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Abstract—We present an iterative approach for planning and
controlling motions of underactuated robots with uncertain dy-
namics. At its core, there is a learning process which estimates the
perturbations induced by the model uncertainty on the active and
passive degrees of freedom. The generic iteration of the algorithm
makes use of the learned data in both the planning phase, which
is based on optimization, and the control phase, where partial
feedback linearization of the active dofs is performed on the model
updated on-line. The performance of the proposed approach is
shown by comparative simulations and experiments on a Pendubot
executing various types of swing-up maneuvers. Very few iterations
are typically needed to generate dynamically feasible trajectories
and the tracking control that guarantees their accurate execution,
even in the presence of large model uncertainties.

Index Terms—Underactuated robot, model learning for control,
optimization and optimal control.

I. INTRODUCTION

UNDERACTUATION in mechanical systems occurs when
there are less independent actuation inputs than gener-

alized coordinates. This situation may be due to the nature
of the mechanism, to its prevailing design, or it may be the
result of an intentional choice aimed at reducing weight, cost
or energy consumption. Many advanced robotic platforms are
indeed underactuated, including manipulators with some passive
joints, most underwater and aerial vehicles, legged robots, and
nonprehensile manipulation systems.

An adverse effect of underactuation is that generic state space
trajectories become unfeasible, since the dynamics of the passive
degrees of freedom represents a set of second-order differential
constraints that must be satisfied throughout any motion [1]; in
practice, this limits the directions of instantaneous accelerations
that can be commanded to the system. As a consequence, trajec-
tory planning in the absence of obstacles, which is a relatively
trivial issue for fully actuated robots, becomes a challenging
problem in the presence of underactuation.
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Motion control is also made more difficult by underactuation.
One way to appreciate this is to consider that the dynamic models
of fully actuated robots can always be made exactly linear and
decoupled by using static feedback linearization [2], provided
that an accurate model of the robot dynamics is available. In
underactuated robots this cannot be achieved, and one has to
deal directly with — actually, make use of — nonlinear, coupled
dynamic effects.

In the literature, several model-based techniques have been
proposed for planning and stabilizing motions of specific un-
deractuated robots, with notable emphasis on manipulators with
passive joints [3]. In particular, the problem of state transfer
between equilibria has been addressed mainly on two benchmark
platforms, i.e., the Pendubot and the Acrobot; these are both 2R
robots moving in the vertical plane with a single actuated joint
(respectively, the first and the second). A classical approach is
to use collocated or non-collocated Partial Feedback Lineariza-
tion (PFL) in combination with energy-based controllers [4],
[5]. Swing-up maneuvers of these robots have been achieved
using passivity-based approaches [6], [7], orbit stabilization [8],
impulse-momentum techniques [9], and sequential action con-
trol [10]. Typically, the maneuver includes a final balancing
phase realized through a Linear Quadratic Regulator (LQR)
designed around the target equilibrium.

Although effective, the above approaches have two main lim-
itations from the viewpoint of this paper. First, the design tech-
niques used for trajectory planning and control are invariably
specific (or had to be specialized) for the considered robot, and
sometimes also for the particular maneuver. Second, and even
more important, all of them require an accurate knowledge of the
robot dynamic model for successful performance. Exceptions
are [11], [12], which propose robust control of the Pendubot via
adaptive and fuzzy sliding modes respectively; however, these
methods are tailored to the platform and do not tolerate large
model uncertainties in practice.

To avoid the need for an accurate dynamic model, modern
learning techniques have been applied for deriving feedforward
and feedback control of robots [13]. In [14], a semi-parametric
regression is used to reconstruct the inverse dynamics of a ma-
nipulator. In [15], [16], [17] and [18], Reinforcement Learning
(RL) procedures are proposed to generate robot control policies
in a data-efficient way. However, this class of algorithms is not
able in general to ensure satisfaction of hard constraints in a spe-
cific robot task. Along the same lines, the authors in [19] propose
a meta-learning approach for a domain adaptation problem; in a
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new scenario, only the regressor weights are updated while the
set of basis functions is kept the same, ultimately limiting the
effectiveness of the model correction. An optimization-based
iterative learning approach is used in [20], [21], where experi-
ence from previous robot trials is used to build incrementally
the feedforward command needed to follow a desired output
trajectory. In [22], we have presented a learning-based approach
for trajectory tracking which relies on the existence of a nominal
feedback linearizing control law for the robotic system. Similar
techniques are proposed in [23], [24]. These works, however, as-
sume full actuation capability or at least feedback linearizability
via dynamic feedback [25].

