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ADHERENT: Learning Human-like Trajectory
Generators for Whole-body Control of

Humanoid Robots
Paolo Maria Viceconte , Raffaello Camoriano , Giulio Romualdi , Diego Ferigo , Stefano Dafarra ,

Silvio Traversaro , Giuseppe Oriolo , Lorenzo Rosasco, and Daniele Pucci

Abstract—Human-like trajectory generation and footstep plan-
ning represent challenging problems in humanoid robotics.
Recently, research in computer graphics investigated machine-
learning methods for character animation based on training
human-like models directly on motion capture data. Such methods
proved effective in virtual environments, mainly focusing on trajec-
tory visualization. This letter presents ADHERENT, a system ar-
chitecture integrating machine-learning methods used in computer
graphics with whole-body control methods employed in robotics to
generate and stabilize human-like trajectories for humanoid robots.
Leveraging human motion capture locomotion data, ADHERENT
yields a general footstep planner, including forward, sideways, and
backward walking trajectories that blend smoothly from one to an-
other. Furthermore, at the joint configuration level, ADHERENT
computes data-driven whole-body postural reference trajectories
coherent with the generated footsteps, thus increasing the human
likeness of the resulting robot motion. Extensive validations of the
proposed architecture are presented with both simulations and
real experiments on the iCub humanoid robot, thus demonstrating
ADHERENT to be robust to varying step sizes and walking speeds.

Index Terms—Humanoid robot systems, machine learning for
robot control, whole-body motion planning and control.
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Fig. 1. Sketch of the end-to-end system architecture proposed in this work,
from motion capture data collection to robot locomotion control.

I. INTRODUCTION

THE complexity of the problem of generating trajectories for
humanoid robots increases considerably when targeting

real-time trajectory generation for different environmental con-
ditions and robot locomotion modes. For instance, whole-body
trajectory generation methods for robot walking soon become
numerically intractable due to the high dimensionality of the
problem, especially when the overall generated motion is re-
quired to fulfill a certain degree of human likeness to prove more
predictable and interpretable for humans. This paper proposes
a system architecture for efficiently addressing the whole-body
human-like trajectory generation problem for humanoid robots.
The architecture builds upon recent machine-learning methods
developed for character animation in computer graphics (CG),
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integrated with state-of-the-art techniques for whole-body con-
trol in humanoid robotics.

State-of-the-art architectures for humanoid locomotion
simplify the whole-body trajectory generation problem by hier-
archically decomposing it into several layers [1]. Layers’ func-
tionalities can be categorized [2] in: 1) Trajectory optimization,
providing a high-level footstep plan given user input; 2) Simpli-
fied model control, computing feasible Center of Mass (CoM)
trajectories given the footsteps; and 3) Whole-body QP control,
producing dynamically-feasible joint trajectories. Instead of
directly optimizing over large configuration spaces, the first two
layers tend to use simplified models to compute solutions. For
instance, the unicycle planner [3] employs a unicycle model to
produce footstep plans at the trajectory optimization layer, con-
straining the plan to simple directed walking on a plane [4], [5].
In recent years, hierarchical architectures have been successfully
applied to produce robust walking on a diverse range of complex
humanoids 1 [1]–[3], [6]–[10], also allowing for the integration
of reactive strategies [11], [12]. However, simplified models do
not fully represent the complex humanoid mechanical structure
in order to reduce computational cost and allow for on-line
operation. As a result, they restrict the attainable solutions set
and the resulting behaviors with respect to those achieved by
humans. In particular, they cannot efficiently compute walking
patterns with unconstrained footstep placement. Moreover,
whole-body human likeness is hard to explicitly encode and
optimize for with respect to other attributes such as feasibility,
stability, and robustness, and is therefore usually neglected
in such schemes. Data-driven models of human trajectories
have recently been explored to enable human-like behavior in
robotics [13], [14]. Applications include anticipatory trajectory
generation for human-robot collaboration [15]. Still, such
methods focus on overall path planning (i.e., CoM trajectory),
and do not target human likeness at the joint or footstep level.

