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P-satI-D Shape Regulation of Soft Robots
Pietro Pustina1, Pablo Borja2, Cosimo Della Santina3,4, Alessandro De Luca1

Abstract—Soft robots are intrinsically underactuated mechan-
ical systems that operate under uncertainties and disturbances.
In these conditions, this letter proposes two versions of PID-like
control laws with a saturated integral action for the particularly
challenging shape regulation task. The closed-loop system is
asymptotically stabilized and matched constant disturbances are
rejected using a very reduced amount of system information
for control implementation. Stability is assessed on the under-
actuated dynamic model through the Invariant Set Theorem for
two relevant classes of soft robots, i.e., elastically decoupled and
elastically dominated soft robots. Extensive simulation results
validate the proposed controllers.

Index Terms—Motion Control; Underactuated Robots; Mod-
eling, Control, and Learning for Soft Robots.

I. INTRODUCTION

CONTINUUM soft robots are robotic systems made of
continuously deformable materials [1]. Because of their

compliant nature, soft robots have applications ranging from
maintenance [2] to human rehabilitation [3]. In soft robotics,
several open challenges need yet to be addressed, spanning
from perception to control. These mainly stem from the
infinite-dimensional nature of soft robots, whose dynamics is
governed by nonlinear partial differential equations. To over-
come this challenge, researchers have proposed approaches
to obtain finite-dimensional but accurate descriptions of soft
robots [4]–[6]. Several works, such as [7]–[9], have used finite-
dimensional models for control purposes both in configuration
and task space. Most of these new approaches build upon
fully actuated approximations of the dynamics, which allow
reconducting the control problem to standard rigid robot
control theory. However, obtaining these simplified models
implies relying on very coarse approximations. Developing
model-based controllers this way has been a valuable heuristic
to showcase the power of model-based controllers. Unfortu-
nately, at the same time, using such rough approximations can
lead to an erroneous assessment of stability and sub-optimal
performance, which are essential features for systems that are
supposed to interact with humans.
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Figure 1: Block scheme representation of the proposed control
architecture. For elastically dominated soft robots, the control action
is the sum of three terms: (i) a proportional, (ii) a derivative, and
(iii) a saturated integral action driven by the tracking error. The
regulator for elastically decoupled soft robots requires an additional
term, illustrated with a black dashed line, that cancels the gravitational
forces on the actuated variables.

Therefore, a growing attention has been building around
the topic of developing controllers for soft robots that operate
outside the restrictive fully actuated framework. An early work
dealing with this challenge is [10], which approximates the
dynamics of soft robots as large-scale linear systems. This
allows assessing that a control loop consisting of an observer
and a controller derived from a reduced-order model can
successfully stabilize the original dynamics. The architecture
is validated experimentally. In [11], the authors propose an
underactuated template model for the control design of soft
robots. After studying the main system properties, they show
how collocated and non-collocated feedback linearization
asymptotically stabilize the arm in its unstable straight config-
uration. Also, [12] presents a controller for shape regulation of
planar soft robots by matching the robot with an underactuated
rigid-link model. Even if theoretically sound, these controllers
have limited practical applicability as they have complex forms
and are potentially unrobust to external disturbances and model
uncertainty.

A first work taking this direction is [13], which proposes a
variation of the integral IDA-PBC technique for soft manipu-
lators. This strategy still relies on model-based cancellations
and, as such, it is potentially unrobust to model uncertainties.
Remarkably, [14]–[16] investigated experimentally the use
of PID regulators for controlling the shape of soft robots.
However, these references do not provide stability proof and
assume full actuation. We follow an alternative path with our
recent works [17]–[19]. There, we proposed PD+ control laws
for two classes of soft robots: elastically dominated and elasti-
cally decoupled. The goal is to have simple – and thus robust
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– controllers that are provably stable in the general setting and
parsimoniously use the information on the robot dynamics. In
this letter, we move a further step toward developing robust
and simple shape regulators for soft robots under non-rough
discretizations by adding a saturated integral (satI) action to
the regulators of [17] and [18]. Fig. 1 shows a block scheme of
the proposed control architecture. Including an integral term
requires extreme care because the dynamic couplings with
the soft robot dynamics may lead to instability. In addition
to stability, we prove that (i) the steady state elastic force
is learned through the integral term. As a result, the stiffness
completely disappears from the control laws, avoiding the need
to estimate its value accurately. Furthermore, in analogy with
the internal model principle, (ii) the closed-loop system rejects
matched constant disturbances.