Other works that are more closely related to our approach have
been published recently. In [26], a method for the swing-up of an
Acrobot has been proposed which avoids the need for a model by
using deep RL, requiring however a huge number of experiments
for training. A robust control scheme for trajectory tracking
under repetitive disturbances has been presented in [27] for a
3R planar manipulator with two actuators and one passive joint.
The control design is tailored to this specific system, and cannot
be easily extended to generic underactuated robots. In [28], a
learning scheme is proposed to realize trajectory tracking of
underactuated balance robots (e.g., a Furuta pendulum); because
of the simpler balancing task, the reference trajectory of the
active joints is not replanned and stabilization in the large is
never addressed.

In this paper, we build upon our learning method for fully
actuated robots [22] to devise an iterative approach for planning
and controlling transfers between (stable or unstable) equilibria
of underactuated robots in the presence of large dynamic uncer-
tainties. The basic idea is to alternate off-line optimization-based
planning and on-line PFL control, using regression to learn
model corrections for the active and passive degrees of freedom.
As a result, dynamically feasible state reference trajectories
are learned and convergence to zero trajectory tracking error is
obtained over the iterations. The main benefits of the proposed
approach are:
� it applies to any underactuated robot;
� it applies to any state transfer maneuver;
� convergence is reached even in the presence of large uncer-

tainties on the robot dynamics, requiring very few iterations
in the considered case studies;

� more accuracy in the nominal dynamic model leads to even
faster convergence;

� additional constraints (on state, on input, obstacle avoid-
ance, etc.) can be explicitly taken into account in the
optimization problem of the planning phase.

As an application, we provide an extensive evaluation of
the performance of our approach on a Pendubot which must
execute various swing-up maneuvers and state transfers between
unstable equilibria (see Fig. 1).

The paper is organized as follows. Section II introduces
the dynamic model of underactuated robots, highlighting how
model uncertainties affect the active and passive subsystems.
The proposed iterative approach is presented in Section III, dis-
cussing both the planning and the control phases and describing
the data collection procedures and the regressors adopted for

Fig. 1. The Pendubot performing two different swing-up maneuvers using
the proposed method: the targets are the up-up equilibrium (first row) and the
down-up equilibrium (second row). See the accompanying video.

learning. In Section IV, we report on the application to the
Pendubot, showing comparative simulation and experimental
results. Finally, some general conclusions about the approach
are drawn in Section V.

II. PROBLEM FORMULATION

For a robot with n degrees of freedom (dof) and m < n
actuators, the dynamics can be expressed [3] as

Maa(q)q̈a +Map(q)q̈p + na(q, q̇) = τ (1)

Mpa(q)q̈a +Mpp(q)q̈p + np(q, q̇) = 0, (2)

where q = (qa, qp) is the n-dimensional configuration vector,
with qa, qp representing respectively the m active and the
n−m passive generalized coordinates. The inertia matrix M
and the vector n of the remaining nonlinear terms are parti-
tioned accordingly. The m generalized forces τ only perform
work on the qa coordinates. We do not assume any structural
control property (e.g., feedback linearizability or flatness) for
system (1-2), nor any particular degree of underactuation.

In the presence of model perturbations (incorrect parameters
and/or unmodeled dynamics), we can write

M = M̂ +ΔM n = n̂+Δn. (3)

Only the nominal terms M̂ and n̂ are known and available for
control design.

Let x = (q, q̇) be the robot state. Given a start and a goal
equilibrium points, respectively denoted by xs = (qs,0) and
xg = (qg,0), we want to plan and execute in a fixed time T
a transfer motion from the start to the goal, while satisfying
constraints on state and/or inputs, collectively expressed in the
form h(q, τ ) ≤ 0. This transfer between equilibria problem is
particularly challenging for robots that are not fully actuated
because not all trajectories between two equilibria are feasible.

