian function 1s quadratic with respect to all coordination variables
z, p and A. In principle this 3n-dimensional quadratic problem can be solved
directly, obtaining a one-level coordinator. However, since n is usually large, a
decomposition of the coordinator task may result in a computational saving. We
propose here two coordination algorithms which differ for the number of required
levels, respectively three and two.

First we derive the gradients of T with respect to the coordinating variables:

V.T=H"p— A4 252z — t(x, c) — H'x)
V,T'=Hz—x+2p{—(V, t + H{V 'V, f+V A+ V. p—D)
+ V5 (V. + VA + V.op)+ (A—H'p)
+2I(p — HA— (V.f + VA + V,0p — p))
—~V(VOUNV_f+ Vil + V. vp—p)+ VUV f + Vel + V.op) + y2 V2 p))

-
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V,T=t(x,c)—z+2u{(I +V 1"V 1+ VA V)V (V.S + V.14 + V,0p — D}
4+ VANV + V. tA+ Vaop)+ (4 — H'p)
—(Vit+H(p—HA— (V. f+ V A+ V vp—p))
+(V AV o+ VIV V L (V. f+ VA +V op —p)
+ VT (V.f+ Vi +V.op)+ 7y V)

If we are interested in splitting the coordination procedure into three levels, we
need to look only at the following second-order expressions:

V2T =4nl
V2T=2u(4] +(V it + H)(V t + H)' +V,0V,07)
V2T =2u{(] + VTV, + VLTV
F(Vt+ T (Vi +H) +(ViTV,0 + VIV)V V0 + Vit Va)')

each of which is positive definite {as a sum of unit matrices and positive semidefinite

matrices) for any positive values of # and g By letting the coordinator operate
separately on z, p and A variables in a three-level structure, we are assured that by

satisfying the first-order necessary conditions
V,T=0; vV, T=0; V,T=0

at each level, the function T is minimized with respect to the corresponding variable.
Summarizing, we get the following algorithm.

Algorithm 2
Step 1. Choose #, i, y and a starting point in the extended space of primal and dual
variables; label it by 0 and set k=0.

Step 2. Solve the N first (low)-level subproblems for fixed 2, p*, 4*:
min T'(x;, ¢;, 25 p% A% py), i=1,.., N
Xi i M

and denote by x¥*?!, 51, pf*! the minimizing values.

Step 3. Solve the quadratic problem:

k+1 k+

1 k k E+1
LT 25 p, A p T )

min T(x
B

(that is, solve for p the V, T =0 condition with fixed x
¥} and denote by p**' the minimizer.

k+ljﬂk+1,pk+1EHHiZE

Step 4. Solve the quadratic problem:

" k+1 k+1F k& Lkt+1 k+ 1
min T(x*1, &4, 25 p* 5, 4, p"7 )
A

+ k+1

and

(that is, solve for A the V,T =0 condition with fixed x** 1, ¢**1, p***, p

z*} and denote by A**' the minimizer,

Step 5. Solve the quadratic problem:

k+1 L k+1

k+1 k+1
LC T, pt T AT,

k+1)

min T{x p

Z
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that gives explicitly

1 1
zk+1 — Iﬁ('}“kﬂ . HTpk+ 1) 4 E(f(xﬁ 1’ Ck+ 1) 1 HTxk+1) (11)

Step 6. If some stopping criterion is satisfied, then set

+1. -+
E+1 C:i::ckl

p$:pk+1; A*=Ak+l; p$:pk+1

and stop; otherwise, set k=k <+ 1 and go to Step 2.

Note that in Step 5, the minimization of T can be carried out analytically giving (11);
this expression is a function of terms belonging to different subsystems, so that no
elimination of the variable z is possible (as done with the slack variables) without loss
of separability. However, we can use (11) during the coordination task, which is not
in a decomposed form, thus reducing the number of levels of the coordinator to
two. In fact, introducing (11) into the expression for T gives a function
T =T'(x, ¢, p, 4, p; 0, 4 y); differentiating twice T’ with respect to p and A, We
obtain:

1 !
V2T =V3T = (sﬂ — -%)I L 24((V.ot + H)V, ¢ + H)T + V0V 07

VIT = V2T 41]?1-_ (zg_%?)f
+ 2u{(V AV 2T+ ViV AT + (V. + H)' (V.2 + H)
+ AV AV AT + V.V )
VAV 0+ VTV )V, TV, 0 + V1 V0)')

Both hessian matrices are positive definite if the couple of penalty coefficients (u, #) 1s
chosen so that # > 0-125/u > 0. We can then solve the first-order necessary conditions

va! — 0; vlTI — 0

in a two-level coordinator structure, where again we are assured that each level
minimizes the function T” with respect to the corresponding variable. The procedure
outlined leads to the following algorithm.