II. PRELIMINARIES

A. Notation

Vectors and matrices are denoted with bold lower- and
upper-case letters, respectively, whereas scalars with lowercase
normal ones. The symbol In represents the n × n identity
matrix. Zero vectors and matrices of proper dimension are
denoted as 0 and O, respectively. For a vector x ∈ Rh,
its p-norm is denoted as ∥x∥p , p ≥ 2 and for p = 2

simply ∥x∥. Similarly, if A ∈ Rh×l, ∥A∥ is the matrix
norm induced by the Euclidean norm of vectors. Given a
symmetric matrix A, i.e., A = AT , its smallest and largest
eigenvalues are λmin(A) and λmax(A). If λmin(A) > 0 (or
≥ 0), then A is said to be positive definite (or semidefinite),
and it is denoted as A > 0 (or A ≥ 0). To simplify
the notation, arguments of the functions are omitted when
clear from the context. Furthermore, given a continuously
differentiable function f(x) : Rh → R, ∇x(f) ∈ Rh and
∇2

x(f) ∈ Rh×h denote, respectively, the gradient and Hessian
of f . For g(x) : Rh → Rl, its Jacobian is Jx(g) ∈ Rl×h.

B. Dynamic model

Consider a continuum soft robot described by

Mθ(θ)θ̈+Cθ(θ, θ̇)θ̇+Gθ(θ)+Kθθ+Dθ(θ)θ̇ = A(τ+d), (1)

where θ ∈ Rn denotes the configuration vector, Mθ(θ) > 0
is the mass matrix, Cθ(θ, θ̇)θ̇ collects Coriolis and centrifugal
effects, and Gθ(θ) = ∇θ(Ug(θ)) contains the forces due to
gravity, being Ug(θ) the gravitational potential energy. Elastic
and dissipation forces are modeled, respectively, through Kθθ
and Dθ(θ)θ̇, with Kθ > 0 and Dθ(θ) > 0. Finally,
τ ∈ Rm groups the generalized input forces, projected into
the configuration space through the constant actuation matrix
A ∈ Rn×m, and d ∈ Rm is a constant disturbance, i.e.,
ḋ = 0. In [18] it is shown that (1) includes a reasonably large
class of soft robots. Indeed, if the columns of A are linearly

independent, it is always possible to define a linear change of
coordinates q = Tθ such that the dynamics becomes

M(q)︷ ︸︸ ︷(
Maa Mau

Mua Muu

)(
q̈a

q̈u

)
+

C(q,q̇)︷ ︸︸ ︷(
Caa Cau

Cua Cuu

)(
q̇a

q̇u

)
+

G(q)︷ ︸︸ ︷(
Ga

Gu

)
+

(
Kaa Kau

Kua Kuu

)
︸ ︷︷ ︸

K

(
qa

qu

)
+

(
Daa Dau

Dua Duu

)
︸ ︷︷ ︸

D(q)

(
q̇a

q̇u

)
=

(
τ + d

0

)
,

(2)
where the configuration vector q has been divided into actu-
ated and unactuated variables, denoted from now on qa ∈ Rm

and qu ∈ Rn−m, respectively, and the dynamic terms have
been partitioned accordingly.

C. Properties

Without loss of generality, the dynamic model (2) satisfies
a set of properties previously reported for robots with revolute
joints [20], which we list below for the sake of readability.

Property 1. There exist constants kM , km > 0 such that, for
all q,x ∈ Rn,

km∥x∥2 ≤ xTM(q)x ≤ kM∥x∥2.

Property 2. There exists a constant kC > 0 such that, for all
q, q̇ ∈ Rn,

∥C(q, q̇)q̇∥ ≤ kC∥q̇∥2.
In addition, Ṁ(q)− 2C(q, q̇) is skew symmetric or, equiva-
lently, Ṁ(q) = C(q, q̇) +CT (q, q̇).

Property 3. There exist constants kUg , kG, k∂G > 0 such that,
for all q ∈ Rn,

∥Ug(q)∥ ≤ kUg , ∥G(q)∥ ≤ kG, ∥Jq(G(q))∥ ≤ k∂G.

D. A Class of Saturated Functions

In Sections III and IV, control laws for shape regulation of
two classes of underactuated soft robots are presented. These
extend the controllers of [17], [18] by adding an integral action
driven by the following class of saturated functions.

Definition 1. Let S(β, α1, α2, α3) be the set of C1 monoton-
ically increasing functions s(x) = (s(x1) s(x2) · · · s(xh))

T
:

Rh → Rh such that, for all y ∈ R,
(i) s(y) = σ(y)y holds for a function σ : R → R defined

everywhere,

(ii) |s(y)| ≥
{
α1 |y| ; |y| ≤ β

α1β ; |y| > β
,

(iii) |s(y)| ≤
{
|y| ; |y| ≤ β

β ; |y| > β
,

(iv) α2 ≥ ds(y)

dy
≥ 0,

(v)
∣∣∣∣1− ds(y)

dy

∣∣∣∣ ≤ α3 |s(y)|.

