
6294 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

An Opportunistic Strategy for Motion Planning in the
Presence of Soft Task Constraints

Massimo Cefalo , Paolo Ferrari , and Giuseppe Oriolo

Abstract—Consider the problem of planning collision-free mo-
tions for a robot that is assigned a soft task constraint, i.e., a
desired path in task space with an associated error tolerance.
To this end, we propose an opportunistic planning strategy in
which two subplanners take turns in generating motions. The hard
planner guarantees exact realization of the desired task path until
an obstruction is detected in configuration space; at this point,
it invokes the soft planner, which is in charge of exploiting the
available task tolerance to bypass the obstruction and returning
control to the hard planner as soon as possible. As a result, the
robot will perform the desired task for as long as possible, and
deviate from it only when strictly needed to avoid a collision. We
present several planning experiments performed in V-REP for
the PR2 mobile manipulator in order to show the effectiveness of
the proposed planner.

Index Terms—Motion and path planning, collision avoidance,
redundant robots, soft tasks.

I. INTRODUCTION

ROBOTS are invariably required to execute tasks in a
workspace that is populated by obstacles. If the robot

is kinematically redundant with respect to a given task, it can
perform it and simultaneously meet other basic requirements
such as avoidance of collisions, joint limits, and so on.

Tasks are generally expressed in terms of a certain set of coor-
dinates, called task coordinates. These may describe quantities
related to manipulation (end-effector position and/or orienta-
tion), navigation (position of a representative point of the robot,
e.g., the center of mass), or perception (placement of sensors
in the workspace or directly of features in sensing space, as in
visual servoing). Often, the task is assigned as a desired path
or trajectory for the task coordinates, resulting in an equality
(hard) constraint. However, in industrial and service applications
there are many situations where the task is better expressed
by an inequality (soft) constraint; for example, this constraint
may represent the fact that the desired path assigned to the task
coordinates comes with a certain error tolerance. Fig. 1 shows
an example of such scenario.

The problem of generating collision-free robot motions in the
presence of hard task constraints is known as Task-Constrained

Manuscript received February 24, 2020; accepted July 15, 2020. Date of
publication August 4, 2020; date of current version August 11, 2020. This letter
was recommended for publication by Associate Editor N. Amato and Editor S.
Thomas upon evaluation of the Reviewers’ comments. (Corresponding author:
Massimo Cefalo.)

The authors are with the Dipartimento di Ingegneria Informatica, Automatica
e Gestionale, Sapienza Università di Roma, 00185 Rome, Italy (e-mail: {cefalo;
ferrari; oriolo}@diag.uniroma1.it).

Digital Object Identifier 10.1109/LRA.2020.3013893

Fig. 1. In the problem of interest, the robot is assigned a soft task specified by
a desired path (red line) and a tolerance (green volume).

Motion Planning (TCMP). In the literature, there exist two
main classes of methods for solving the TCMP problem, i.e.,
optimization- and sampling-based methods.

Optimization-based methods (see [1] for a general review)
cast the TCMP problem in the framework of kinematic control,
also called redundancy resolution, with the possible inclusion of
specific equality or inequality constraints related to the assigned
task [2]. The discrete optimization technique presented in [3] is
able to compute very accurate tracking; however, avoidance of
workspace obstacles is not considered. In any case, it should
be kept in mind that, independently of the specific version,
kinematic control is a greedy strategy whose optimization ca-
pabilities are inherently local; as a consequence, it can work
occasionally but never guarantee completeness (finding a solu-
tion whenever one exists).

Sampling-based methods for solving the TCMP problem
typically use a mechanism for projecting configuration space
samples on the submanifold where the task constraint is satisfied;
see [4] for a review and [5]–[7] for specific techniques aimed
at manipulation planning. These methods generally provide
probabilistic completeness, but suffer from the limitation that
configuration space samples are connected by local paths lying
outside the constrained manifold. To improve task tracking
accuracy, it is necessary to use a more dense sampling, typically
leading to a dramatic increase of the time needed to compute a
plan. For complex problems, this approach can turn out to be
very inefficient and impractical.

