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Abstract—Feedback Linearization (FL) allows the best control
performance in executing a desired motion task when an accurate
dynamic model of a fully actuated robot is available. However,
due to residual parametric uncertainties and unmodeled dynamic
effects, a complete cancellation of the nonlinear dynamics by
feedback is hardly achieved in practice. In this paper, we sum-
marize a novel learning framework aimed at improving online
the torque correction necessary for obtaining perfect cancellation
with a FL controller, using only joint position measurements. We
extend then this framework to the class of underactuated robots
controlled by Partial Feedback Linearization (PFL), where we
simultaneously learn a feasible trajectory satisfying the boundary
conditions on the desired motion while improving the associated
tracking performance.

Index Terms—Robot Learning, Feedback Linearization, Gaus-
sian Process Regression, Underactuated Robots, Optimal Control

I. INTRODUCTION

Feedback Linearization (FL) is a widely used control design

technique in fully actuated robots that allows to reach a precise

execution of the desired motion tasks. Thanks to the perfect

cancellation of all nonlinearities in nominal conditions, the

trajectory tracking problem can be easily addressed in the

resulting linear and input-output decoupled domain, achieving

thus arbitrarily fast, exponential convergence of the tracking

error. Indeed, a very accurate dynamic model of the robot is

strictly required to obtain such a control performance.

Similarly, for the case of underactuated robots, it is possible

to design a Partial Feedback Linearization (PFL) law so as

to exactly linearize a suitable part of the model, either the

actuated dynamics (collocated PFL) or the passive one (non-

collocated PFL) [1], [2]. For such systems, one needs to define

also a dynamically feasible trajectory for the uncontrolled

variables, satisfying boundary conditions and additional con-

straints of the desired motion task. Optimization techniques

can be used to address this problem off line, but their success is

based again on the availability of an accurate dynamic model.

In this framework, one can improve performance in execu-

tion of arbitrary motion trajectories by working on a better

parametric identification of the robot dynamic model [3], by

resorting to non-parametric regression techniques [4], or by ad-

dressing the inaccuracy issues directly at the control level [5].

In general, these approaches require an initial offline phase

which, in case of structural changes of operative conditions
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(e.g., handling of an unknown payload or a permanent effect

due to mechanical wearing), must be repeated from scratch.

In [6], we have introduced an online learning strategy that

greatly improves the trajectory tracking accuracy of FL control

of fully actuated robots under large model mismatches, using

only joint position measurements and avoiding the resort to

noisy torque sensors. The aim of this paper is to review the

main idea of our work and to present an extension of the

method that deals with the problem of underactuation [7].

The paper is organized as follows. In Sec. II, we recap

how model mismatches influence the FL control law and the

resulting closed-loop dynamics in fully actuated robots, while

the proposed learning strategy is summarized in Sec. III. In

Sec. IV and V we formulate the problem and, respectively,

illustrate the extension of our learning strategy for underactu-

ated robots under collocated PFL control. Simulation results

are reported in Sec. VI for a 7R KUKA iiwa robot and for

the Pendubot, a 2R robot moving in the vertical plane with

passive second joint. Conclusions and ongoing activities are

briefly discussed in Sec. VII.

II. FULLY ACTUATED ROBOTS

The dynamics of a n-dof fully actuated robot is given by

M(q)q̈ + n(q, q̇) = τ , (1)

with q, q̇, q̈ ∈ R
n being, respectively, the joint position,

velocity and acceleration vectors, M ∈ Rn×n is the positive

definite inertia matrix, and n ∈ Rn is the Coriolis, centrifugal,

and gravity vector (possibly including also friction terms). For

such system, the input torque τ ∈ R
n can be chosen as the

nonlinear feedback law τFL(q, q̇) that cancels all dynamic

terms in (1)

τ FL = M(q)u+ n(q, q̇), (2)

where u ∈ Rn is a desired joint acceleration. In principle, with

a perfect knowledge of the robot dynamic model, applying the

FL law (2) yields a linear system of n decoupled chains of

double integrators, i.e.,

q̈ = u. (3)

