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Abstract—Model-based strategies are a promising solu-
tion to the grand challenge of equipping continuum soft
robots with motor intelligence. However, finite-dimensional
models of these systems are inherently inaccurate, thus
posing pressing robustness concerns. Moreover, the actua-
tion space of soft robots is usually limited. This article aims
at solving both these challenges by proposing a robust
model-based strategy for the shape control of soft robots
with system uncertainty and input saturation. The proposed
architecture is composed of two key components. First,
we propose an observer that estimates deviations between
the theoretical model and the soft robot, ensuring that the
estimation error converges to zero within finite time. Sec-
ond, we introduce a sliding mode controller to regulate the
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soft robot shape while fulfilling saturation constraints. This
controller uses the observer’s output to compensate for
the deviations between the real system and the established
model. We prove the convergence of the closed-loop with
theoretical analysis and the method’s effectiveness with
simulations and experiments.

Index Terms—Disturbance observer, input saturation,
model-based control, sliding mode control, soft robots.

I. INTRODUCTION

CONTINUUM soft robots are made of continuously de-
formable elements and are inspired by invertebrate ani-

mals [1]. With their peculiar characteristics, they are expected
to execute tasks that are currently not achievable for standard
rigid robots—for example, interacting with uncertain environ-
ments, possibly involving humans. Nevertheless, the soft robot’s
highly deformable nature that makes these tasks possible also
makes their control challenging. As a result, soft robot motor
intelligence is still minimal today.

In recent years, a rising interest has been building around
model-based strategies as a possible solution to the soft robot
control challenge [2], with encouraging accomplishments [3],
[4], [5], [6], [7]. However, many unsolved issues still hinder
the practical application of model-based methods. This article
focuses on two relevant and often overlooked blocking issues:
model uncertainty and control saturation. First, models for
soft robots are inherently inaccurate. Indeed, although control-
oriented dynamic models are getting more advanced [8], [9],
they can never match the infinite-dimensional nature of their
exact formulation [10]. Moreover, limitations in fabrication
strategies introduce variability of behaviors. Second, commonly
used actuation strategies in soft robotics (e.g., pressure, vacuum,
electroactive polymers) are limited in the range [11], and the con-
troller quickly incurs input saturation. When saturation occurs,
the control performances usually deteriorate, sometimes even
resulting in instabilities.

Sliding mode controllers (SMCs) have proven to be robust
to uncertainties and able to achieve high accuracy and fast
response times [12], [13]. Within the SMC field, observer-based
methods have been widely investigated [14], [15]. Concerning
robotics applications, [16] proposed a combination of a sliding
perturbation observer and an SMC for a rigid manipulator, and
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Fig. 1. Block scheme representation of the proposed control archi-
tecture. An SMC is fed with the output of an observer that estimates
the deviation between the theoretical model and the real system, and
with the output of an adaptive law that guarantees closed-loop stability
despite input saturation. The output of the controller is then transformed
into a set of generalized forces by suitable transformations.

Hamza et al. [17] used a similar strategy to achieve position
control of an assistive robot. Regarding the application of SMC
in soft robotics, [18], [19], [20] present encouraging results.
However, most of them still use the traditional SMC framework,
which relies on the upper bound knowledge of the system
uncertainty to assure stability [21]. Moreover, none of them take
input saturation into account.

In this article, we propose a control architecture (see Fig. 1)
that simultaneously solves both challenges, with the goal of
achieving reliable closed-loop behavior. The core of the method
is a robust SMC, which in turn relies on two components that take
care of uncertainty and input saturation. The first is a disturbance
observer, whose output is used by the SMC as compensation.
The second is an adaptive law to guarantee the system’s stability
with respect to input saturation. Considering the importance of
disturbance observers for real-time compensation of system un-
certainty [16], we leverage the observer-based SMC framework
to achieve reliable model-based control of saturated soft robots.
We exploit the finite-time stability of high-order sliding mode
observers and continuous terminal SMC to improve closed-loop
performance. More precisely, this article contributes to the state-
of-the-art in model-based control of soft robots with:

1) an observer for uncertainty estimation of soft robots with
finite-time stability properties;

2) a finite-time and nonsingular SMC for shape regulation of
soft robots with saturation and uncertainty compensation;

3) simulations and experiments showcasing the superior per-
formance of the method compared to SoA benchmarks;

4) the first experimental verification of closed-loop control
based on the Δ-parameterization [22] of the PCC dynam-
ics [23].

II. MATHEMATICAL FORMULATION

A generic soft robot modeled by means of some discretization
technique can be described [2] by ordinary differential equations

of the following form:

Bq q̈ + Cq,q̇ q̇ +Gq +Kqq +Dq q̇ = Aqτ (1)

where q, q̇, q̈ ∈ Rn are the vector of configuration variables
together with their first and second order time derivatives,
Bq ∈ Rn×n is the inertia matrix, Cq,q̇ q̇ collects Coriolis and
centrifugal terms, Gq ∈ Rn models gravitational effects, and
Kq ∈ Rn×n and Dq ∈ Rn×n are the stiffness and damping
matrices, respectively. Aq ∈ Rn×n maps the input forces and
torques τ ∈ Rn to configuration space, causing the system to be
fully actuated.