Algorithm 3
Steps 1-2. As in Algorithm 2.

Step 3. Use (11) to eliminate the variable z from the coordination problem.

Step 4. Solve the guadratic problem:

: k+1 k+1 k Lk+1
mlnT"(x » € apa}’:p )
p .

and denote by p**' the minimizer.
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Step 5. Solve the quadratic problem:

IHHI Tr(xk*{-l ck+ 1; pk+ 15 /‘t} pk-i- 1)
A

and denote by A*¥! the minimizer.
Step 6. Use (11) to update the variable z, obtaining ZFHi

Step 7. 1f some stopping criterion is satisfied, then set

x*=xk+1; ok — Ek+1 p¥ — :

p*:Pk+1. /q:i: )kv}—l ﬁ*=,ﬂk+1
and stop; else set k=k + 1 and go to Step 2.

Notice that for Algorithm 3, the coordination procedure complexity is exactly the
same one present in an augmented lagrangian approach (Findeisen et al. 1980). In
both Algorithms 2 and 3 the order in which variables are assigned to levels can be
interchanged. This possibility and its consequences on speed of ccmvergenca will be
discussed in a general formulation in the next section.

4, Convergence analysis
We provide here a discussion of convergence for the proposed method. The basic

idea is to recognize that the multilevel algorithm for minimizing S or T'is nothing but
a block relaxation medthod (BRM) (see, for example, Ortega and Rheinboldt 1970).
To get a deeper understanding of this analogy the following points should be noted:

(a) each level operates a vector minimization which corresponds to a step over a
block of variables in the BRM,

(b) optimization is carried out iterating sequentially from the first to the last level
as in the cyclic exploration of all blocks of variables in the BRM; no inner
loops are inserted in the procedure as it is instead done in many multilevel

schemes (Mahmoud 1977, Singh and Tith 1978);

(¢) new level updates are utilized 1n computations as soon as available, that s, 1n
the optimization at the next level; the algorithm thus operates in a typical

Gauss—Seidel mode.

The block relaxation approach for minimizing a function T'(s), s€ R", needs first a
factorization of R” as

sothats™=(s] s§ ... si)withs;eR" g>2isinour case the number of levels. The

main steps of the BRM are then as foliows.

Step 1. Set h=0; choose a starting point s°T = (s]* 3" soh.

Step 2. Seti=1.

T T T
Step 3. For given 5{1) =" & ... ) solve
: h h
minT(s, s3 ... 5,

31

and denote by s ! the minimizer.



170 A. De Luca and G. Di Pillo

Step 4. Set i=2,

- T T T T T
Step 5. For given s =(s{"1" ... st217 s . 7)) solve
: h+1 h+1 h h
min T{s} Si—y  Si Siti .. Sy)

3i

and denote by s{ "' the minimizer.
Step 6. If i< g then set i=i- 1 and go to Step 5; else continue.
step 7. It some stopping criterion is satisfied then stop; else continue.
Step 8. Set h=h-+1 and go to Step 2.

When n; =1 for all 7, the BRM becomes a point relaxation method and the ith step of
the cycle 1s just a one-dimensional line search; the well-known univariate method or
{cyclic) coordinate descent method operates on this basis. A sufficient convergence
condition is established by the theorem of Bazaraa and Shetty (1979) which holds for a
general class of algorithms that minimize a function searching along independent
directions, and which is recalled here for convenience.

Theorem 1

Let T: R"— R be a differentiable function and consider an algorithm whose map A
gives a vector §€ A(s) by minimizing T along the unitary search directions dy...d,
starting from s. Suppose that: |

(@) de > 0 such that |D(s)] = ¢ for all se R", where D{s) is the n x n matrix whose
columns are the search directions 4; (eventually dependent on s);

(b) the minimum of T along any line in R" is unique.