In [8], we introduced a sampling-based approach for solv-
ing the TCMP problem that avoids the need for a projection

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 27,2020 at 14:48:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4327-6336
https://orcid.org/0000-0002-6094-7592
https://orcid.org/0000-0001-6153-9278
mailto:protect LY1	extbraceleft cefalo
mailto:ferrari
mailto:orioloprotect LY1	extbraceright @diag.uniroma1.it

CEFALO et al.: OPPORTUNISTIC STRATEGY FOR MOTION PLANNING IN THE PRESENCE OF SOFT TASK CONSTRAINTS 6295

mechanism thanks to a control-based motion generation scheme;
as a consequence, it becomes possible to guarantee continu-
ous satisfaction of the task constraint with arbitrary precision.
Building on this basic technique, we have proposed a method
for repeatable motion planning over cyclic tasks [9] and another
for planning dynamically feasible motions in the presence of
moving obstacles [10]. All these planners are designed for the
case of hard constraints.

Most motion planners for the case of soft task constraints rely
on some sort of relaxation of the equality constraint represented
by the assigned task path or trajectory [11], [12]. In [13], [14],
planning is performed over an approximation of the constrained
configuration space.

All the above methods attempt to satisfy only the soft task
constraint throughout the motion. We argue, however, that it
would be interesting (and presumably practical) to develop an
opportunistic planner which is capable of satisfying the hard
constraint whenever possible and of exploiting the available
tolerance only when needed. In particular, deviations from
the given task path should only take place in the presence of
obstructions in the constrained configuration space, such as a
narrow or closed passage. Narrow passages are a well-known
problematic issue for sampling-based planners; among the most
successful methods to handle them, one may mention Gaussian
sampling [15] and the bridge test [16]; see [17], [18] for reviews
on the topic. Very few works look at narrow passages in a
task-constrained setting; one example is [19].

The objective of this letter is precisely to present a motion
planner for the case of soft task constraints that is, for the first
time, opportunistic in the sense defined above. To this end, we
provide the following contributions:
� a hard planner for generating collision-free motions that re-

alize exactly the desired task path, essentially an adaptation
of our control-based randomized method for TCMP [8];

� a heuristic criterion to detect obstructions to the hard
planner due to narrow/closed passages in the constrained
configuration space;

� a soft planner for generating collision free-motions that
are compliant with the soft task and allow to bypass the
obstructions detected by the hard planner;

� another heuristic criterion to estimate when the obstruc-
tions to hard planning have been removed.

The letter is organized as follows. Section II provides a precise
formulation of the considered planning problem. An overview of
the proposed opportunistic planner is given in Section III, while
the hard and soft subplanners are described in Sects. IV and V,
respectively. Several planning experiments for the PR2 mobile
manipulator are shown in Section VI. Finally, in Section VII we
discuss some possible future developments.

II. PROBLEM FORMULATION

Consider a robot whose configuration q takes values in a
nq-dimensional configuration space C. The robot moves in a
workspace W ⊆ IR3 containing fixed obstacles. Denote by
O ⊂ W and R(q) ⊂ W , respectively, the volume occupied by

the obstacles and by the robot at configuration q, and by Cfree
the free configuration space.

Assume that the robot is free-flying (i.e., its configuration can
move arbitrarily in C), so that its kinematic model consists of
simple integrators. In order to plan paths, we use a geomet-
ric version [10] of such model, expressed as q′ = ṽ, where
()′ = d()/ds denotes the derivative w.r.t. the path parameter s.
This equation entails that the tangent vectors to any path q(s)
in C can be chosen arbitrarily by specifying the (geometric)
inputs ṽ.

The task is described in coordinates t, taking values in an
nt-dimensional task space T . Coordinates t and q are related
by the forward kinematic map t = f(q), which at the tangent
vector level becomes t′ = J(q)q′, where J(q) = df/dq is the
task Jacobian. We will assume that nq > nt, i.e., the robot is
kinematically redundant for the assigned task.