For the following developments, it is convenient to perform
a preliminary nonlinear feedback aimed at exactly linearizing
the nominal active dynamics. This collocated PFL controller is
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Fig. 2. Block diagram of the generic iteration of the proposed algorithm. Solid signal lines represent data that are used at each time step, whereas dashed lines
are data transferred at the end of the iteration.

always well defined and takes the form

τ PFL =
(
M̂aa − M̂apM̂

−1

ppM̂pa

)
u+ n̂a − M̂apM̂

−1

pp n̂p,

(4)
where u ∈ Rm is the new input, i.e., the acceleration of the
active dofs.

Using (4) and (3) in (1–2), we obtain the perturbed closed-loop
dynamics

q̈a = u+ δa (q, q̇,u) (5)

q̈p = − M̂
−1

pp

(
n̂p + M̂paq̈a

)
+ δp (q, q̇, q̈a) , (6)

where δa and δp represent the cumulative effect of perturbations
on the active and passive subsystems, respectively.

III. THE PROPOSED ITERATIVE APPROACH

The presence of model perturbations affects the considered
planning and control problem at two levels. First, planning based
on the nominal model would produce trajectories that may not
be feasible, and in any case do not land at the goal equilibrium.
Second, even when the reference trajectory is feasible, effective
tracking is not achieved if the controller is designed on the
nominal model.

In this section, we describe an iterative scheme for concurrent
planning and control. At its core there is a learning process
(Sects. III-C–III-E) which continuously updates two regressors
εa and εp, respectively estimates of the perturbations δa and
δp in (5–6). Both regressors are reconstructed from position
measurements during robot motion.

Each iteration consists of an off-line planning phase and an
on-line control phase. In the planning phase (Sect. III-A), the
nominal model is corrected by taking into account εp; an opti-
mization problem is then solved to compute a reference trajec-
tory qref(t) leading this model to xg at time T . In the control
phase (Sect. III-B), the robot tracks qref(t) under the action of
a PFL control law given by (4), in which the corrective term εa
is added to the commanded acceleration u. During the motion,
new data points are collected and used in the learning process.

A block diagram of the generic iteration of the proposed
approach is shown in Fig. 2.

A. Planning

In the planning phase, a reference trajectory is computed by
solving a numerical optimal control problem for the underac-
tuated robot. In particular, a prediction model is obtained by
setting δa = 0 and δp = εp in eqs. (5–6):

q̈a = u (7)

q̈p = − M̂
−1

pp

(
n̂p + M̂pau

)
+ εp (q, q̇,u) . (8)

In other words, we are assuming in (7) that partial feedback
linearization has been achieved in spite of model perturbations.
The rationale is that the control law will try to cancel δa as much
as possible using a correction term equal to its current estimate
εa (see Sect. III-B). Moreover, the available estimate εp of the
perturbation on the passive subsystem has been used in (8). Upon
convergence of the overall scheme, eq. (7) will become exact,
and εp in (8) will eventually be equal to δp.

In principle, we could have also included εa in the right-hand
side of (7). The learning transient would be similar and, upon
convergence, the obtained system behavior would be the same.
However, the separate use of one regressor (εp) in the planning
phase and of the other (εa) in the control phase proves to be
computationally more efficient.

We consider a discrete-time setting in which the input u
is piecewise-constant over N sampling intervals of duration
Ts = T/N . Denoting by f(·) a discretization of the state-space
representation corresponding to (7–8), with the robot state xi =
x(ti) and the starting and goal equilibrium points xs and xg

defined in Section II, the optimization problem (OP) is written as

min
u0,...,uN−1

N−1∑
i=0

J(xi,ui) + JN (xN )

subject to

xi+1 − f(xi,ui) = 0, i = 0 . . . , N − 1,

g(xi) ≤ 0, i = 1, . . . , N,

h(ui) ≤ 0, i = 1, . . . , N − 1,

with x0 = xs. The objective function is the sum of a stage
cost J and a terminal cost JN , both penalizing the state error
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with respect to the goal xg and the control effort, while g and
h represent state and input constraints, respectively. The cost
terms take the form