Another recent research stream focuses on reinforcement
learning (RL) for dynamic character control. DeepMimic [16]
exploits motion capture (MoCap) data to guide policy training
via imitation, demonstrating remarkable capabilities on real-
world quadrupeds [17]. Motion Matching can also be employed
alongside RL for retrieving motions from a MoCap dataset to
train a policy in simulation [18]. In [19], mixtures of learning
models bias RL policy learning with human data to control
the lower body of a simulated humanoid. Policies learned in
simulation are shown to successfully transfer to real bipeds such
as Cassie [20]. Although very promising [21], the application of
RL to complex real-world humanoids is still preliminary, while
hierarchical control is at the state of the art.

The problem of human-like trajectory generation is not lim-
ited to robotics research. It is a prominent topic in CG research
too, especially due to applications to realistic character anima-
tion, and has witnessed several recent breakthroughs based on
the introduction of machine-learning methods. In particular, the
core of the problem can be framed as the kinematic prediction of
the whole-body joints configuration in the next time step, given
the current configuration and the high-level target trajectory to
be followed (i.e., obtained from human input). Many works ap-
proach this problem by modeling it as a nonlinear autoregressive
model with exogenous inputs. They employ powerful learning-
based predictive models able to capture the motion’s complex-
ity in high dimensions. In Phase-Functioned Neural Networks

1e.g., on Atlas: https://slideslive.com/38946802/boston-dynamics

(PFNN) [22], the predictive model is a phase-weighted mixture
of neural networks trained on human MoCap data. At prediction
time, the network weights are blended according to a cyclic
phase function encoding the periodicity of the walking motion.
This resulted in a significant breakthrough for character control,
enabling remarkably natural motion and smooth transitions.
However, training data need to be annotated with phase func-
tion values, which can be costly or unfeasible for complex
and non-periodic motions. In Mode-Adaptive Neural Networks
(MANN) [23], the latter problem is solved by substituting the
phase function with a gating network, which learns end-to-end
how to effectively blend the network weights. Note that both
PFNN and MANN are limited to trajectory generation for kine-
matic rendering only. In fact, their target applications are in
settings in which natural visual appearance, rather than dynamic
control of a real-world system, is the primary requirement (i.e.,
videogames).

In this work, we exploit efficient learning methods, proved
effective in CG character animation, as a solution to the complex
problem of generating whole-body trajectories for humanoid
robots in real time. Our solution achieves an efficiency com-
parable to simplified-model trajectory generators. Still, it pro-
duces more general whole-body trajectories that state-of-the-
art whole-body trajectory generators can only compute offline
due to high computational costs. Moreover, such trajectories
exhibit a certain degree of human-likeness both at the joint and
footstep levels. To our knowledge, this work represents the first
successful application of human-driven whole-body trajectory
generators to real-world humanoid locomotion control. The
main contributions are:
� We present ADHERENT (humAn-Driven wHolE-body

REference geNerator and conTroller), a comprehensive
learning-based architecture for efficient human-like whole-
body trajectory generation and control of humanoid robots,
and validate its robustness with extensive simulations and
real-world experiments on the iCub humanoid robot.

� We demonstrate the generality of the learning-based foot-
step planner incorporated into ADHERENT by showing its
adaptability to diverse walking patterns, facing directions,
start and stops, and smooth transitions among these.

� We verify the improved human likeness of the whole-body
motions achieved by exploiting the data-driven postural
references provided by ADHERENT in conjunction with
the planned footsteps.

II. BACKGROUND

A. Notation
� I and B denote the inertial frame and the base frame of the

robot. In the specific case of iCub [24], B is positioned at
the level of the waist, in between the two legs, with the X
axis pointing backward and the Z axis upwards.

� Given two frames A and C, ARC ∈ SO(3) represents the
rotation matrix between the frames, i.e., given two vec-
tors Ap, Cp ∈ R3 respectively expressed in A and C, the
rotation matrix ARC is such that Ap = ARCCp.

� Superscripts ·H and ·R indicate quantities referring to the
human and the robot, respectively.

� Im, 0m ∈ Rm×m denote the identity and zero matrices.
� When referring to network inputs x, outputs y, weights α̂,

and blending coefficients θ or to their elements, subscript
·i indicates quantities of the i-th time step ti.

https://slideslive.com/38946802/boston-dynamics
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� The vec(·) operator vectorizes matrices by rows.
� Given a, b ∈ R3, we define a∧ = A ∈ R3×3 as the skew-

symmetric matrix such that a∧b = a× b.
� n denotes the robot’s Degrees of Freedom (DoFs).
� ν = (I ṗB, IωB, ṡ) ∈ R6+n is the generalized velocity of

the complete floating-base system, where ṡ denotes the
joint velocities. I ṗB and IωB, respectively, are the linear
and angular velocities of the base frame w.r.t. the inertial
frame, whose coordinates are expressed in the inertial
frame, i.e., IṘB = Iω∧

B
IRB.