In the situation of interest, shown in Fig. 1, the robot is
assigned a soft task defined by
� the desired task path td(s), with the path parameter s taking

values in [0,1] without loss of generality;
� the tolerance Δt(s), s ∈ [0, 1], a positive nt-vector that

represents for each component the maximum admissible
deviation of t from td at s.

The robot is allowed to exploit the tolerance whenever realiz-
ing the desired task exactly is difficult or impossible, due to the
presence of narrow or closed passages in C. The motion planner
must be able to identify such situations automatically in order
to act accordingly.

Letet(q, s) = td(s)− f(q(s)) be the task error associated to
configuration q at s. In the following, we say that a configuration
q is compliant with the soft task if1

|et(q, s)| ≤ Δt(s), for some s ∈ [0, 1]. (1)

A configuration q is compliant with the hard task if et(q, s) = 0
for some s ∈ [0, 1] (i.e., if it realizes one sample of the desired
task path).

Soft-Task-Constrained Motion Planning is the problem of
finding a configuration-space path q(s), s ∈ [0, 1], such that for
all s:
� q(s) is compliant with the soft task (deviations from the

desired path are within the tolerance).
� R(q(s)) ∩ O = ∅ (collisions are avoided);
� self-collisions, singularities and joint limits are also

avoided.
Although this is not made explicit in the above formulation,

we would obviously like the solution to comply with the hard
task as much as possible. Also, we assume that the initial
configuration qini is assigned, with f(qini) = td(0), while the
final configuration qfin = q(1) will result from planning.

Configurations that are compliant with the hard task make up
a (nq − nt)-dimensional submanifold of C, denoted by Chard,
which naturally decomposes as a foliation. In fact, it is Chard =
∪s∈[0,1]L(s), with the generic leaf defined as

L(s) = {q ∈ C : et(q, s) = 0}.

1This inequality and similar ones in the letter are meant componentwise.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 27,2020 at 14:48:59 UTC from IEEE Xplore. Restrictions apply.

6296 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

The subset Csoft of configurations that are compliant with the
soft task is instead nq-dimensional. By letting

S(s) = {q ∈ C : |et(q, s)| ≤ Δt(s)}

we can write Csoft = ∪s∈[0,1]S(s). However, this is not a fo-
liation because the S subsets are not disjoint: a configuration
will in general belong to multiple subsets S . Clearly, we have
Chard ⊂ Csoft and L(s) ⊂ S(s), for all s ∈ [0, 1].

III. OVERVIEW OF THE OPPORTUNISTIC PLANNER

The proposed planner builds a tree T in Csoft ∩ Cfree, with
configurations as vertexes and collision-free subpaths as edges.
To this end, we make use of N + 1 samples of the desired task
path td(s), corresponding to the equispaced sequence {s0 =
0, s1, . . ., sN−1, sN = 1}. Henceforth, we use the shorthand
notation Li = L(si) and Si = S(si).

T is grown by two (sub)planners that alternate depending
on the context: the Hard Planner (HP) and the Soft Planner
(SP). The basic difference between them is that HP works in
Chard and SP in Csoft, i.e., subpaths generated by the first are
compliant with the hard task, whereas those generated by the
second are compliant with the soft task. Correspondingly, a
vertex of T generated by HP will belong to a single Li, whereas
a vertex generated by SP may belong to one or more Si, with
i = 1, . . ., N .

The pseudocode of the proposed planner is given in Algo-
rithm 1. Construction of T starts by rooting it at the initial qini.
At the generic iteration, let h (h = 0, . . . , N − 1) be the frontier
index, i.e., the index of the largest sample of s for which there
exists a vertex q in T on Lh or Sh.