To track a desired smooth trajectory qd(t), the control design

is completed by choosing u = q̈d+KD(q̇d−q̇)+KP (qd−q),
with diagonal PD gains KP , KD > 0.
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In practice, because of uncertainties in the nominal model

parameters used by the FL law (2), and due to the additional

presence unmodeled dynamics, the obtained closed-loop sys-

tem will not be described by (3). Taking explicitly into account

model uncertainties, we can write the actual inertia matrix M
and the vector n as

M(q) = M̂(q) + ΔM(q) (4)

n(q, q̇) = n̂(q, q̇) + Δn(q, q̇) (5)

where M̂ and n̂ are the nominal quantities (those that can be

used in (2), expressing our a priori knowledge of the system),

while ΔM and Δn are perturbation terms characterizing the

uncertainties. Note that Δn can incorporate also unmodeled

dynamic terms.

If we apply the FL control law (2) with the nominal values

τ̂ FL = M̂(q)u+ n̂(q, q̇), (6)

to the real system (1), considering eqs. (4) and (5), we obtain

q̈ = u+
(
M−1(q)M̂(q)− I

)
u+M−1(q)Δn(q, q̇) (7)

= u+ δ(q, q̇,u). (8)

Thus, δ(q, q̇,u) is a nonlinear function that accounts for all

modeling mismatches as well as any unmodeled dynamics.

III. LEARNING FOR FULLY ACTUATED ROBOTS

The learning framework presented in [6] can be applied

to torque-controlled robots and is based on the idea that, by

comparing the actual robot motion with the FL prediction, it

is possible to reconstruct online the needed dynamic model

correction without the use of torque measurements.

In a digital implementation with sampling time Tc, sup-

pose that xk = (qk, q̇k)
T is the current robot state at

t = tk = kTc and we want to reach a desired state xd,k+1 =
(qd,k+1, q̇d,k+1)

T at t = tk+1. Using our preferred linear

controller (e.g., a PD with feedforward term), we compute

the acceleration command uk that should do the task if the

FL controller was the perfect one. We impose thus the joint

torque τ̂ FL in (6) obtaining the closed-loop dynamics

M(qk)q̈ + n(qk, q̇k) = τ̂ FL,k

= M̂(qk)uk + n̂(qk, q̇k). (9)

However, due to the uncertain dynamics, the robot will reach a

different state xk+1 = (qk+1, q̇k+1). At this point, given the

performed robot motion, one can reconstruct (by numerical

differentiation) the robot acceleration q̈k and then estimate the

missing torque that would have been needed in the nominal

FL-based control law in order to compensate the unmodeled

dynamics. Plugging q̈ = q̈k in (9), we obtain after some

manipulation

M̂(qk)(uk − q̈k) = ΔM(qk)q̈k +Δn(qk, q̇k). (10)

Using the a posteriori computable left-hand side of eq. (10),

a regressor function ε(·) can be introduced in the FL control

law, through which it is possible to progressively compen-

sate the unknown perturbations on the right-hand side. In

order to exploit the data acquired so far, a moving dataset

D = {(Xi,Yi) |i = 1, . . . , nd} can be constructed, where nd

is the number of its elements, with input Xi = (qi, q̇i, q̈i),
and output Yi = M̂(ui−q̈i)+εi. In Yi, the torque correction

εi applied to the robot is also taken into account, in order to

preserve dataset consistency. Moreover, when we predict the

compensating torque εk at time tk, the regressor input will

be composed by the current robot state xk and by the last

commanded acceleration uk generated by the chosen closed-

loop controller.

As a result, the new FL-based control input τ FL,k will be

the sum of the nominal FL torque and of the online prediction

by the regressor ε(·), i.e.,

τ FL,k = τ̂ FL,k + εk = M̂(qk)uk + n̂(qk, q̇k) + εk.