B. Whole-Body Geometric Retargeting

Among the various approaches to human motion retarget-
ing (see, e.g., [25]–[28]), Whole-Body Geometric Retarget-
ing (WBGR) is a recent method easily adaptable to different
robot models and human subjects [29]. Assuming a degree of
topological similarity between the human’s and robot’s me-
chanical structures, WBGR uses m correspondences between
frames associated with m human and robot links at a reference
configuration. Then, given the human link orientations IR i

H,
i ∈ 1, . . .,m to be retargeted onto the robot, WBGR allows to
retrieve the robot joint angles by solving the inverse kinematics
problem with the robot orientations IR i

R = IR i
H
HR i

R as targets:
each HR i

R is a proper constant rotation accounting for possible
human-robot frame misalignment.

C. Mode-Adaptive Neural Networks

MANN is a recently-proposed neural network architecture for
responsive character motion generation specifically designed for
multi-modal and unlabeled data [23]. In particular, assume that
xi encodes the previous configuration of the controlled character
as well as the desired future motion specified by the user. Then,
MANN predicts a new configuration yi for the character that
achieves the user-specified motion. The next user input is com-
bined with yi, forming the next autoregressive network input
xi+1. This enables MANN to iteratively generate trajectories
following the MoCap data distribution while being responsive
to the user. The main characteristic of this architecture, which
builds upon the Mixture of Experts paradigm [30], is that of
being composed of two subnetworks:
� The Motion Prediction Network: given xi, it predicts yi;
� The Gating Network: given xi or a subsampled in-

put x̂i, it predicts the blending coefficients vector θi =
[θi1, . . ., θiK ]� used to dynamically compute the weights
vector α̂i of the Motion Prediction Network from the K
expert network weights vectors {α1, . . .,αK}.

In an end-to-end training procedure from unstructured Mo-
Cap data, both the weights μ of the Gating Network and the
K expert weights {α1, . . .,αK} are learned. At runtime, the
weights α̂i of the Motion Prediction Network at time step i
are dynamically computed by linearly combining the K experts
{α1, . . .,αK}with the blending coefficients θi predicted by the
Gating Network, that is, α̂i =

∑K
j=1 θijαj .

D. Control Architectures for Humanoid Robot Locomotion

A state-of-the-art control architecture for humanoid robot
locomotion is composed of three nested layers that exploit both
simplified and complete robot models [2].

TABLE I
BREAKDOWN OF THE MOCAP DATA

Given the footsteps, in the outer trajectory optimization loop,
an exponential interpolation technique is used to plan a desired
Divergent Component of Motion (DCM) trajectory.

Then, the central simplified model control loop is in charge
of stabilizing the DCM dynamics by using the Zero Moment
Point (ZMP) position rzmp ∈ R2 as control input. The tracking
of the desired DCM position and velocity ξref , ξ̇ref ∈ R2 is
guaranteed by the instantaneous control law given by:

rzmp
ref = ξref − ξ̇ref

ω̄
+Kξ

p(ξ − ξref ) +Kξ
i

∫
(ξ − ξref )dt,

(1)
where Kξ

p > I2 and Kξ
i > 02 [2], ω̄ =

√
g/z0, g is the gravita-

tional constant and z0 denotes the constant CoM height assumed
for the Linear Inverted Pendulum (LIP) model. The desired ZMP
position rzmp

ref is then stabilized along with the reference ground
CoM position and velocity xref , ẋref ∈ R2 by means of the
control law given by:

ẋ∗ = ẋref −Kzmp(r
zmp
ref − rzmp) +Kcom(xref − x), (2)

where Kcom > ω̄I2 and 02 < Kzmp < ω̄I2 [2].
Finally, the inner whole-body Quadratic Programming (QP)

control loop computes the robot velocity ν as the solution to a
stack of tasks formulation with hard and soft constraints, cast
as a QP problem. The joint velocity ṡ included in the solution
of the QP problem, obtained via standard QP solvers, is then
integrated to get joint positions for position control.