J(xi,ui) = ‖xg − xi‖2Q + ‖ui‖2R,

JN (xN ) = ‖xg − xN‖2QN
.

where Q, QN and R are positive-definite, symmetric matrices
of weights. The solution of OP is a reference trajectory with
the associated nominal input, represented by discrete sequences
qref = {qref

1 , . . . , qref
N } and uref = {uref

0 , . . . ,uref
N−1}

respectively. The reference velocities q̇ref = {q̇ref
1 , . . . , q̇ref

N }
are also available.

To speed up convergence to a solution, one typically uses
the reference trajectory of the previous iteration as a warm start
when solving the current OP.

B. Control

In the control phase, the robot moves under the action of
a digital1 control law aimed at driving q along the current
reference trajectory qref . To achieve stable tracking of qref

a , the
commanded acceleration uk in [tk, tk+1) is chosen as

uk = uref
k +KP (q

ref
a,k − qa,k) +KD(q̇ref

a,k − q̇a,k)− εa,k,
(9)

with KP ,KD > 0. Here, the nominal input produced by the
planner is used as feedforward term, and the current regressor
εa,k has been added to cancel at best the perturbationδa affecting
the active subsystem (5). Note that as soon as qa will be able
to follow exactly qref

a , the passive variables qp will evolve as
planned in the previous phase.

Next, we use (4) to compute the generalized force as

τ PFL,k = B̂kuk + η̂k, (10)

where

B̂k = M̂aa(qk)− M̂ap(qk)M̂
−1

pp (qk)M̂pa(qk)

and

η̂k = n̂a(qk, q̇k)− M̂ap(qk)M̂
−1

pp (qk)n̂p(qk, q̇k).

C. Regressors for Estimating Perturbations

In this work, we employ Gaussian Processes (GP) regres-
sors [29] for reconstructing εa and εp, given the good per-
formance that this technique displays in the on-line learning
context. However, it is important to notice that other techniques
such as Neural Networks, Generalized Linear Regression or
Support Vector Machine could have been adopted without any
modifications on the structure of the framework.

Considering D = {(Xi, Yi = φ(Xi) + ωi)|1 ≤ i ≤ nd}
representing a set of input-output noisy observations where
ω ∼ N (0, Σω) and φ indicates a unidimensional function
to reconstruct. With K(X,X) we define the covariance
matrix whose elements are computed through the inner product

1For simplicity, it is assumed that the control sampling interval is the same
Ts used for planning.

operationk(·, ·) andkT (·) is a row vector obtained by computing
k between a new point and every element of X . Let us denote
the value of the function to reconstruct at an arbitrary point
as Ynd+1 = φ(Xnd+1). Exploiting the properties of Gaussian
processes, the ensemble of observation in the dataset defined as
Y 1:nd

and Ynd+1 are jointly Gaussian:[
Y 1:nd

Ynd+1

]
∼ N

(
0,

[
K k

kT k (Xnd+1,Xnd+1)

])

It is possible to define the predictive distribution that approxi-
mates the perturbation δ(X̂) for a generic query point X̂ as

ε(X̂|D) ∼ N
(
μ(X̂), σ2(X̂)

)
where

μ(X̂) = kT(X̂)(K +Σω)
−1Y

σ2(X̂) = k(X̂, X̂)− kT(X̂)(K +Σω)
−1k(X̂).

In this context, μ represents the regressor prediction while σ2(·)
describes the epistemic error associated to μ(·). In this work, for
reconstructing a multidimensional observation, we stack a set of
unidimensional GPs.

Since no assumption is made on the structure of the unmod-
eled dynamics, we employ as k(·, ·) a squared exponential kernel
defined as

k (Xi,Xj) = a2 exp

(
−‖Xi −Xj‖2

2 l2

)
,

where the length-scale l and the amplitude a represent the
hyperparameters of the GP regressor.

D. Dataset Collection Procedure for the Active Dofs

We now show how to collect the data points that are used
to learn the estimate εa,k to be used at each instant in the
commanded acceleration (9).