First, HP is invoked in the attempt to extend T as much as
possible in Chard. When HP stops, it returns an updated value
of h. If h < N , it means that HP has heuristically identified
an obstruction to extending T from Lh through subpaths in
Chard; this may indicate that the extension is simply difficult,
due to the presence of a narrow passage in Chard ∩ Cfree, or
actually impossible, as it happens when an obstacle occupies
a portion of the desired task path. At this point, SP is invoked
to allow extension of T from Lh in Csoft, the rationale being
that this may overcome the obstruction. When SP stops, it also
returns an updated current value ofh, now representing the index
associated to the value of s where extension by HP is considered
viable again; HP is invoked, and the procedure is repeated (see
Fig. 2). SP returns h = ∅ if it does not succeed in extending T
from Lh. The inner loop (lines 3–7 of Algorithm 1) continues
until h = N or h = ∅. In the first case, a configuration qfin

exists in T such that qfin ∈ LN or qfin ∈ SN (depending on
whether it has been generated by HP or SP), and a path qiniqfin

can be extracted from T . In the second case, the planner returns
a failure.

A remark is in order here about the choice of N , i.e., the
number of subsets Li (or Si) used by our planner. While N
has no impact on the accuracy with which the desired task
path is realized, it is true that larger values of N allow a finer
generation of subpaths inT , ultimately increasing the possibility
of navigating the robot among obstacles. However, the size of the

Fig. 2. The tree T built by the opportunistic planner (solid blue/green). The
portion of T up to Lh (solid blue) has been generated by HP and is contained in
Chard. The red arrows originating at vertexes on Lh indicate a number of failed
extension attempts, after which SP has been invoked to extendT in Csoft. To this
end, SP identifies the first task sample sk where the obstruction has disappeared,
and grows an auxiliary tree Tsoft (dashed green) towards Sk . When Tsoft has
reached Sk , the subpath from Lh to Sk (solid green) is added as an edge to T .
At this point, control goes back to HP, and extension of T is in Chard is resumed
(solid blue).

tree will grow accordingly, for vertexes will have to be placed on
a larger number of subsets Li (by HP) or Si (by SP). The value
of N must therefore represent a reasonable trade-off between
maneuvrability of the robot and complexity of planning.

In the following sections, we describe in detail the structure
of both the HP and SP planners.

IV. HARD PLANNER

HP is essentially an adaptation of the control-based planner
proposed in [8], with the addition of a heuristic-based mecha-
nism for detecting obstructions to further tree extension in Chard.
The pseudocode of HP is given in Algorithm 2.

At each iteration, a random configuration qrand is generated
in Ctask. The tree T is then searched for the closest vertex qnear

to qrand; call sj the path parameter value associated to the leaf
Lj where qnear lies. At this point, a subpath starting from qnear

and leading to a new configuration qnew ∈ Lj+1 is produced
by numerical integration of q′ = ṽ from sj to sj+1 under the
following motion generation scheme:

ṽ = J †(q)(t′d + ktet(q)) + (I − J †(q)J(q))w̃, (2)

where J † is the pseudoinverse of the task Jacobian J , kt is a
positive gain, I − J †J is the orthogonal projection matrix in the

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 27,2020 at 14:48:59 UTC from IEEE Xplore. Restrictions apply.

CEFALO et al.: OPPORTUNISTIC STRATEGY FOR MOTION PLANNING IN THE PRESENCE OF SOFT TASK CONSTRAINTS 6297

null space ofJ , and w̃ is anq-dimensional vector that represents
a residual geometric input (it can be chosen arbitrarily without
affecting task execution). To allow effective exploration of the
planning space, w̃ is randomly generated with bounded norm.
Subpaths generated from Chard via (2) are guaranteed to remain
in Chard; whereas they converge exponentially to Chard if qnear

is outside it.
Once it has been generated, the subpath qnearqnew is val-

idated, i.e., it is checked for collision with obstacles, self-
collisions, singularities2 and violation of joint limits. If none
of the above occurs, the subpath is valid and we add qnew

and qnearqnew to T as, respectively, a new vertex and edge.
If qnew belongs to a leaf on which there are no other vertexes
(i.e., if qnew ∈ Lh+1), the frontier index h is increased. If the
subpath is not valid, the failure counter mfail associated to qnear

is increased.
The above extension procedure is iterated until the frontier

index h reaches N , or an obstruction is detected to further
extension of T . As explained in the previous section, the latter
may be due to a narrow or even closed passage in Chard ∩ Cfree.
To identify such situations, a heuristic criterion is used. In
particular, HP will assume that an obstruction exists if both the
following conditions are satisfied (see Fig. 3):
� the number mfron of vertexes on the frontier leaf Lh has

reached a threshold value mmax
fron , indicating that Lh has

been sufficiently explored;
� for each vertex qj on Lh, the number of failed expansions
mfail(qj) from qj has reached a threshold value mmax

fail ,
implying that a sufficient number of extensions have been
attempted from the vertex (and therefore kinematic redun-
dancy has been fully exploited).