III. ADHERENT

The proposed ADHERENT system architecture consists of
four main components: Dataset Collection, Retargeting, Tra-
jectory Generation, and Trajectory Control – see Fig. 1 for
an intuitive overview and Fig. 2 for a more detailed scheme.
In the following, we present the methods implementing each
component. Note that, in light of ADHERENT’s modularity,
specific methods can be easily replaced by more efficient and
effective ones in future instances of the architecture.

A. Dataset Collection

The Dataset Collection component is in charge of acquiring
human locomotion trajectory data. For this, we use our human
wearable data processing framework [31], [32] that fuses data
from a sensorized suit by XSens technologies, carrying 17
wireless inertial sensors scattering the entire body. Data span
a wide range of walking motions (forward, backward, lateral,
and diagonal) performed on a flat terrain with continuously-
changing steering direction. Stops and restarts are included in
the collected sequences, characterized by footsteps of variable
length. As detailed in Table I, each motion is performed for
several minutes in a row. Then, plenty of transitions between
different motions are collected in a long mixed sequence. Our
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Fig. 2. Block diagram of the overall learning-based ADHERENT architecture proposed in this work.

final dataset comprises around 1 h of unlabeled MoCap data at
60 fps. We then double it by mirroring, i.e., for each data point
the base orientation is mirrored with respect to the world X-Z
plane, while the left and right link orientations for the limbs are
switched and mirrored with respect to the model’s mid-sagittal
plane, resulting in a total of 441570 data points.

B. Retargeting

The Retargeting component adjusts the human trajectories so
as when the modified trajectories are applied to the robot, its
motion turns out to be similar to the human one. We retarget
the MoCap dataset by complementing the WBGR introduced in
Section II-B with a kinematically-feasible base motion retarget-
ing procedure which renders the robot base velocity compatible
with the retargeted robot joint trajectories.

1) Kinematically-Feasible Base Motion Retargeting:
WBGR in [29] does not address the base motion retargeting,
i.e., the retargeted base position and orientation may not be
compatible with the robot kinematics, thus possibly leading to a
robot moving forward faster than what its walking pace entails.
In other words, a swaying effect arises when dynamic motions
are retargeted to robot models structurally different from the
human subject [29]. While in CG generating models which fit
the collected data is a viable workaround [23] [18], base motion
retargeting for actual robots requires special attention.

First, assume that: i) the robot makes at least one known
contact with the environment; and ii) each foot is modeled as a
rectangular patch. Then, we propose the following approach for
kinematically-feasible base motion retargeting:

1) The contact point Ipc is identified as the lowest among
the 8 vertices of the feet’s rectangular approximations;

2) The retargeted base orientation IRB is directly retrieved
from the MoCap data;

3) The retargeted base position Ipb is computed by forward
kinematics from Ipc, constrained to remain fixed be-
tween two consecutive retargeting steps, via Ipb =

Ipc +IRCCpb, where C is the frame attached to the contact point
(i.e., the frame placed in the lowest vertex and oriented as
the support foot) and Cpb is the base position, expressed
in C, computed by forward kinematics in the updated joint
configuration returned by the latest WBGR iteration.

As a result, we obtain retargeted motions that resemble human
ones at the links level and are kinematically feasible at the base
level, as shown in the supplementary video.

C. Trajectory Generation

We interactively generate trajectories for the humanoid robot
by exploiting the MANN architecture outlined in Section II-
C. Details follow on the features extraction and the network
structure, inspired by those illustrated in [23]. Moreover, the
processing of the input and output of the network at inference
time is illustrated, including the footstep and postural extraction.

1) Features Extraction: The input and output vectors for
MANN are extracted by processing the retargeted MoCap data.
The input vector xi includes the state of the robot at ti−1 and
the ground base trajectory data at ti, that is, past and future base
trajectory data projected on the ground, subsampled to obtain
12 data points equally spaced on a 2 s window centered at ti.
More in detail:

xi = {vec(Pi), vec(Di), vec(Vi), li,︸ ︷︷ ︸
Base trajectory

si−1, ṡi−1︸ ︷︷ ︸
Robot state

} ∈ R137,

(3)
where Pi = {p1

i , . . .,p
12
i } ∈ R2×12 are ground base positions,

Di = {d1
i , . . .,d

12
i } ∈ R2×12 are ground facing directions (i.e.,

mean of base and chest pointing directions, projected on the
ground), Vi = {v1

i , . . .,v
12
i } ∈ R2×12 are ground base veloci-

ties and li =
∑12

j=7 ‖pj
i − pj−1

i ‖ ∈ R is the length of the future
ground trajectory, while si−1 ∈ R32 and ṡi−1 ∈ R32 are joint
positions and velocities at ti−1.