For example, st(x) = (st(x1) · · · st(xh)), st(y) = tanh(y),
belongs to S(1, tanh(1), 1, 1). Another example is sp(x) =

(sp(x1) · · · sp(xh)), sp(y) = y

(1+|y|p)
1
p

and p ∈ Z+, which

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3221304

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



PUSTINA et al.: P-SATI-D CONTROL OF SOFT ROBOTS 3

belongs to S
(
1, 2−

1
p , 1, 1

)
.

The above class of functions satisfies a series of useful
properties. In particular, for all x ∈ Rh and Q ∈ Rh×h

symmetric, we have the following.

Property 4. ([21]) Given k1 = α1, k2 = α1β, and k3 =
√
hβ,

the following inequalities hold

∥s(x)∥ ≥
{
k1∥x∥; ∥x∥ ≤ β

k2 ; ∥x∥ > β,

and
∥s(x)∥ ≤

{
∥x∥; ∥x∥ ≤ β

k3 ; ∥x∥ > β.

Property 5. ([21]) sT (x)x ≥
{
k1∥x∥2; ∥x∥ ≤ β

k2∥x∥ ; ∥x∥ > β.

Property 6. λmax(Q)sT (x)x ≥ sT (x)Qx ≥ λmin(Q)sT (x)x.

Proof. We prove only the right-hand side of the above in-
equality because similar arguments can also be used for the
left-hand side. From (i) it follows that s(x) = Σ(x)x, where
Σ(x) = diag{σ(x1) · · ·σ(xh)}, which yields sT (x)Qx =
xTΣ(x)Qx. Furthermore, the monotonicity of s(y) and (i)
imply that σ(y) > 0 and, consequently, Σ(x) > 0. Thus,
sT (x)Qx ≥ λmin(Q)sT (x)x is equivalent to

xTΣ(x) (Q− λmin(Q)Ih)x ≥ 0.

Being Σ(x) > 0 and Q − λmin(Q)Ih ≥ 0 and symmetric,
Σ(x)(Q− λmin(x)Ih) ≥ 0 [22].

Property 7. Given k4 = α2 and k5 = α3, the following
inequalities hold

∥Jx(s(x))∥ ≤ k4, ∥Ih − Jx(s(x))∥ ≤ k5∥s(x)∥.

Proof. The first inequality follows observing that Jx(s(x)) is
a diagonal matrix. The second is an immediate consequence
of |s(xi)| ≤ ∥s(x)∥.

The set S takes inspiration from previous works on PID
control with saturated integral action of rigid robots [21], [23].
However, the actual context does not allow using the class
of saturation functions proposed in those references because
Property 6, which enables exploiting the elasticity in the
control laws and stability proofs, is not generally valid.

III. P-SATI-D+ CONTROL FOR
ELASTICALLY DECOUPLED SOFT ROBOTS

This section presents a PID controller with saturated
integral action and gravity cancellation for shape regulation of
elastically decoupled soft robots. To this end, we first introduce
the following definition.
Definition 2. A soft robot is said to be elastically decoupled
if there is no elastic coupling between the actuated and
unactuated variables, i.e.,

K =

(
Kaa O
O Kuu

)
. (4)

Note that no special condition on Kuu is needed, except that
Kuu > 0. To extend the PD+ regulator presented in [17], we
add a saturated integral action driven by the tracking error of
the actuated variables. In particular, we consider the collocated
control law

τ = KP q̃a −KDq̇a +
KI

γ

∫ t

0

s(q̃a(ρ))dρ+Ga(q), (5)

where q̃a := qa,d − qa is the tracking error with qa,d the
desired set point, KP > 0, KD ≥ 0, KI > 0, γ > 0 are
control gains, and s(q̃a) ∈ S(β, α1, α2, α3).
The following theorem shows that the control law (5) ,
which we call P-satI-D+, guarantees bounded closed-loop
trajectories and asymptotic convergence of q̃a to 0, provided
that KP and γ are appropriately tuned.