Then if s*! € A(s") and the sequence {s"} is contained in a compact subset of
[R", each accumulation point s of {s"} satisfies VT(s) = 0.

Since in a multilevel procedure, different variables are treated at different levels,
the only thing the algorithms of the previous sections must take care of is that of
generating independent search directions locally to each level, since we have:

D(s)=diag {DE(SE): i=1,.., ‘i’}:- Diin;xny;

Furthermore, the first level has this task decomposed in N independent subproblems,
so that the particular local structure can be exploited to provide the proper set of
search directions (that is, Newton, quasi-Newton, conjugate directions, coordinate
directions, etc.). |
Notice that hypothesis (b) of the above theorem is particularly strong. On the
other hand, it has been shown by Powell (1973), referring to the n, = 1 case and for the
univariate method (D(s) = I so that hypothesis (a) is automatically satisfied), that dif-
ferentiability alone is not sufficient to avoid failure of the method, cycling along a path
with non-zero gradient. Moreover, after initial progress, the univariate method usually
tends to slow down in later iterations, especially along valleys stretched other than in
the coordinate directions. Several safeguards have been proposed in order to IMprove
the convergence properties of the univariate method; in particular new search
directions may be introduced as the minimization goes further. Rosenbrock’s method
(Bazaraa and Shetty 1979) progressively rotates a starting set of orthogonal search
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directions so that the new directions are still mutually orthogonal and fit better with
the objective function valleys. Another popular method is that of pattern search
performed along directions individuated by some pattern of preceeding iterates,
usually the last two as in the Hooke—Jeeves algorithm. All the above discussion can be
easily extended to the general case (n; > 1) of block relaxation and hence to multilevel
optimization methods.

These similarities between multilevel computation and relaxation methods have
been already pointed out by some authors (Looze and Sandell 1981, Xinogalas et al.
1983) and follow directly from the theoretical framework of Cohen (1978, 1980).
However, with the present approach we are able to extend in a natural way two more
features from numerical analysis to multilevel optimization. First, we observe that:

(@) Multilevet methods based on lagrangians and augmented lagrangians search
for a saddle point and usually operate by treating primal and dual variables
separately at different levels. Each level then tries to satisfy a subset of first-
order necessary conditions for a saddle point. No explicit search directions are
computed at the coordination levels, although some updating formulae bear
an implicit extremization, as is typically the case for the multipher rule of
Hestenes—Powell, which takes a fixed step in the steepest ascent direction of a
dual function. In general, one has to guarantee that each level computation or
update moves toward the optimum, and this check should be included in all

methods whose coordinator directly satisfies necessary conditions of
optimalty. '

(b) Since the main goal of any multilevel method is to keep the problem
decomposed among levels while achieving overall optimality, there 15 no
advantage in extending non-linear programming techniques such as the
Rosenbrock method. This would result in a recombination of variables of
distinct levels, with an increase in the dimensionality of the subproblems.
Moreover, methods based on ordinary or augmented lagrangians treat at
different levels variables of the primal and of the dual type whose recombin-

ation makes no sense.

If we use instead the exact augmented lagrangian function for solving a large-scale
optimization problem in the form of Problems 1 or 2, by means of a multilevel scheme

then:

(a) the coordination level(s) minimize the exact augmented lagrangian function
with respect to the subset of global variables, for every value of the local
variables as shown in the previous sections. This enforces stability to the whole
multilevel process,

(b) it is possible to improve the basic Algorithms 1, 2 and 3 by introducing an
additional minimization step across the levels (similar to the one in the
Hooke—Jeeves method), thus reducing the sources of inefficiency which

otherwise affect all multilevel iterative schemes.