The output vector yi includes the state of the robot at ti,
the ground angular base transformation from ti−1 to ti, and
the future ground base trajectory data at ti+1 (i.e. 6 data points
equally spaced on a 1 s window starting from ti). Specifically:

yi = {vec(Pi+1), vec(Di+1), vec(Vi+1)︸ ︷︷ ︸
Future base trajectory

, si, ṡi︸ ︷︷ ︸
Robot
state

, ḃai︸︷︷︸
Base

transf.

} ∈ R101,

(4)
wherePi+1 = {p1

i+1, . . .,p
6
i+1} ∈ R2×6 are future ground base

positions, Di+1 = {d1
i+1, . . .,d

6
i+1} ∈ R2×6 are future ground

facing directions, Vi+1 = {v1
i+1, . . .,v

6
i+1} ∈ R2×6 are future

ground base velocities, si, ṡi ∈ R32 are joint positions and
velocities at ti, while ḃai = βi/Δti ∈ R, with Δti = ti − ti−1,
and βi denoting the angle between the ground facing directions
at ti and ti−1 (i.e., d6

i and d6
i−1, respectively).

All the ground base trajectory data in xi and yi are expressed
in the bidimensional local reference frame defined by the ground
base position at ti (i.e., p6

i ) and the ground facing direction at
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Fig. 3. Desired motion and facing directions from the joypad (left) define the
desired future ground base trajectory (center). On the right, the user-specified
future trajectory (grey) is blended with the future trajectory from the previous
network prediction (magenta), leading to the desired future ground base trajec-
tory (green) actually included in the next input to the network.

ti (i.e., d6
i ) along with its orthogonal vector. By stacking all the

input and output vectors resulting from the processing above,
we obtain the input and output matrices X ∈ R441570×137 and
Y ∈ R441570×101 which, normalized to have zero mean and unit
variance, constitute our training set.

2) Network Structure: The adopted MANN is composed of a
Motion Prediction Network and a Gating Network with 3 hidden
layers of 512 and 32 units each, respectively. As in [23], the ELU
activation function is employed. The Gating Network receives
the full input xi. We use K = 4 experts.

3) User Input Processing: At inference time, the user pro-
vides via joypad two continuous signals to interactively generate
trajectories for the robot: i) the motion direction: the direction in
which the user wants the robot to move; and ii) the facing direc-
tion: the direction towards which the user wants the robot to align
the mean of its base and torso horizontal pointing directions.
At fixed facing direction, varying the motion direction allows
to switch between frontal, sideways, and backward walking.
At fixed motion direction, varying the facing direction allows
steering. Moreover, releasing the analog for the motion direction
leads the robot to a stop. The user inputs are visualized in Fig. 3
(left), from the local viewpoint of a robot proceeding forward
while steering left.

An accurate processing of user inputs is critical for the
predictive performances of MANN. We smoothly interpolate
the inputs to generate a desired future ground base trajectory
{P ∗

i+1, D
∗
i+1, V

∗
i+1} whose components are defined as in (4). In

particular, the user-specified motion direction is used to define
the last point of a quadratic Bézier curve starting from p6

i and
constrained to end on the asymmetric shape shown in black
in Fig. 3, composed of two experimentally-found semi-ellipses
with horizontal axis of 0.35 m and vertical axes of 0.4 m and
0.25 m for the upper and lower semi-ellipse, respectively. We
obtain P ∗

i+1 by subsampling 6 data points from this Bézier
curve. As a result of the asymmetric constraint, P ∗

i+1 is longer
for forward rather than sideways or backward walking. The
user-specified facing direction is instead mapped into a series of
facing directions D∗

i+1 progressively driving the current value
to the desired one. V ∗

i+1 is obtained by differentiating P ∗
i+1.