IV. UNDERACTUATED ROBOTS

Consider a n-dof robot with generalized coordinates q ∈ Rn

and m < n actuators. The robot dynamics can be partitioned

as (see, e.g., [8])

Maa(q)q̈a +Mau(q)q̈u + na(q, q̇) = τ

Mua(q)q̈a +Muu(q)q̈u + nu(q, q̇) = 0,

where q = (qa, qu), qa are the m dofs actuated by τ ∈ Rm,

and qu are the n − m passive joints. The inertia matrix M
and the nonlinear term n are partitioned accordingly.

Given an accurate knowledge of the robot model, it is

possible to use nonlinear feedback to exactly linearize part

of the system dynamics, namely the actuated one. Such a

collocated PFL controller is always well defined and takes

the form [1]

τ PFL =
(
Maa −MauM

−1
uuMua

)
u+ na −MauM

−1
uunu,

(11)

where u ∈ R
m is the desired acceleration of the actuated

joints. The control law (11) results in m decoupled chains of

double integrators for the linear part, leaving unchanged (and

still nonlinear) the passive one:

q̈a = u

q̈u = −M−1
uu (nu +Muau).

Taking now into account model uncertainties, an imperfect

cancellation of dynamic terms will result when applying the

PFL law (11) based on the nominal system dynamics. The

perturbed closed-loop system becomes

q̈a = u+ δa(q, q̇,u)

q̈u = −M̂−1
uu (n̂u + M̂uau) + δu(q, q̇,u),

where δa and δu represent the effect of modeling mismatches,

respectively on the actuated and on the passive subsystems. In

the latter, we have explicitly isolated the known nominal terms.

Indeed, we can correct δa similarly to the fully actuated

case in Sec. III, using a regressor εa. However, because of

the presence of the perturbation δu on the passive dynamics,
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Fig. 1. Block diagram of the control framework for underactuated robots.

the accurate tracking of a desired trajectory for the actuated

dofs will not be sufficient for complete realization of a desired

motion task. A dynamically consistent trajectory should be

planned also for the passive joints, typically solving a con-

strained optimization problem. The presence of uncertainty in

the model will prevent producing such a feasible solution.

V. LEARNING FOR UNDERACTUATED ROBOTS

To compensate for the model mismatch δu, we developed

an iterative learning procedure [7], similarly to what is done

in [9], [10]. However, in these latter works the reference

trajectory is never adjourned using an updated model; thus,

when working with inaccurate nominal dynamics, the com-

puted trajectory will typically be unfeasible even in the ideal

case of a correct partial feedback linearization law.

Instead, the perturbation δu on the passive dynamics can

be approximated using a second regressor εu, comparing

the acceleration of the passive part of the system with the

acceleration predicted by the nominal model. Given an approx-

imation of the actual acceleration q̈a,k, one can compute the

acceleration associated with the nominal model of the passive

joints as

q̈pred
u,k = −M̂−1

uu,k(n̂u,k + M̂ua,kq̈a,k).

A new datapoint can be generated at time tk by comparing

the acceleration estimated numerically with the one predicted

by the nominal model, i.e.,

Xu,k = (qk, q̇k, q̈a,k); Yu,k = q̈u,k − q̈pred
u,k .

The dataset is incrementally built during each trial, and the

regressor εu is employed during each trajectory planning

phase so as to work a successively more accurate estimation

of the real system dynamics.

A block diagram of the complete learning control frame-

work for the underactuated case is shown in Fig. 1. Initially,

for a desired motion task, a reference trajectory is generated

for the system using the best available nominal model. Then,

the first trial is executed, during which the PFL-based law is

corrected online to compensate for the presence of δa. At the

end, a new reference trajectory is computed taking into account
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Fig. 2. Comparison between the two different control modalities: using the
nominal dynamic model (red line) and using our learning method (blue line).
From top-left to down-right: the absolute values of joint position error of the
first, second, fourth joint and the 3D path realized by the end effector.