The idea is to perform a regression based on the difference
between the commanded acceleration and the actual acceleration
for the actuated dofs. In fact, from eq. (5) we may write

δa,k = q̈a,k − uk. (11)

In view of eq. (11), a new data point is generated at the k-th
control step as

Xa,k = (qk, q̇k,uk) Y a,k = q̈a,k − uk.

with the acceleration q̈a,k to be reconstructed numerically.
We note that the actual acceleration is functionally dependent
through (5) on the robot state (qk, q̇k) and on the commanded
accelerationuk, i.e., on the inputXa,k of the regression scheme.

Every time a new data point is available, it is immediately used
to update the regressor εa. However, the hyperparameters of the
kernel function are only updated at the end of each iteration.

A potential issue of GP regression is that the computational
complexity of the prediction is O(n3

d), with nd the size of
the dataset. To keep the computation of εa fast enough for
real-time control, an approximate regression is performed using
a reduced set of only d datapoints, chosen on the basis of
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Fig. 3. The Pendubot and its generalized coordinates.

the information gain criterion [30]. This leads to a reduced
complexity O(d2 · nd).

E. Dataset Collection Procedure for the Passive Dofs

To learn an estimate εp of the model perturbation δp, we
compare the commanded and the actual acceleration for the
passive dofs.

In fact, from eq. (6) we have

δp,k = q̈p,k + M̂
−1

pp,k(n̂p,k + M̂pa,k q̈a,k). (12)

Given numerical approximations of the actual accelerations q̈a,k

and q̈p,k, a new data point is generated at the k-th step as

Xp,k =
(
qk, q̇k, q̈a,k

)
Y p,k = q̈p,k + M̂

−1

pp,k

(
n̂p,k + M̂pa,k q̈a,k

)
.

Differently from εa, all the data points computed during the
iteration are used to update the passive subsystem regressor εp
at the end of each trial; in fact, since the planning phase is
performed off-line, the complexity associated to exact regression
does not represent a problem here. As before, the hyperparam-
eters of the kernel function are also updated at the end of the
iteration.

IV. APPLICATION TO THE PENDUBOT

The proposed approach has been validated through simula-
tions and experiments on the Pendubot, a two-link arm moving
in the vertical plane with an active joint at the shoulder and a
passive joint at the elbow (qa = q1 and qp = q2). See Fig. 3
for the definition of the generalized coordinates and [31] for
the dynamic model of the Pendubot, complete with nominal
parameter values for our prototype.

In the following, we will address the problem of executing
various transfer motions between equilibria in the presence of

severe uncertainty on the dynamic model. The proposed iterative
method is used to steer the Pendubot to the basin of attraction
of an LQR balancing controller designed around the goal state.
The latter is obviously needed to stabilize the robot after the
planning horizon T .

The discretized state-space model used in the planning phase
has been obtained by Euler method. The sampling interval is set
toTs = 10ms. The cost function J in OP includes two quadratic
terms that penalize the state error with respect to the goal
xg = (q1,g, q2,g, 0, 0) as well as the control effort. Optimization
is performed in MATLAB using the fmincon function, which
implements a Sequential Quadratic Programming method. The
joint velocities are bounded as |q̇1| ≤ 8 rad/s and |q̇2| ≤ 15
rad/s. Finally, terminal constraints are included to guarantee
convergence at time T to the following basin of attraction of
the balancing controller

|qj,N − qj,g| ≤ 0.2, |q̇j,N | ≤ 0.5, j = 1, 2,

which was found to be adequate for all goal states.
In the control phase, the PD gains in (9) are chosen as KP =

50 and KD = 20, while the sampling interval is again 10 ms.
While all data points (with nd equal to N times the number of

iterations so far) are considered for updating εp, the maximum
number of data points used for computing εa in real time is
d = 180.

Refer to the accompanying video for clips from all simulations
and experiments shown in the following.