Fig. 3 (center) provides a visualization, from the local robot’s
viewpoint, of P ∗

i+1 (red dots) and D∗
i+1 (blue vectors) generated

from the user-specified inputs (left).
As a last step, {P ∗

i+1, D
∗
i+1, V

∗
i+1} is blended with the

{Pi+1, Di+1, Vi+1} retrieved from the previous output yi in
order to obtain the ground base trajectory data for the next input
xi+1. For the blending, an example of which is shown in Fig. 3
(right), we follow the method proposed in [22], Eq. (9), with the
responsiveness parameters for positions, facing directions and
velocities respectively set to τp = 1.5, τd = τv = 1.3.

Note that user-specified motion and facing directions may
result in a desired motion which is absent or rare in the training
dataset. In such case (e.g., when the user requests to steer
too abruptly) the network may generate unexpected motions.
We solve this issue by limiting the local variation of facing
direction that the user can require to 45◦ and 20◦ for forward
and backward/sideways walking, respectively.

4) Network Output Postprocessing: When the user tries to
stop the robot, a small in-place rotation persists. Indeed, given
an xi corresponding to a desired stop, the network predicts a yi

whose ḃai component is slightly different from zero. We solve this
issue by imposing ḃai = 0 once a stop by the robot is detected.
Here, we are referring to stops at the network level, which can
occur several time instants after the user releases the joypad. We
detect such stops by searching for almost-identical consecutive
network outputs. In our case, a stop is detected if ‖yi − yi−1‖ <
τstop, with τstop = 0.05.

After the processing above, yi is used to update the robot con-
figuration. In particular, si becomes the new joint configuration
and ḃai is exploited to update the base orientation IRB. On the
contrary, yi contains no information on the linear motion of the
robot base. The updated base position Ipb is indeed computed
by applying the very same kinematic feasibility procedure used
at the retargeting stage (Section III-B).

5) Footstep and Postural Extractor: The desired feet posi-
tions and orientations composing the footstep plan are retrieved
from the generated trajectory by the Footstep Extractor. A new
foot position is added to the plan once the support foot changes.
Concerning orientations, in the case of flat terrain the plan only
includes the predicted yaw angle of the support foot.

The joint positions si ∈ yi constitute a whole-body human-
like postural. However, having been trained on data collected at
60 fps, the network generates references compatible with such
frequency. Still, the whole-body QP control layer may require
posturals at a different frequency (e.g., in this work, 100 Hz).
The Postural Extractor interpolates the network’s predictions to
obtain postural references at the required frequency.

D. Trajectory Control

We execute on the robot the genereted walking trajectories by
leveraging the control architecture introduced in Section II-D.

Given the footstep plan provided by the Footstep Extractor, a
reference DCM trajectory is obtained by the planner described
within the Trajectory Optimization layer in Section II-D. In
particular, we adopt the implementation from [33], providing
a feasible DCM trajectory even for variable CoM height.

Given a desired DCM trajectory, at each control cycle the Sim-
plified Model Control layer computes the desired CoM velocity
ẋ∗ by concatenating (1) and (2). Then, the desired CoM position
x∗ is retrieved by Euler integration.

A QP problem is formulated starting from the postural re-
turned by the Postural Extractor. The desired feet poses and
CoM trajectory {ẋ∗,x∗} are set as hard constraints. A soft
constraint aims to zero chest roll and pitch angles. The desired
joint velocity ṡ∗ included in the QP solution is integrated, and
the resulting desired joint position s∗ is sent to the robot.

IV. RESULTS

We now illustrate the results obtained after training the
proposed architecture on the dataset described in Section III-C1.
150 training epochs on the whole dataset, using mini-batches of
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Fig. 4. Top: Visualization of a mixed trajectory including forward (1-3), oriented-forward (4-6), side (7-11), and backward (12-15) walking, with smooth
transitions between them and a final stop (16). Below each frame, the user inputs interactively shaping the trajectory are plotted from the robot’s local viewpoint
(red: Desired motion direction; blue: Desired facing direction). Bottom: The same trajectory performed on iCub. Numbering highlights frame correspondences.