Upon detecting an obstruction, HP returns control to the main
planner with h as frontier index.

2We have chosen to discard singular configurations in HP for two reasons.
First, most singularities of redundant robots are avoidable, in the sense that the
desired task path can be executed by a different joint space motion. The second
reason is that, while it is true that a singularity-robust pseudoinverse would allow
to go through unavoidable singularities, this would produce an error with respect
to the desired path; by discarding singularities, we entrust SP to intervene and
produce such deviation if necessary to solve the problem.

Fig. 3. The proposed heuristic criterion detects an obstruction if (1) the number
mfron of vertexes on the frontier leaf has reached a threshold mmax

fron , and (2)
the number mfail(qj) of failed extension attempts from each such vertex qj
has reached a threshold mmax

fail .

V. SOFT PLANNER

SP, whose pseudocode is given in Algorithm 3, is invoked
when HP detects an obstruction to further extension of T in
Chard fromLh. SP first identifies the indexk (k = h+ 1, . . . , N)
associated to the first task sample sk where the obstruction
disappears, and then grows an auxiliary tree Tsoft in Csoft to
connect Lh to Sk. Once a connecting subpath has been found, it
is extracted from Tsoft and added as an edge to T . At this point,
HP resumes planning in Chard (Fig. 2).

Similarly to HP for detecting obstructions, also SP uses a
heuristic criterion to identify k. In particular, a fixed number
of inverse kinematics solutions is generated in Lh+1. If the
number mfree of collision-free configurations among them is
larger than a given threshold mmin

free , then k = h+ 1; otherwise,
the procedure is repeated for Lh+2, and so forth. If h reaches N ,
it means that SP will operate until task termination as planning
in Chard can never be resumed.

Once k has been identified, SP starts to grow an auxiliary
tree Tsoft in Csoft, whose root is chosen at a random vertex qh

of T lying on Lh. At each iteration, a random configuration
qrand is generated in Cfree and its closest vertex qnear in Tsoft

is found. Then, the SP extension procedure (described in detail
below) is invoked to produce a subpath qnearqnew which is valid
and complies with the soft task for increasing values of s. If
successful, qnearqnew and qnew are added to Tsoft as an edge
and a vertex, respectively. This procedure is iterated until one of
the following conditions is met:
� qnew ∈ Sk, i.e., qnew is compliant with the soft task at sk.

In this case, the subpath qhqnew is extracted from Tsoft and
added to T together with qnew as, respectively, a new edge
and a new vertex.

� A maximum number imax of extension attempts is ex-
ceeded. In this case, a failure is reported.

A. Soft Tree Extension

The SP extension procedure, whose pseudocode is given in
Algorithm 4, generates a subpath qnearqnew in Csoft through a
sequence of configurations that are valid and compliant with the
soft task for increasing values of s. To this end, it uses a fine

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 27,2020 at 14:48:59 UTC from IEEE Xplore. Restrictions apply.

6298 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

discretization of the [sh, sk] interval with a step δs, producing
the equispaced sequence {sh, sh + δs, . . . , sh +M · δs = sk},
with M = (sk − sh)/δs. Every new configuration generated
during extension will be associated to a unique value of s within
the above sequence.