This additional step is just a unidimensional minimization along a direction
determined by the last two iterates of the algorithm. In this step, the exact augmented
lagrangian function is used as a line search function at little additional computational

expense. Introducing this modification for instance in Algorithm 2 we get the
following.
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Algorithm 4
Steps 1-5. As in Algorithm 2.
Step 6. Set st = (k)T (b +1)T(zh+ LYT(pht YTk WT ok YT apd
dF = ((xF+1 — xkYT(kHT _ YT+ 2T (pFH L — T
(ARFL _ RT(pk+1 — pF)TYT
and solve

T(s* + o*d*) = min T(s* + ad®)

aeR
denoting by s**! = s* + «*d* the minimizer.
Step 7. Update
(Ock )T (ck I)T(ZHI)T(pk+1)T(Ak+1)T(pk+1)T)T'“__ g+
Step 8. If some suitable stopping criterion is satisfied then stop; else continue,

Step9. Set k=k+ 1 and go to Step 2.

This very simple modification has been tested with good performance in the
examples reported in the next section. In particular the direction d* so obtained gives
better results than a steepest descent additional line search, thus confirming the
validity of the analogy between coordinate descent methods and multilevel
optimization.

We conclude this section with some farther remarks on the proposed method,
based on the analogies with relaxation methods:

(@) It is generally recognized that when the coordinator predictions are far from
the solution, it is computationally wasteful to achieve high precision in
resolving the local subproblems. This rule of thumb can be automatically
included in the proposed algorithms by an appropriate choice of the stopping
criterion for the first-level subproblems. A certain kind of inexact minimiz-
ation, which is asymptotically stringent, has actually been introduced in some
implementations reported in the next section.

(b) The order of assignment of variables to levels should play no significant role on
convergence properties, at least from a theoretical point of view, since it
parallels the order in which variables are explored by relaxation methods; this
was confirmed by the numerical computations.

3. Numerical examples
The proposed multilevel algorithms have been tested on two examples taken from

the literature. The first one, referenced in Stephanopoulos and Westerberg (1975) and
in Brusilovski and Ostrovski (1983), is a linearly constrained problem in which a dual
gap arises. The second has convex objective functions but non-linear inequality
constraints and is referenced in Findeisen et al. (1980), where it is used as a benchmark
problem for several multilevel methods. Among these methods, that based on
augmented lagrangians showed the best performances.
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Example 1
Constder the following two single-input/single-output units connected in cascade

(x, =2z}

%1 = 3x1 + 3{:1

{2y K

fl(xiscl)T=(—x1 —¢; x;—3 xy+2¢—4) €0

Z, = 2X, + 2¢,
o T

By(Xy, 02) =(—x; —c¢; ¢—1 x3+2¢,—-4) <90

The cost function to be minimized is
Fix,c,2)=2c; + X9 + 5¢, + x36 — 2,
which can be rewritten as
f{x, ey =02c; +x7%)+ (3¢, +x5¢ — 2x,)
The optimal analytic solution is
x¥ =4/3; cy =0; x¥ =zF =4; ek =0 p* = A*= —(0178

giving the value f*= —4-52 for the objective function. Table 1 shows the results
obtained using Algorithm 4 for some selected values of the penalties #, p, with y* held
fixed at 4. X is the iteration number at which two successive coordinator predictions
differ in norm for less than £ = 1077; the achieved feasibility is given in terms of the
norm of the interaction error e = x*% — £, (x%, ¢*). The starting point was chosen as in
Brusilovski and Ostrovski {1083) for the local variables:

=103 O=-001, x5=306 =035 p°all zero

while the coordinator inifial predictions were

Ji

29=50;, A0=—-02, p°=—-04

1 H K f "E”Z
102 | 57 —ndfr 52 02 x 1073
10° 1 35 —4-53 g5 x107°
19 19 28 —4-52 06 x 1073

Table 1.

Example 2
Given a plant consisting of three interconnected dynamic systems described by

their steady-state models as foliows:
[ Z41=€yy—Cyz+ 2%,
{El) 3 Ui(xla CI)T = (ﬂgi + ’:%2 — 1 —X31 X317 05) <0

Si(xXg,64) = (g3 = D +5(cyy + 012 — 2
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[ Z31=Cpy — Cog+ X5y — 3X,;

(22} : 0-5¢31 + €23 + 2¢53 — 1
D5(X5,€,) = 2 2 2 <0
| 4c21 2025205 +04xy, + 050005 + 0-5¢33 + x3, —4

J2(x2, ¢5) =2(cyy — 22 + €3, + 3¢35 +4x3, + x2,
N =C3y + 2:3¢3; — 4x 5,
(Z3)< v3lxs, ¢3)TE("“3’31 —X31 =05 —c¢3, €5,—-11<0

S3(x35 €3) = (c31 + 1)? + (x5, — 1)* + 2:5¢2,

the design problem is to minimize
3
flx, 0)= -Zlﬁ(xf’ ¢;)

subject to the interconnection constraints (x = Hz) shown in the Figure. Notice that
the resulting interconnection matrix H is orthonormal.