32 randomly selected samples, require around 25 hours on an
NVIDIA GeForce GTX 1650 GPU. The MANN architecture
is trained in a classical regression setting, minimizing the
mean squared error (MSE) between the ground truth and
the network prediction. The Adam optimizer with warm
restart (AdamWR) is configured as in [23] (i.e., learning rate
η = 1.0 · 10−4, weight decay rate λ = 2.5 · 10−3, η-restart
control parameters Ti = 10, and Tmul = 2). The Dropout keep
probability is set to 0.7. Data and code are available at
https://github.com/ami-iit/paper_viceconte_2021_ral_
adherent.

A. Trajectory Generation

Once trained, ADHERENT’s Trajectory Generation compo-
nent interactively generates walking trajectories. Each network
prediction requires around 3 ms on a 9-th generation Intel
Core i7 CPU @ 2.60 GHz. By simply varying motion and
facing directions, the user is able to move the robot forward,
backward, and sideways in a human-like fashion. Changes in the
input signals promptly translate into smooth transitions between
different walking patterns. By releasing the motion direction
analog stick, the user can stop the robot and then restart the
motion at will. Fig. 4 (top) shows the kinematic visualization
of a complex trajectory, including several walking patterns and
smooth transitions between them, interactively generated from
the user inputs shown below each frame. The footstep positions
extracted from the entire trajectory are visualized in red and
blue for the right and left foot, respectively. A larger variety of
trajectory generations is reported in the supplementary video.

Fig. 5. Simulated and experimental results for different combinations of cv
and cf . Red and green areas denote failures and successes in simulation. The
green line connects the most challenging successes on the real robot.

B. Trajectory Control

We execute the generated trajectories on the real-world 32-
Degree of Freedom (DoF) iCub humanoid [24], which is 104 cm
tall and weighs approximately 33 Kg. The control architecture
composed by the Simplified Model Control and Whole Body QP
Control layers runs at 100 Hz on a 4-th generation Intel Core i7
@ 1.7 GHz. Fig. 4 (bottom) illustrates the successful execution
of the complex trajectory visualized in the upper part of the same
figure. The footstep sequence performed by the robot is added
for the sake of clarity. The execution of this trajectory, along
with others, is shown in the supplementary video.

C. Robustness Analysis

We evaluate the robustness of ADHERENT to a challenging
range of step sizes and walking speeds, both in simulation (using
the Gazebo simulator [34]) and on the real robot. The generated
forward, backward, and side walking are characterized by a

https://github.com/ami-iit/paper_viceconte_2021_ral_adherent
https://github.com/ami-iit/paper_viceconte_2021_ral_adherent
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Fig. 6. ADHERENT-generated vs. human-retargeted joint trajectories for a set of representative joints during forward walking.

Fig. 7. Output of the Postural Extractor and measured joint positions with ADHERENT Postural (AP) vs. Fixed Postural (FP) for four upper-body joints.

nominal walking speed v (defined as average swing velocity [2])
of 0.525, 0.175, and 0.24 ms−1, and a nominal average step size
f of 28.0, 19.5, and 17.5 cm. We scale the generated trajectories
by a velocity scaling cv ∈ {0.25, 0.33, 0.5, 1} and a footstep
scaling cf ∈ {0.2, 0.4, 0.6, 0.8, 1}, resulting in a scaled footstep
size f̄ = cf · f and walking speed v̄ = cv · cf · v. Concerning
simulations, Fig. 5 illustrates the results for all the combinations
of cv and cf , with the successful trials and failures represented by
the green and the red areas, respectively. For each motion, most
combinations are successful. Regardless of cv , the maximum
admissible cf for successful backward and side walking is 0.8
and 0.6, respectively. As regards real experiments, the solid
green line in Fig. 5 connects the most challenging parameter
combinations resulting in successful outcomes. In particular, a
v̄ of 0.158, 0.068, and 0.071 ms−1 and an f̄ of 16.8, 7.9, and
10.5 cm are achieved in the most challenging forward, backward,
and side walking, respectively.

D. Human Likeness

We evaluate the human likeness of the trajectories generated
with ADHERENT by comparing them with ground-truth tra-
jectories directly retargeted from the human. A comparison of
four representative joints during forward walking is displayed in
Fig. 6. The generated trajectories, learned from a large dataset,
do not follow in every detail the specific individual retargeted
motion they are compared with (e.g. elbow in Fig. 6). Still, the
similarity of the patterns demonstrates that the trained model is
indeed able to generate trajectories which resemble the human
motions retargeted onto the robot, being therefore human-like.
The accuracy of the generated trajectories is confirmed by an
average value of 3.09 degrees for the test-set RMSE computed
on the network-predicted joint positions si ∈ yi.