Extension begins by taking a step of length η from qnear

towards a random configuration qrand; let qcurr be the generated
configuration and scurr the associated parameter sample, i.e.,
the smallest value in the subsequence {snear + δs, . . . , sk} for
which qcurr is compliant with the soft task:

scurr = min s ∈ {snear + δs, . . . , sk} : qcurr ∈ S(s), (3)

where snear is the parameter sample associated to qnear.
Then, an iterative procedure starts aimed at generating a

subpath in Csoft fromqcurr towardsSk. At the generic iteration, a
task error is computed for the current configuration qcurr giving
a small increase δs to the associated path parameter value scurr:

et(qcurr, scurr + δs) = td(scurr + δs)− f(qcurr). (4)

Then, a descent direction for the task error in configuration space
is computed as

d = − JT (qcurr)et(qcurr, scurr + δs)
∥
∥JT (qcurr)et(qcurr, scurr + δs)

∥
∥
, (5)

where JT (qcurr) is the transpose of the task Jacobian. The
current configuration is then updated by taking a step of length
η in the direction d, and the cycle continues.

The cycle is interrupted in the following cases:
1) the current configuration qcurr belongs to Sk, i.e., scurr =

sk;
2) qcurr is not compliant with the soft task;
3) qcurr is not valid.
In case 1, a subpath starting from qh and leading to a configu-

ration in Sk has been found, and is returned to SP together with
the configuration itself. In cases 2–3, the subpath generated so
far cannot be further extended without violating the validity re-
quirements and the compliance with the soft task; therefore, only
the portion of the subpath leading to the parent configuration of
qcurr is returned to SP.

VI. PLANNING EXPERIMENTS

We have implemented the proposed opportunistic planner in
the V-REP simulation environment on an Intel Core i7-8700 K
CPU running at 3.7 GHz. The chosen robotic platform is the
PR2 mobile manipulator, which consists of an omnidirectional
base, a liftable torso, and two arms with 8 DOFs each.

We present planning experiments obtained in four different
scenarios. The task is always assigned in terms of the position
of the robot right end-effector, while the left arm is kept frozen.
Hence, the robot configuration q consists of the planar position
and orientation of the base, the torso height, and the joint
coordinates of the right arm, for a total of nq = 12 generalized
coordinates.

The same parameters are used in all scenarios:
� the samples of the desired task path are N + 1 = 11;
� kt = 10 in the motion generation (2), which is integrated

with Euler method and a stepsize of 0.002;
� HP detects the presence of a planning obstruction by setting
mmax

fron = mmax
fail = 5, while SP identifies its absence using

msol = 100 and mmin
free = 20;

� SP extension works with η = 0.01 and δs = 0.02.
The tolerance is specified in the local frame3 of the desired

task path, as this is the most simple and intuitive option for the
user. Accordingly, compliance with the soft task at a certain
configuration is evaluated using (1) by expressing the task error
in that frame.

For each scenario, we report some snapshots from a solution
(Figs. 4– 7) as well as the evolution of the task error along that
solution (Fig. 8). To better appreciate the quality of the generated
motions, we invite the reader to watch the accompanying video,
which shows animated clips of the solutions.

3In our implementation, such frame has the origin at td(s) and the x- and
y-axes oriented, respectively, as t′d(s) = (x′

d, y
′
d, z

′
d) and (y′d,−x′

d, 0); the
z-axis is consequently defined. With this choice, the x-axis is always tangent to
td(s) and oriented along the direction induced on td(s) by s.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 27,2020 at 14:48:59 UTC from IEEE Xplore. Restrictions apply.

CEFALO et al.: OPPORTUNISTIC STRATEGY FOR MOTION PLANNING IN THE PRESENCE OF SOFT TASK CONSTRAINTS 6299

Fig. 4. Planning scenario 1: snapshots from a solution. The desired and actual task paths are shown in red and blue, respectively. The robot leaves the desired
path only when strictly necessary to avoid the pillar.

Fig. 5. Planning scenario 2: snapshots from a solution. The task tolerance is exploited in correspondence of the two portions of the desired path that are obstructed
by pillars.

Fig. 6. Planning scenario 3: snapshots from a solution. The robot carries an object from a location to another above the table, leaving the desired end-effector
path only when strictly necessary to avoid collisions between its torso and the table.