) ”21’ £21
a zl o Zz €22 E3 =3
P 2 ¢
A22 A3

Starting from the origin of the extended space of primal and dual variables, as in
Findeisen et al. (1980), several runs were performed with different penalties i, u and
constant y* = 4 also to compare the relative merits of the various a] gorithms (Table 2).
As before, K is the number of iterations needed so that two successive coordinator
predictions differ in norm by less than ¢ = 10~ 5, The feasibility of the final point is
given In terms of the euclidean norm of the vector |

-x;il — 255111(-7‘5525? c‘;}

x%l_"rll(x;iscji)

E —
xgz - IEI(XFZ;: Cjzc.)
B ty2(x5, cﬁ)_
/ I K S el Algorithm
107 01 66 6-1370 09 x 1072 4
10° 0-01 152 61182 04 x 1074 4
10° 0-01 242 6-1258 06 x10°3 2
5 x 10% 0-05 123 61270 04 x 104 4

Table 2.
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which measures the error in the satisfaction of the interconnection constraints, when
the current input—output model is used. The effectiveness of the proposed acceleration
step (Algorithm 4) with respect to the basic Algorithm 2 is self-evident. No particular
benefits were obtained reducing the number of coordination levels by making use of
Algorithm 3. Furthermore, choosing different processing orders for the coordinator
variables (namely, with (z, p, A) or (p, 4, z) treated respectively at the second, third and
fourth level) showed different paths from the starting point to the solution, but no
significant differences in the terminal figures (number of iterations and feasibility}.
Subproblem minimization was carried out by a quasi-Newton method with BFS
updates; the same was done for the upper level’s minimizations, whenever these were

not performed analytically.
Finally it is useful to point out some aspect relevant in numerical applications of

the method:

(@) Although any choice for i > 0 and for # > ™ allows us to solve the problem by
means of an unconstrained minimization of the exact augmented lagrangian
function, there is, for each problem, a preferential range for the penalty
parameters # and p. More specifically. the product un should lie within a
certain interval outside of which we have either convergence which 1s too slow

or divergence of the sequence of generated points.

(b) The starting coordinator predictions clearly play an important role for
convergence. Note that since the method considered is a non-feasible one, it
generates a sequence which usually lies beyond the feasible region, so that
problems could arise with functions not defined everywhere, as is the case in
Example 1 (the fractional power for x imples non-negativity as a hard
constraint). In fact, we needed a proper choice for the coordinator starting
point, although far from the true solution.

6. Conclusion
We have developed a new multilevel method for the solution of large-scale

structured optimization problems by means of the exact augmented lagrangian
approach studied in Di Pillo and Grippo (1979, 1982) and Lucidi (1985). The
decomposition of this function is obtained by fixing, in the general case, the
subsystems outputs and the equality constraints multipliers. The resulting co-
ordinator procedure is organized as a three-level minimization, one of which can be
analytically solved, while the other two are positive definite quadratic problems. The
efficiency of the coordination task is enhanced when no local inequality constraints
are present, being then strictly independent of the number of subsystems. Numerical
experience with this method was satisfactory giving results which are competitive with
those quoted in the literature. One of the limitations of the present approach is its
intrinsic non-feasibility before obtaining the optimal solution, so that no on-line
applications are possible. However, this approach gives some further insight into the
mechanism of convergence of multilevel methods. The parallelism between some
classical minimization methods and those based on decomposition—coordination had
already been recognized but could not be stressed in a primal—dual framework. We
could instead extend in a multilevel context some simple ideas from general non-linear
programming such as the inter-levels acceleration step, whose effectiveness was

confirmed by numerical examples.
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