A. Simulation Results

Two scenarios of transfer between equilibrium states will be
presented. To show that the proposed method can achieve robust
performance in the presence of severe model perturbations,
we perturbed for control design the nominal values in [31],
increasing by 30% the link masses m1 and m2 and reducing
by the same percentage the distances a1 and a2 of the centers
of mass of the two links from their respective joints. The link
barycentral inertias I1 and I2 were changed accordingly.

In the first scenario, the start configuration is qs = (0, 0)
while the goal is the up-up configuration qg = q u-u = (π, 0),
corresponding to a transfer from a stable to an unstable equilib-
rium (swing-up). The planning horizon is chosen as T = 1.6 s
(N = 160).

To highlight the necessity of learning in both the planning
and control phases, we have preliminarily considered two com-
plementary situations where learning is not used. Figure 4, left,
refers to the first situation, in which we use the nominal model
for planning and the true model for control. The result shows
that planning the motion of an underactuated robot based on an
inaccurate model produces dynamically unfeasible trajectories,
that cannot be tracked in spite of the ideality of the controller.
Vice versa, in Fig. 4, right, the true model is used for planning
and the nominal for control. As expected, the inaccuracy of the
controller prevents the completion of the swing-up maneuver.
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Fig. 4. Simulation scenario 1 (swing-up to q u-u): results without learning.
Left: Using the nominal model for planning and the true model for control.
Right: Vice versa.

Fig. 5. Simulation scenario 1 (swing-up to q u-u): results with the proposed
approach. Just before the end of the third iteration, the state has converged to
the basin of attraction of the balancing controller, which is then activated (as
indicated by the vertical dashed line).

Next, we tested the proposed approach on the same scenario,
obtaining the results in Fig. 5. After three iterations, the Pen-
dubot is able to track with sufficient accuracy the planned trajec-
tory, ultimately entering the basin of attraction of the balancing
controller to complete the swing-up maneuver. This shows that,
in spite of the very large model uncertainty, the learning compo-
nent of our method is able to reconstruct the correct model in few
iterations. Further iterations of the planning-control sequence do
not change significantly the resulting motion.

To put our result in perspective, we have applied to this
scenario also the passivity-based swing-up method proposed
in [7], using the same balancing controller in the final phase. As
shown in Fig. 6, the method works perfectly if the robot model
is exactly known, but is unable to complete the maneuver in
the presence of the considered model uncertainty. In particular,
while the first joint still converges to its target, the passive joint
drifts away very quickly.

In the second scenario, the start isqs = (π/4, 3π/4)while the
goal is qg = (5π/4,−π/4); this amounts to a transfer between
two unstable equilibria. The planning horizon is chosen as T =
0.7 s (N = 70). The results are shown in Fig. 7. Two iterations
are now sufficient to reach the basin of attraction of the balancing
controller, thus completing the maneuver correctly. Indeed, a
closer look at the joint motion (see also the accompanying video)
reveals that in both iterations the transfer is performed with the

Fig. 6. Simulation scenario 1 (swing-up toq u-u): results with the method in [7].
Left: assuming exact model knowledge the state enters the basin of attraction of
the LQR controller at t = 1.3 s circa. Right: with the same model uncertainty
of Fig. 5, convergence is not achieved.

Fig. 7. Simulation scenario 2 (transfer between unstable equilibria): results
with the proposed approach. Two iterations are needed to achieve convergence.

second link approximately vertical, a situation which inherently
reduces the effect of the uncertain dynamic parameters, leading
to a faster convergence.

We have performed further simulations on a 3R Pendubot
with two passive joints that must execute a swing-up maneu-
ver to q u-u-u under perturbed conditions similar to scenario 1.
Once again, convergence was achieved in 3 iterations, a result
suggesting that our method performs effectively also for higher
degrees of underactuation. See the accompanying video for an
animated clip.

B. Experimental Results

The proposed method has also been tested experimentally
on our Pendubot prototype, using again the nominal model
in [31] for planning and control design. Joint velocities and
accelerations are obtained in real time via filtered numerical
differentiation of encoder measurements. To further remove the
noise affecting the learning dataset for the passive dofs, we used
a non-causal Savitzky-Golay filter to compute q̈2.