Fig. 7. Planning scenario 4: snapshots from a solution. Although the environment is quite cluttered, the robot succeeds in carrying the object along the desired
path, momentarily deviating from it only in order to avoid the cabinet.

In the first scenario (Fig. 4), the desired task path for the
end-effector is a line passing through a pillar. The tolerance is
specified asΔt = (0.07, 0.2, 0.1)m (corresponding to the green
volume in Fig. 1). In the first part of the motion, HP is able to
execute the desired task path (snapshots 1 and 2). In the vicinity
of the pillar, HP detects an obstruction and SP is invoked; this
leads to an end-effector path that deviates (snapshot 3) from the
desired one for s ∈ [0.3, 0.5], still remaining inside the available
tolerance (Fig. 8). As soon as SP considers the obstruction to
have disappeared, HP takes back control and the robot returns
on the desired path (snapshot 5).

The second scenario (Fig. 5) is aimed at confirming that
the opportunistic planner is able to leave and return to the
desired task path multiple times. To this end, the robot end-
effector is assigned a sinusoidal path that passes through two
pillars, with the tolerance defined as Δt = (0.07, 0.3, 0.1) m.
Snapshots 2 and 4 show that the robot correctly exploits

the tolerance twice, for s ∈ [0.1, 0.3] and s ∈ [0.7, 0.9], while
the desired path is realized everywhere else (see alsose (see
Fig. 8).

In the third scenario (Fig. 6) the robot must execute a simple
pick and place task, i.e., moving a ball from an initial to a final
position on the table. In such a situation, the user may specify
a very simple (and time-efficient) tentative task path, defined
as the line segment joining the two locations above the pick
and place positions. This path may be abandoned if necessary,
but for safety reasons it is desirable that the object always
remains above (but not in contact with) the table during the
motion. Such requirements translate to a tolerance specified as
Δt = (0.07, 0.3, 0.1) m. The results show that the desired path
is perfectly executed at the start and at the end, with the robot
retracting its end-effector for s ∈ [0.4, 0.8] (snapshots 2–4) to
avoid collision between its torso and the table. As indicated by
Fig. 8, the task error is always within the tolerance region.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 27,2020 at 14:48:59 UTC from IEEE Xplore. Restrictions apply.

6300 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Fig. 8. Evolution of the task error et in the four planning experiments. The
dashed lines indicate the tolerance for each component.

The final scenario (Fig. 7) also deals with a pick and place
task, with the robot now required to move the ball from a shelf to
a desired location on a bookcase. The task is specified through
a curved desired path and a tolerance Δt = (0.05, 0.25, 0.1) m.
An early portion of the desired path goes through a cabinet,
while the second part requires the robot to navigate a very
cluttered region. As in previous scenarios, the desired path
is initially realized (snapshot 1) and, under the action of SP,
briefly abandoned for s ∈ [0.1, 0.4] in order to avoid the cabinet
(snapshots 2 and 3). Once such obstruction has been removed,
HP takes back control and brings back the robot to the desired

TABLE I
AVERAGED PERFORMANCE DATA

path, staying on it until the end in spite of the very limited
workspace clearance.

Table I reports some performance data averaged over 20 runs
of the opportunistic planner in each scenario.

VII. CONCLUSION

We have considered the problem of planning collision-free
motions for redundant robots in the presence of soft task con-
straints, specified by a desired path in task space with an asso-
ciated tolerance. The objective was to devise a planner that can
realize the desired path for as long as possible, exploiting the
tolerance only when strictly needed to avoid a collision.

Our opportunistic approach alternates two subplanners: the
first (HP) plans a robot motion that satisfies the hard constraint,
until it detects an obstruction based on a heuristic criterion; when
this happens, it invokes the second planner (SP), which is only
required to satisfy the soft constraint and may therefore be able
to bypass the obstruction, giving back control to HP as soon
as possible. We implemented the method in V-REP for the PR2
mobile manipulator, presenting successful planning experiments
in several scenarios.

Our approach can be further developed along several lines,
such as (i) devising an automatic procedure for tuning the
planner parameters, in particular N ; (ii) extending the method
to robots subject to nonholonomic constraints; (iii) taking into
account moving obstacles; (iv) generating solutions that are
optimal w.r.t. a given performance criterion.