Theorem 1. For an elastically decoupled soft robot there
exist finite constants αP > 0 and γ̃ > 0 such that, for all
KP > αP Im and γ > γ̃, the trajectories of the closed-loop
system (2)–(5) are bounded and converge asymptotically to the
equilibrium (qa qu q̇a q̇u) = (qa,d qu,d 0 0), where qu,d is
a solution to

Kuuqu +Gu(qa,d, qu) = 0. (6)

Proof. Defining the additional state variables

z(t) :=

∫ t

0

s(q̃a(ρ))dρ− γK−1
I

(
Kaaqa,d − d

)
,

the P-satI-D+ can be rewritten as

τ = KP q̃a −KDq̇a +
KI

γ
z(t) +Kaaqa,d − d+Ga(q),

which leads to the closed-loop equations (3). Note also that z
has the same dynamics of the integral. Consider the Lyapunov-
like function

V (q̃a, qu, q̇,z) = γ

(
1

2
q̇TMq̇ + Ug +

1

2
q̃T
a (KP +Kaa)q̃a

+
1

2
qT
uKuuqu + sT (q̃a)Ga + q̃T

a

KI

γ
z

)
+

1

2
zT KI

γ
z − sT (q̃a) (Maaq̇a +Mauq̇u) ,

which is radially unbounded since

V ≥ γ

2
km∥q̇∥2 − γkUg +

γ

2
λmin(Kaa +KP )∥q̃a∥

2

+
γ

2
λmin(Kuu)∥qu∥

2 − γk3kG − λmax(KI)∥q̃a∥∥z∥

− k3kM∥q̇∥+ λmin(KI)

2γ
∥z∥2,

and the right-hand-side of the above inequality diverges to
+∞ as ∥(q̃a qu q̇ z)∥ tends to ∞.

Taking the time derivative of V along the trajectories of the
closed-loop system yields

V̇ = γ

(
1

2
q̇TṀq̇ + q̇TMq̈ + q̇TG− q̇T

a (KP +Kaa)q̃a

+ q̇T
uKuuqu − q̇T

a J
T
q̃a

(s)Ga + sT (q̃a)Jq(Ga)q̇

− q̇T
a

KI

γ
z + q̃T

a

KI

γ
s(q̃a)

)
+ s(q̃a)

T KI

γ
z

− sT (q̃a)
(
Ṁaaq̇a + Ṁauq̇u +Maaq̈a +Mauq̈u

)
+ q̇T

a J
T
q̃a

(s)(Maaq̇a +Mauq̇u).

Replacing (3) in the above equation one obtains

V̇ = γ
(
−q̇T D̃q̇ + q̇T

a

(
Im − JT

q̃a
(s)

)
Ga + sT (q̃a)Jq(Ga)q̇

)
+ q̇T

a J
T
q̃a

(s) (Maaq̇a +Mauq̇u) + sT (q̃a)D̃aq̇

+ sT (q̃a)
(
CT

aaq̇a +CT
uaq̇u

)
− sT (q̃a)K̃aaq̃a,
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where we defined

D̃ =

(
D̃a

D̃u

)
:= D +

(
KD O
O O

)
,

K̃aa := Kaa +KP −KI .

Note that

γq̇T
a

(
Im − JT

q̃a
(s)

)
Ga ≤ γkGk5∥s(q̃a)∥∥q̇∥,

γsT (q̃a)Jq(Ga)q̇ ≤ γk∂G∥s(q̃a)∥∥q̇∥,
sT (q̃a)D̃aq̇ ≤ λmax(D̃)∥s(q̃a)∥∥q̇∥,

q̇T
a J

T
q̃a
(s) (Maaq̇a +Mauq̇u) ≤ k4kM∥q̇∥2,

−sT (q̃a)
(
CT

aaq̇a +CT
uaq̇u

)
≤ k3kC∥q̇∥2.

Hence, we get

V̇ ≤ −
(
γλmin(D̃)− (k4kM + k3kC)

)
∥q̇∥2

+
(
γ(kGk5 + k∂G) + λmax(D̃)

)
∥s(q̃a)∥∥q̇∥

− λmin(K̃aa)s
T (q̃a)q̃a.

(7)

In view of Properties 4–6, for ∥q̃a∥ ≤ β, V̇ is bounded by

V̇ ≤−
(

∥q̇∥
∥q̃a∥

)T(
Q11 Q12

Q12 k1Q22

)(
∥q∥
∥q̃a∥

)
,

with

Q11 = γλmin(D̃)− (k4kM + k3kC),

Q12 = −1

2

(
γ(kGk5 + k∂G) + λmax(D̃)

)
,

Q22 = λmin(K̃aa).

According to Sylvester’s criterion, Q is positive definite if and
only if

Q11 > 0, detQ > 0.