Fig. 3. A KUKA LBR iiwa realizing a trajectory tracking task with the
nominal controller (right, red) and with the proposed controller (left, blue).

the approximation of the residual term δu, and the motion is

performed again. These steps are iterated until model errors

converge to zero and the task is correctly executed.

VI. NUMERICAL RESULTS

In order to validate the presented framework, simulations

have been performed for a fully actuated ans and underactuated

robotic platform.

A. Fully actuated case

Our learning method has been tested first on a simulated

7R KUKA LBR iiwa performing a trajectory tracking task. In

particular, the first six joints should follow a sinusoidal path,

while the last one should remain at rest. We have analyzed the

tracking performance of this robot, whose dynamic parameters

are reported in [3], [11], for a deviation of about 20% from

their nominal values. We compared the results with and with-

out the use of the proposed method. The FL torque correction

ε is approximated using Gaussian Process regression [12]. The

resulting joint errors and the end-effector Cartesian path with

and without the use of our online learning method are reported

in Fig. 2. Snapshots of the obtained robot motion are shown

Fig. 3: our method sensibly reduces the tracking error.



0 0.5 1 1.5
0

5

10

error q
a

0 0.5 1 1.5

-1

0

1

2

3

iteration 1

0 0.5 1 1.5

-1

0

1

2

3

iteration 2

0 0.5 1 1.5

-1

0

1

2

3

iteration 3

Fig. 4. Pendubot reference joint trajectories (dashed lines) and actual positions
(solid lines) during each iteration. At the top left, it is reported the position
error of the actuated joint at Iteration 1: in blue, when the correction is applied,
while in red when only the PD correction is employed.

Fig. 5. The Pendubot performing the swing-up task. After three iterations,
the robot is capable of reaching the up-up configuration.

B. Underactuated case

The proposed control method has been tested by simulation

on the Pendubot, a 2R robot with a passive second joint and

moving in the vertical plane. The Pendubot should perform

a rest-to-rest swing-up manouver, from the initial downward

equilibrium configuration x0 = (0, 0, 0, 0)T to the up-up con-

figuration xg = (qa, qu, q̇a, q̇u) = (π, 0, 0, 0)T . We considered

a mismatch between nominal and actual model parameters

of about 30%. As for the fully actuated case, any closed-

loop controller could be used in order to generate a reference

acceleration for the PFL. The planning procedure is formulated

as an optimal control problem and solved using a Sequential

Quadratic Programming optimizer [13], including the correc-

tion for the residual term εu in the dynamic constraint. Here,

εu is reconstructed through a Gaussian Process regression.

Three iterations for the actual and the desired joint trajectories

are shown in Fig. 4, together with a comparison of the actuated

joint position error during the first iteration when only the

PD is applied (top left, red curve) and when εa is employed

(blue curve). It is worth noticing that the tracking performance

improves even for the actuated joint at the first iteration.

Moreover, our method perfectly recovers the tracking error

with an handful of trials. Few frames of the final successful

Pendubot motion obtained wirh our learning method are shown

in Fig. 5.

VII. CONCLUSIONS

We have presented a method for online learning of feedback

linearization control without torque measurements for fully

actuated robots, and its extension to underactuated platforms.

In both cases, the correction of the linearizing part of the

torque input converges quite fast to the correct value. This

feature depends mostly on the locality properties of the used

GP regressors, in particular for repetitive tasks in which the

input space is already partially explored.
For fully actuated robots, the method displays large per-

formance improvements which allow to eventually execute

very high precision motion tasks. The presented extension to

underactuated robots is able to solve a complex swing-up task

in just an handful of trials, even with an extremely bad nominal

model.
Despite of the obtained effective results, a limit of the

presented approach concerns the generalization problem. In

particular, it is not straightforward to adapt the actual model

knowledge to different tasks without restarting the learning

procedure from scratch. In order to overcome this problem, we

are currently focusing on the design of novel data-collection

strategies, which consider different trajectories and leverage a

heuristics, such as information maximization, while exploiting

robot redundancy for exploration.
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