To account for the uncertainty that characterizes the model [2],
we split the dynamic terms into known and unknown parts,
i.e., Bq = B̄q + δBq, Cq,q̇ = C̄q,q̇ + δCq,q̇ , Gq = Ḡq + δGq ,
Kq = K̄q + δKq , and Dq = D̄q + δDq . Consequently, (1) can
be rewritten as

B̄q q̈ + C̄q,q̇ q̇ + Ḡq + K̄qq + D̄q q̇ = Aqτ + δF (2)

with δF = −δBq q̈ − δCq,q̇ q̇ − δGg − δKqq − δDq q̇. Model
(2) verifies a set of well-known properties of classical rigid
robots [22], [24], among these the following will be exploited
in the remainder.

Property 1: The inertia matrix B̄q is symmetric and positive
definite. Furthermore, there exist constants b1, b2 > 0 such that
b1 ‖ q ‖2 ≤ qTB̄qq ≤ b2 ‖ q ‖2 for all q.

Property 2: If the matrix C̄q,q̇ is defined through Christof-

fel symbols, then ˙̄Bq = C̄q,q̇ + C̄T
q,q̇ . In addition, there ex-

ist constants c1, c2, c3 > 0 such that ‖C̄q,q̇‖ ≤ (c1 + c2‖q‖+
c2‖q‖2)‖q̇‖ for all q and q̇.

Assumption 1 [25]: The uncertainty δF is bounded and
admits bounded first order time derivative ˙δF , i.e., there exist
constants f1, f2 > 0 such that ‖δF‖ ≤ f1 and ‖ ˙δF‖ ≤ f2 for
all q. Besides, we assume that the full-state feedback is avail-
able, i.e., the configuration q and its time derivative q̇ are fully
observable.

III. CONTROL SCHEME

We present here our main contribution, the saturated distur-
bance observer-based sliding mode controller (DOSMC). As
illustrated in Fig. 1, the scheme consists of an SMC, an observer
to estimate the system uncertainty and disturbance, and an adap-
tive law to account for the input saturation and simultaneously
guarantee closed-loop stability. Before diving into the details of
the various elements of the scheme, we briefly list some lemmas
that will be exploited in the stability analyses.

A. Preliminaries

Lemma 1 [26]: For the nonlinear system ẋ(t) = f(x(t))
with f(0) = 0 and x(t) ∈ Rn, if one can find a Lyapunov
functionV (x) satisfying V̇ (x) ≤ −βV γ(x),β > 0, 0 < γ < 1,
then the system is finite-time stable with the settling time
T ≤ 1

β(1−γ)V
1−γ(x0).

Lemma 2 [27]: For the system presented in Lemma 1,
if the Lyapunov function V (x) satisfying V̇ (x) + αV (x) +
βV γ(x) ≤ 0, α > 0, β > 0, 0 < γ < 1, then for any initial
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state V (x0), the solution of the system converges within time

T = 1
α(1−γ) ln

αV 1−γ(x0)+β
β .

Lemma 3 [28]: For the system presented in Lemma 1,
if the Lyapunov function V (x) satisfies V̇ (x) ≤ −αV (x)−
βV γ(x) + η, in which α, β > 0, 0 < γ < 1, 0 < η < ∞,
then the solution of f(x) will converge to the set
Π � {x | V (x) ≤ min{ η

(1−χ)α , (
η

(1−χ)β )
1
γ }} within time T ≤

max{ 1
αχ(1−γ) ln

αχV 1−γ(x0)+β
αχV 1−γ(xT )+β ,

1
α(1−γ) ln

αV 1−γ(x0)+βχ
αV 1−γ(xT )+βχ}, in

which 0 < χ < 1, V (xT ) is the value of V (x) at t = T .
In the following, define sat(x) = max(xmin,min(x, xmax))

as the saturation function wherexmax andxmin are the lower and
upper bounds of x, and sgn(x) = {0 if x = 0; |x|/x otherwise}
the sign function. Furthermore, given two vectors v =
[v1 · · · vn]T and γ = [γ1 · · · γn]T, the operator sig(v)γ is defined
as sig(v)γ = [|v1|γ1sgn(v1), · · · |vn|γnsgn(vn)]T.

B. Observer Design

Property 1 allows to write the system dynamics (2) in its state
space form

ẋ1 = x2, ẋ2 = F (x1, x2, t) + u+ d (3)

where x1 = q, x2 = q̇, F (x1, x2, t) = −B̄−1
q (C̄q,q̇ q̇ + Ḡq +

K̄qq + D̄q q̇), u = B̄−1
q Aqτ stands for the control input and

d = B̄−1
q (δF + τd) represents the lumped uncertainty. To es-

timate d, the following observer can be used:

˙̂x2 = k1Φ1(x2, x̂2) + F (x1, x2, t) + u+ d̂

˙̂
d = k2Φ2(x2, x̂2) (4)

where k1, k2 > 0 are diagonal matrices, x̂2 and d̂ are
the estimates of x2 and d, respectively. Φ1(x2, x̂2) =

sig(x2 − x̂2)
1
2 + μsig(x2 − x̂2)

3
2 , Φ2(x2, x̂2) =

1
2 sgn(x2 −

x̂2) + 2μ(x2 − x̂2) +
3
2μ

2sig(x2 − x̂2)
2 with μ > 0 a diagonal

matrix. The following result shows that x̂2 and d̂ converge to
x2 and d in finite time.