Both conditions can be fulfilled by taking

γ > γ̃ :=
k4kM + k3kC

λmin(D̃)
,

and
λmin(KP ) > αP,1 := −λmin(Kaa) + λmax(KI)

+

(
γ(kGk5 + k∂G) + λmax(D̃)

)2

4k1
(
γλmin(D̃)− (k4kM + k3kC)

) .
On the other hand, for ∥q̃a∥ > β, it is possible to write

V̇ < −Q11∥q̇∥2 +Q12k3∥q̇∥ − k2Q22β,

which is a quadratic function in ∥q̇∥ pointing downward.
Consequently, V̇ < 0 if and only if its minimum value is
negative, i.e.,

k2Q22β > k23
Q2

12

4Q11
≡ Q22 >

k23
k2β

Q2
12

4Q11
,

which is satisfied for
λmin(KP ) > αP,2 := −λmin(Kaa) + λmax(KI)

+
k2
3

k2β

(
γ(kGk5 + k∂G) + λmax(D̃)

)2

4
(
γλmin(D̃)− (k4kM + k3kC)

) .
Thus, if λmin(KP ) > αP := max{αP,1;αP,2}, then V̇ ≤ 0.
The thesis follows applying the Global Invariant Set theo-
rem [24], and noting that V̇ = 0 if and only if q̃a = 0 and
q̇ = 0.

Remark 1. Without further assumptions other than (4), there
might exists more than one equilibrium for the unactuated
variables compatible with that reached by the actuated ones.
Thus, even if qa converges asymptotically to qa,d, the system
does not have a globally asymptotically stable equilibrium in
general.

IV. P-SATI-D CONTROL FOR
ELASTICALLY DOMINATED SOFT ROBOTS

In this section, we present our main result for elastically
dominated soft robots. First, the following statement defines
what an elastically dominated soft robot is.
Definition 3. A soft robot with stiffness matrix

K =

(
Kaa Kau

Kua Kuu

)
, (8)

is said to be elastically dominated if it satisfies

λmin(Kuu) > k∂G. (9)
The inequality (9) guarantees that the potential field is

convex with respect to the unactuated variables, implying
that (6) admits a unique solution qu,d for all qa,d. As a

consequence, qd =
(
qT
a,d qT

u,d

)T

can be rendered globally
asymptotically stable (GAS) by using the P-satI-D control law

τ = KP q̃a −KDq̇a +
KI

γ

∫ t

0

sa(q̃(ρ))dρ, (10)

where q̃ = qd − q is the tracking error, KP > 0, KD ≥ 0,
KI > 0, γ > 0 are control gains, and sa(q̃) = s(q̃a) denotes
the first m components of s(q̃) ∈ S(β, α1, α2, α3). In analogy
with Theorem 1, the following result formalizes that, if KP

and γ are large enough, then (10) ensures that qd is a GAS
equilibrium for the closed-loop system.
Theorem 2. For an elastically dominated soft robot there
exist finite constants αP > 0 and γ̃ > 0 such that, for all
KP > αP Im and γ > γ̃, the trajectories of the closed-loop
system (2)–(10) are bounded and converge asymptotically to
the equilibrium (qa qu q̇a q̇u) = (qa,d qu,d 0 0) where qu,d

is the unique solution to
Gu(qa,d, qu) +Kuaqa,d +Kuuqu = 0. (11)

Proof. To prove that (11) admits a unique solution, consider
the function Pu(qu) : Rn−m → R defined as

Pu(qu) = Ug(qa,d, qu) +
1

2

(
qa,d

qu

)T

K

(
qa,d

qu

)
,

M(q)q̈ +C(q, q̇)q̇ +G(q) +Kq +Dq̇ =

(
KP q̃a −KDq̇a +KIz +Ga(q) +Kaaqa,d

0

)
, ż = s(q̃a). (3)
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M(q)q̈ +C(q, q̇)q̇ +G(q) +Kq +Dq̇ =

(
KP q̃a −KDq̇a + KI

γ
z +Ga(qd) +Kaaqa,d +Kauqu,d

Gu(qa,d, qu,d) +Kuaqa,d +Kuuqu,d

)
, ż = sa(q̃). (12)

where Ug is bounded and K > 0. Thus, Pu has (at least)
a local minimum. Noting that ∇qu

(Pu) = Gu(qa,d, qu) +
Kuaqa,d + Kuuqu, it follows that qu,d is an extremum
of Pu. Furthermore, (9) implies that the Hessian of Pu is
positive definite. Thus, Pu is strictly convex with unique global
minimum given by the unique solution of (11). Defining the
additional state variables

z(t) :=

∫ t

0

sa(q̃(ρ))dρ− γK−1
I (Kaaqa,d +Kauqu,d

+Ga(qd)− d),

and exploiting the identity Gu(qd)+Kuaqa,d+Kuuqu,d = 0,
the closed-loop dynamics takes the form (12) , where