Moreover, we evaluate the human likeness of the actual robot
motion by showing that the measured joint positions on the real-
world iCub closely track the ADHERENT-generated trajectories
(i.e., the output of the Postural Extractor), despite the lower-
level action of the Whole Body QP Controller. This can be seen,
for a representative set of joints during forward walking, from
the trajectories using the ADHERENT postural in Fig. 7. The
good tracking demonstrates how reference motions produced by
generators trained on human data can actually be realized on the
real robot, resulting in human-like motions.

Finally, we compare forward walking using ADHERENT
postural with one adopting a fixed postural for the upper body,

Fig. 8. Blending coefficients θ profiles with K = 4 expert weights for an
articulated trajectory including standing (0-1 s), straight (1-4 s) and steered
(4-6 s) forward walking, right-side (6-10 s), and left-side (10-15 s) walking.

as is often the case in classical humanoid robot locomotion.
When using a fixed postural, measured joint positions oscillate
in proximity of the constant reference (see Fig. 7). A side-by-side
comparison of the motions is shown in the supplementary video.
As it can be observed, the overall motion with ADHERENT
postural shows an improved human likeness.

E. Blending Coefficients Activation

We analyze how the experts specialize in different motions by
plotting the profiles of the corresponding blending coefficients
θ in Fig. 8. Note that θ activations show distinctive periodic
patterns characterizing each motion type. For instance, in both
the straight and steered forward walking phases, only θ1 and
θ2 are active, and specialize in left and right swing motions,
respectively. Moreover, θ3 and θ4 become active during right-
and left-side walking, respectively. The real-time evolution of
expert activations is shown in the supplementary video.

V. DISCUSSION

In terms of trajectory generation, ADHERENT is able to
compute whole-body reference trajectories in real time (3 ms
per prediction step), thanks to efficient neural-network-based
feedforward prediction. Using ADHERENT, a wide variety of
walking motions are successfully executed, with smooth transi-
tions from one another, on an advanced humanoid robot whose
physical properties significantly differ from those of the human
body. Improving human likeness of the overall robot motion is
an additional feature enabled by ADHERENT.

As long as meaningful correspondences between the human
and the robot links can be defined to retarget the MoCap data, the
proposed approach can be easily transferred to other humanoid
robots. To this end, training from scratch on the customly-
retargeted dataset for the new platform is required.
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Furthermore, the current implementation of the Retargeting
component assumes that the robot has at least one known contact
with the environment at any time step. This prevents applicability
to contact-free motions, e.g., running or jumping.

Moreover, we observe that different motion types have spe-
cific optimal velocity and footstep scaling factors (see Fig. 5).
Adaptively adjusting these factors when transitioning between
motions could improve the overall robot mobility.

Finally, the constraints imposed on the user-specified input
(see Section III-C3) do not allow the robot to turn abruptly.

VI. CONCLUSION

We presented ADHERENT, a novel architecture for whole-
body trajectory generation and control of humanoid robots.
ADHERENT joins together the advantages of learning-based
trajectory generation and state-of-the-art hierarchical locomo-
tion control. Our approach allows for human-like whole-body
motions and general footstep plans to be efficiently computed
and executed on a complex humanoid. We demonstrate the
applicability and robustness of the architecture through an ex-
tensive validation in simulation and experimental campaign on
iCub. ADHERENT represents a promising first step towards
the development of general human-like trajectory generation,
sidestepping the computational complexity of classical trajec-
tory optimization methods by learning from human data.

In this work, we employed instantaneous controllers for
trajectory control. Possible future work includes investigat-
ing, comparing, and integrating ADHERENT with more ad-
vanced control architectures (i.e., MPC- or RL-based). From a
machine-learning perspective, ADHERENT must be retrained
from scratch whenever new motion skills need to be added.
This could be tackled by integrating continual/lifelong learning
methods in the architecture. Further architectural changes could
be introduced to enable trajectory generation in accordance with
different walking styles. Finally, an extension of our work for
the navigation of uneven ground could be pursued by including
perceptual terrain features in the network input.
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