REFERENCES

[1] S. Chiaverini, G. Oriolo, and A. A. Maciejewski, “Redundant robots,”
in Springer Handbook of Robotics – 2nd Edition, B. Siciliano and O.
Khatib, Eds. Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2016,
pp. 221–242.

[2] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of redun-
dant manipulators: Generalizing the task-priority framework to inequality
task,” IEEE Trans. Robot., vol. 27, no. 4, pp. 785–792, Aug. 2011.

[3] D. Rakita, B. Mutlu, and M. Gleicher, “Stampede: A discrete-optimization
method for solving pathwise-inverse kinematics,” in Proc. IEEE Int. Conf.
Robot. Autom., 2019, pp. 3507–3513.

[4] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for
motion planning with constraints,” Annu. Rev. Control, Robot., Auton.
Syst., vol. 1, pp. 159–185, 2018.

[5] G. Oriolo and C. Mongillo, “Motion planning for mobile manipulators
along given end-effector paths,” in Proc. IEEE Int. Conf. Robot. Autom.,
2005, pp. 2166–2172.

[6] M. Stilman, “Task constrained motion planning in robot joint space,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2007, pp. 3074–3081.

[7] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A frame-
work for pose-constrained manipulation planning,” Int. J. Robot. Res.,
vol. 30, no. 12, pp. 1435–1460, 2011.

[8] G. Oriolo and M. Vendittelli, “A control-based approach to task-
constrained motion planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2009, pp. 297–302.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 27,2020 at 14:48:59 UTC from IEEE Xplore. Restrictions apply.

CEFALO et al.: OPPORTUNISTIC STRATEGY FOR MOTION PLANNING IN THE PRESENCE OF SOFT TASK CONSTRAINTS 6301

[9] G. Oriolo, M. Cefalo, and M. Vendittelli, “Repeatable motion planning
for redundant robots over cyclic tasks,” IEEE Trans. Robot., vol. 33, no. 5,
pp. 1170–1183, Oct. 2017.

[10] M. Cefalo and G. Oriolo, “A general framework for task-constrained
motion planning with moving obstacles,” Robotica, vol. 37, pp. 575–598,
2019.

[11] T. Kunz and M. Stilman, “Manipulation planning with soft task con-
straints,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012,
pp. 1937–1942.

[12] M. Guo and M. M. Zavlanos, “Probabilistic motion planning under tem-
poral tasks and soft constraints,” IEEE Trans. Autom. Control, vol. 63,
no. 12, pp. 4051–4066, Dec. 2018.

[13] I. Sucan and S. Chitta, “Motion planning with constraints using configu-
ration space approximations,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2012, pp. 1904–1910.

[14] Z. Fusheng et al., “Learning the metric of task constraint manifolds for
constrained motion planning,” Electronics, vol. 7, p. 395–412, 2018.

[15] V. Boor, M. Overmars, and A. V. der Stappen, “The gaussian sampling
strategy for probabilistic roadmap planners,” in Proc. IEEE Int. Conf.
Robot. Autom., 1999, pp. 1018–1023.

[16] D. Hsu, “The bridge test for sampling narrow passages with probabilis-
tic roadmap planners,” in Proc. IEEE Int. Conf. Robot. Autom., 2003,
pp. 4420–4426.

[17] Z. Sadeghi and H. Moradi, “A new sample-based strategy for narrow
passage detection,” in Proc. 9th IEEE World Congr. Intell. Control Autom.,
2011, pp. 1059–1064.

[18] M. Saha, J.-C. Latombe, Y.-C. Chang, and F. Prinz, “Finding narrow
passages with probabilistic roadmaps: The small-step retraction method,”
Auton. Robots, vol. 19, no. 3, pp. 301–319, 2005.

[19] D. Berenson, T. Siméon, and S. Srinivasa, “Addressing cost-space chasms
in manipulation planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2011,
pp. 4561–4568.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on August 27,2020 at 14:48:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