τ = KP q̃a −KDq̇a +
KI

γ
z(t) +Kaaqa,d

+Kauqu,d +Ga(qd)− d

has been used. Consider the Lyapunov-like function

V (q̃, q̇,z) = γ

(
1

2
q̇TMq̇ + Ug(q) +

1

2
q̃TKq̃ + q̃TG(qd)

+
1

2
q̃T
aKP q̃a + q̃T

a

KI

γ
z

)
+

1

2
zT KI

γ
z

− sT (q̃)Mq̇,

which is radially unbounded since

V ≥ γ

2
km∥q̇∥2 − γkU +

γ

2
λmin(K)∥q̃∥2

− γkG∥q̃∥+
γ

2
λmin(KP )∥q̃a∥

2

− λmax(KI)∥q̃a∥∥z∥+
λmin(KI)

2γ
∥z∥2

− k3kM∥q̇∥,
and the right-hand-side of the above inequality grows un-
bounded as ∥(q̃ q̇ z)∥ tends to ∞.
Taking the time derivative of V yields

V̇ = γ

(
1

2
q̇TMq̇ + q̇TMq̈ + q̇TG− q̇T (Kq̃ +G(qd))

− q̇T
aKP q̃a − q̇T

a

KI

γ
z + q̃T

a

KI

γ
sa(q̃)

)
+ sT

a (q̃)
KI

γ
z + q̇T ∂s

∂q̃
Mq̇ − sT (q̃)(Ṁq̇ +Mq̈).

After some computations, (12) leads to

V̇ = −γq̇T D̃q̇ + q̇TJT
q̃ (s)Mq̇ − sT (q̃)CT q̇ + sT (q̃)D̃q̇

+ sT (q̃)(G(q)−G(qd))

− sT (q̃)

(
Kaa +KP −KI Kau

Kua Kuu

)
q̃.

Moreover, the following inequalities hold

q̇TJT
q̃ (s)Mq̇ ≤ k4kM∥q̇∥2,

−sT (q̃)CT q̇ ≤ k3kC∥q̇∥2,
sT (q̃)D̃q̇ ≤ λmax(D̃)∥s(q̃)∥∥q̇∥.

Similarly, by the Mean Value theorem for vector-valued func-
tions [25], it is possible to write

G(q)−G(qd) = −
(∫ 1

0

Jx(G(x))x=q−sq̃ds

)
q̃.

Recalling that Jx(G(x)) is symmetric, and invoking Proper-
ties 3 and 6, it follows

sT (q̃)(G(q)−G(qd)) ≤ k∂Gs
T (q̃)q̃.

Thus,

V̇ ≤ −
(
γλmin(D̃)− (k4kM + k3kC)

)
∥q̇∥2

+ λmax(D̃)∥s(q̃)∥∥q̇∥ − λmin(K̃)sT (q̃)q̃,

where

K̃ :=

(
Kaa+KP −KI−k∂GIm Kau

Kua Kuu−k∂GIn−m

)
.

Proceeding as in the proof of Theorem 1, we obtain, for ∥q̃∥ ≤
β,

V̇ ≤ −
(

∥q̇∥
∥q̃∥

)T (
Q11 Q12

Q12 k1Q22

)(
∥q̇∥
∥q̃∥

)
,

with

Q11 = γλmin(D̃)− (k4kM + k3kC),

Q12 = −1

2
λmax(D̃), Q22 = λmin(K̃).

According to Sylvester’s criterion, Q > 0 if and only if

λmin(K̃) > 0, (13)
detQ > 0. (14)

By Schur’s criterion, (13) reduces to
Kuu − k∂GIn−m > 0,

and
KP > KI + k∂GIm −Kaa

+Kau(Kuu − k∂GIn−m)−1KT
ua.

(15)

The first inequality holds from (9), while the latter can be
enforced by choosing KP large enough. Note that a sufficient
condition to satisfy (15) is

λmin(KP ) > αP :=− λmin(Kaa) + λmax(KI) + k∂G

+
∥Kau∥2

λmin(Kuu − k∂GIn−m)
.

Finally, (14) is guaranteed if

γ > γ̃1 :=
1

λmin(D̃)

(
1

k1

λ2
max(D̃)

4λmin(K̃)
+ k4kM + k3kC

)
.

Conversely, when ∥q̃∥ > β, V̇ is bounded by

V̇ < −Q11∥q̇∥2 + k3Q12∥q̇∥ − k2βQ22,

which is negative if

Q11 >
k23
k2β

Q2
12

Q22
,

or, equivalently,

γ > γ̃2 :=
1

λmin(D̃)

(
k2
3

k2β

λ2
max(D̃)

4λmin(K̃)
+ k4kM + k3kC

)
.

The thesis follows by defining γ̃ := max{γ̃1; γ̃2} and
applying again the Global Invariant Set theorem.