The first experiment replicates the swing-up scenario to q u-u

of Section IV-A, using the same planning horizon of T = 1.6 s
(N = 160). The results are shown in Fig. 8. Only two iterations
are required for our method to enter the basin of attraction of the
LQR controller.

The combination of on-line learning of the active joint dynam-
ics together with the off-line re-planning of both joint trajecto-
ries, driven by the regressor built for the passive joint dynamics,
allows a successful execution of the swing-up maneuver. When
comparing the tracking errors between the single run without
learning (Fig. 8, first column) and the first iteration of the method
(Fig. 8, second column), no major changes are observed for
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Fig. 8. Experimental scenario 1 (swing-up to q u-u): results with the proposed approach. For comparison, the first column shows the results without learning, i.e.,
when partial feedback linearization and stable tracking for the first joint are computed on the nominal model.

Fig. 9. Experimental scenario 1 (swing-up to q u-u): results with the method
in [7].

TABLE I
TRACKING RMSE [RAD] IN THE EXPERIMENTS

the active joint q1, whereas the passive joint q2 behaves quite
differently toward the end of the motion. In both cases, the
error diverges (the second link falls in two opposite directions)
because the currently planned trajectory is still dynamically un-
feasible for the Pendubot. Already at the second iteration (third
column), the robot is correctly driven to the basin of attraction of
the desired equilibrium (the LQR stabilizer is triggered at about
t = 1.4 s). Performing a third planning-control iteration shows
no significant variation of the obtained reference trajectory and
control accuracy (fourth column).

Table I offers further insight on the performance in both
scenarios. In particular, it shows that the tracking accuracy for
q1 does not change significantly over the iterations, while the
evolution of q2 gets increasingly closer to the planned trajectory,
as the latter approaches feasibility thanks to the model learning
procedure.

For comparison, Fig. 9 shows the experimental results
obtained in this scenario with the method of [7] under the

Fig. 10. Experimental scenario 2 (swing-up to q d-u): results with the proposed
approach. Just before the end of the second iteration the state converges to a
region where the LQR controller can be successfully activated.

same nominal information on the robot dynamic model. While
the active joint converges to its desired goal, the second joint
oscillates (with a light damping due to friction) without ever
entering the basin of attraction of the stabilizing controller.
Therefore, we can claim that the learning procedure makes the
proposed method able to withstand a level of model uncertainty
which is not tolerated by purely model-based controllers.

The second experiment is again a swing-up scenario, but
the goal is now the down-up configuration q d-u = (0, π). The
planning horizon has been set to T = 2 s (N = 200). As shown
in Fig. 10, also in this case the learning procedure allows to
complete the maneuver successfully after two iterations (see
also the second column in Table I).

V. CONCLUSION

We have proposed an iterative method for planning and
controlling motions of underactuated robots in the presence of
model uncertainty. The method hinges upon a learning process
which estimates the induced perturbations on the dynamics of
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the active and passive dofs. Each iteration includes an off-line
planning phase and an on-line planning phase, which take advan-
tage of the learned data to improve the feasibility of the planned
trajectory and the accuracy of its tracking.

The proposed approach was validated by application to the
Pendubot, a well-known underactuated platform consisting of
a 2R planar robot with a passive elbow joint. In particular,
numerical simulations of our iterative method starting with
considerable errors in the nominal dynamic parameters (±30%
of the true values) have shown that swing-up maneuvers and
transfers between unstable equilibria can be executed success-
fully after very few iterations. This remarkable performance was
confirmed in experimental tests on a real Pendubot.

In addition to applicability to general underactuated systems
and independence from the specific maneuver, a further aspect
of our method that deserves to be emphasized is that no torque
measurement is required. In fact, only positions, velocities
and accelerations must be available, so that implementation
is possible using only encoders. Another interesting feature
is the possibility to incorporate constraints on the robot states
and/or inputs in the planning phase, as well as to handle (with-
out any modification) also the presence of repetitive external
disturbances.

Future work will consider the problem of guaranteeing hard
constraints during the entire learning transient, by explicitly
taking into account the covariance of the uncertainty during
the planning phase. Moreover, we plan to test the method on
different underactuated robots, namely quadrotor UAVs and
humanoids.
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