Remark 2. In contrast to elastically decoupled soft robots,
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(d) P-satI-D, system evolution
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Figure 2: Simulation 1 (Elastically decoupled and dominated). Time evolution of the closed-loop configuration variables under (a) the
P-satI-D+ (5) and (d) the P-satI-D (10) for reference (17). The output of the two controllers is shown in (b) and (e). Furthermore, (c) and
(f) present stroboscopic views of the robot motion in the workspace under the P-satI-D+ and (b) the P-satI-D, respectively. The steady-state
configurations are depicted in blue, while the transient ones are in gray. A red line shows the tip trajectory. A dark yellow stripe represents
the hinge between two consecutive actuated segments.

elastically dominated ones are stabilizable via simpler regu-
lators since almost no knowledge of the dynamic parameters
is needed, and only the actuated variables must be measured.
However, both controllers do not require the robot stiffness
because they learn the static elastic forces during the task
execution. As a result, these control laws are more robust with
respect to those of [17], [18].

Remark 3. Thanks to the natural damping in the dynamics,
the controllers (5) and (10) do not need the derivative action,
i.e., KD can be set to zero. However, even if it does not affect
stability, the damping injection may play a fundamental role
in the closed-loop performance.

Remark 4. The proposed control laws stabilize the dynamics
also under fully actuated approximations, i.e., when m = n.

V. SIMULATION RESULTS

Here, we validate the results of Sections III and IV through
extensive simulations on different planar soft robots moving in
the vertical plane rotated so that the gravitational force yields
a destabilizing effect on the dynamics. We model the robots
under the piecewise constant curvature (PCC) assumption. A
couple applied at its distal ends bends each actuated segment.
In all the simulations, the function s(x) = sp(x); p = 2,
is used for the integral action, which is initialized to zero,
and the robot starts at rest in the straight configuration, i.e.,

q(0) = 0 [rad] and q̇(0) = 0 [rad/s].
See the multimedia material for a video of the simulations.

A. Simulation 1 (Elastically decoupled and dominated)

Consider a planar soft robot with two actuated segments,
each discretized into four CC segments. Consequently, the
actuation matrix takes the form [7]

A =

(
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

)T

,

and the two actuated variables can be chosen as the sum
of the curvatures of each actuated segment, i.e., qa,1 =
θ1 + θ2 + θ3 + θ4 and qa,2 = θ5 + θ6 + θ7 + θ8. As a result,
qa is the attitude of the tip of the actuated segments. The six
unactuated coordinates are taken as elements of the null space
of A, i.e., qu ∈ kerA.
Each CC segment has mass mi = 0.05 [kg], length li =
0.04 [m], and uniformly distributed stiffness and damping
Kθ = 0.8 · I8 [Nm/rad] and Dθ = 0.01 · I8[Nms/rad]; i ∈
{1, . . . , 8}. The control gains are taken as KP =
diag{1.5, 1.3}[Nm/rad], KD = diag{0.3, 0.1}[Nms/rad],
KI = 0.5 · I2[Nm/rads] and γ = 2, respectively.
Being Kθ diagonal and large enough, the robot is elastically
decoupled and dominated. As a consequence, both the P-
satI-D+ (5) and P-satI-D (10) control laws can be used. The
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Figure 3: Simulation 2 (Elastically decoupled). Time evolution of the configuration variables (a) and of the control effort (b) under the
P-satI-D+ for reference (18). (c) A stroboscopic view of the robot motion in its workspace organized as Fig. 2.
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Figure 4: Simulation 3 (Elastically dominated). Time evolution of the configuration variables (a) and of the control effort (b) under the
P-satI-D for reference (20). (c) A stroboscopic view of the robot motion in its workspace organized as Fig. 2.

reference for the actuated variables is (in [rad])

qa,d =

{(
−π

3
π
3

)T
; t ∈ [0; 7) [s](

π
2

− π
4

)T
; t ∈ [7; 14] [s]

, (16)

which results in the overall desired configuration

qd =

{
qd,1; t ∈ [0; 7) [s]

qd,2; t ∈ [7; 14] [s]
, (17)

with
qd,1 =

(
−π

3
π
3 0.13 0.21 −0.07 −0.02 0.01 0.03

)T
,

qd,2 =
(
π
2 −π

4 0.15 0.22 −0.04 −0.02 0 0
)T

.

Figs. 2(a) and 2(d) report the time evolution of the con-
figuration variables under the P-satI-D+ and the P-satI-D,
respectively. Both controllers impose, as expected, the desired
configuration; however, the P-satI-D+ performs better than the
P-satI-D. Indeed, the former yields slightly smaller overshoots
compared to the latter. The P-satI-D+ learns only the static
elastic forces at qd, whereas the P-satI-D also the gravitational
torques. Consequently, the integral of the P-satI-D accumulates
a larger error, resulting in higher peaks at the beginning of each
motion. Note that the performance of the P-satI-D could be
improved by providing an estimate of Ga(qd), if available.
Figs. 2(b) and 2(e) report the time evolution of the control

torques, where no notable difference occurs. Furthermore,
stroboscopic views of the resulting robot motions are depicted
in Figs. 2(f) and 2(c).

B. Simulation 2 (Elastically decoupled)

Consider a planar cylindrical-shaped soft actuator made
of isotropic material discretized into four CC segments with
length li = 0.05 [m] and mass mi = 0.05 [kg]; i ∈ {1, . . . , 4}.
Stiffness and damping are uniformly distributed, and equal to
Kθ = 0.005 ·I4 [Nm/rad] and Dθ = 0.0025 ·I4[Nm/rads],
respectively. As a consequence the robot is elastically decou-
pled and (5) can be used to regulate qa = θ1+θ2+θ3+θ4. The
reference configuration for the actuated variable is (in [rad])

qa,d =

{
π
2
; t ∈ [0; 7) [s]

−π
3
; t ∈ [7; 14] [s]

. (18)

In addition, an external disturbance d = 0.2 [Nm] acts
starting from 8 [s]. The control gains are taken as KP =
0.75 [Nm/rad], KD = 0.03 [Nms/rad], KI = 0.5 [Nm/rads]
and γ = 2.
Fig. 3(a) shows the time evolution of the configuration vari-
ables. The actuated variable quickly converges to the desired
value, while the unactuated ones remain bounded and reach
an equilibrium point. As expected, the qu variables oscillate
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significantly because we do not have direct control authority
over them. Furthermore, the Coriolis and centrifugal forces
couple the evolution of qu with qa. Since the regulator does
not perform any unnecessary cancellation of model terms for
stability, the evolution of qu, which mainly depends on the
system damping, may also affect qa. The control torque, shown
in Fig. 3(b), increases in magnitude as soon as d appears,
and the integral action quickly compensates for the external
disturbance. Because of the excessive weight, the actuator
collapses, and the task is accomplished by moving mainly the
tip, as it appears from the stroboscopic plot of the robot in
Fig. 3(c).

C. Simulation 3 (Elastically dominated)

Finally, consider a conical-shaped tentacle of isotropic ma-
terial. The robot is modeled through four CC segments with
length li = 0.05 [m]; i ∈ {1, . . . , 4}. The segment masses are
m{1,2,3,4} = {0.05, 0.04, 0.03, 0.02} [kg], whereas stiffness
and damping are, respectively,

Kθ = diag{0.1; 0.13; 0.16; 0.2} [Nm/rad]and
Dθ = diag{0.03; 0.0036; 0.043; 0.05} [Nms/rad].

Differently from the previous simulation, we choose KP =
0.3 [Nm/rad] and KI = 0.6 [Nm/rads]. Being the stiffness
large enough, the potential field is convex and the robot is
elastically dominated with again qa = θ1+θ2+θ3+θ4. Thus,
the P-satI-D law (10) can be used to regulate qa, for which
the commanded target (in [rad])

qa,d =

{
−π; t ∈ [0; 7) [s]

π
2
; t ∈ [7; 14] [s]

, (19)

results in the reference configuration

qd =

{
[−π 0.14 0.26 0.33]; t ∈ [0; 7) [s]

[ π
2
0.07 0.07 0.02]; t ∈ [7; 14] [s]

. (20)

Figs. 4(a) and 4(b) illustrate the closed-loop evolution of the
configuration variables and of the control input, respectively.
As expected, q converges to the desired set point. Since the
elastic forces support the arm against gravity, the curvatures
attain similar values, and the robot no longer collapses, in
contrast to Simulation 2. This fact can also be seen in Fig. 4(c),
which illustrates the robot motion.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed new classes of controllers for
elastically decoupled and elastically dominated soft robots.
For the former, the actuated variables can be regulated to
any desired target configuration through a PID with satu-
rated integral action and with gravity cancellation. Along
the same line of thought, elastically dominated soft robots
can be globally asymptotically stabilized using a simple PID
controller with saturated integral action. The integral yields
two benefits: (i) it does remove from the control law a term that
accounts for the elastic forces, and (ii) it makes the closed-loop
robust with respect to matched constant disturbances. Finally,
the theoretical results have been verified through extensive
simulations. Future work will be devoted to the experimental
validation of these controllers, and to the study of tuning
techniques for the proposed regulators.
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