Theorem 1: Considering system (2) and its state-space
form (3), the proposed observer (4) ensures that the estimation
error converges to zero in finite time.

Proof: Taking (4) into (3) yields the error dynamics of the
observer

˙̃x2 = −k1Φ1(x2, x̂2) + d̃,
˙̃
d = −k2Φ2(x2, x̂2) + ḋ (5)

where x̃2 = x2 − x̂2 and d̃ = d− d̂ are estimation errors of x2

and d.
Recalling that d = B̄−1

q δF , from Properties 1–2 and As-
sumption 1, it follows that there exists a constant dc > 0 s.t.

‖ḋ‖ ≤ dc. Now define ξ =
[
ϕ1i, d̃i

]T
, with ϕ1i and d̃i being

the ith element of Φ1 and d̃, respectively. Whenever x̃2i �= 0,
the time derivative of ξ can be computed as

ξ̇ =

[
ϕ̇1i

˙̃
di

]
=

[
ϕ′
1i

(
−k1iϕ1i + d̃i

)
−k2iϕ

′
1iϕ1i + ḋi

]
(6)

with ϕ′
1i =

1
2 |x̃2i|− 1

2 + 3
2μi|x̃2i| 12 the partial derivation of φ1i

with respect to x̃2i. Writing (6) in the matrix form yields

ξ̇ = ϕ′
1i (Aξ +B�i(ξ, t)) (7)

where A = [−k1i 1;−k2i 0], B = [0 1]T, and �i(ξ, t) =
ḋi

ϕ′
1i

=

2ḋisgn(x̃2i)
(1+3μi|x̃2i|)(1+μi|x̃2i|)ϕ1i. Being ḋ bounded, there exists a con-

stant δi > 0 such that δ2i ϕ
2
1i − �2i (ξ, t) ≥ 0. We claim that both

ϕ1i and d̃i converge to zero in finite time. To show this, consider
the Lyapunov candidate V1(x̃2i, d̃i) = ξTΛξ, where Λ = ΛT is
a positive definite matrix. Exploiting (7), V̇1 = ξ̇TΛξ + ξTΛξ̇
can be bounded by

V̇1 ≤ ϕ′
1i

[
ξ �i

] [
ATΛ + ΛA+ L ΛB

BTΛ −1

] [
ξ

�i

]

(8)

with L = δ2i C
TC and C = [1 0]. Consider now the following

linear matrix inequality:[
ATΛ + ΛA+ L+ εI ΛB

BTΛ −1

]
≤ 0 (9)

where ε > 0. According to [29], (9) is feasible i.f.f. the control
gains (k1i, k2i) ∈ K+ = {(k1i, k2i) ∈ R+ | k21i > 2k2i, k2i >
δ ∨ k21i < 2k2i, k

2
1i(4k2i − k21i) > (2δi)

2}.

Exploiting the inequalities V
1/2
1 /λ

1/2
max(Λ) ≤ ‖ξ‖2 ≤

V
1/2
1 /λ

1/2
min(Λ), |x̃2i|1/2 ≤ ‖ξ‖2, and the fact that (9) bounds

from above the matrix appearing in the right-hand side of (8),
V̇1 can be bounded by

V̇1 ≤ −εϕ′
1i‖ξ‖22 = − ε‖ξ‖22

2|x̃2i| 12
− 3

2
εμi|x̃2i| 12 ‖ξ‖22

≤ − ε

2λmax(Λ)
V

1
2
1 (10)

where λmin(Λ) and λmax(Λ) denote the smallest and largest
eigenvalue of Λ, respectively. All the hypotheses of Lemma 1
are therefore verified, and both ϕ1i and d̃i converge to zero in
finite time. Since the abovementioned reasoning holds for all
i, Φ1 and d̃ converge to zero in finite time. The thesis follows
noting that Φ1 = 0 implies x̃2 = 0. �

Remark 1: In the proof of Theorem 1, it is assumed x̃2i �= 0.
To evaluate the stability of the error dynamics when x̃2i = 0
but d̃i �= 0, we consider two different cases, i.e., x̃2i = 0 in an
entire time interval [t1, t2] or at some instant of time t1 ≥ 0.
If x̃2i(t) = 0 for t ∈ [t1, t2], then ˙̃x2i(t) = 0 in the same time
window. From (5) this implies that also d̃i = 0. On the other
hand, if x̃2i = 0 only at some instant of time t1, then necessarily
˙̃x2i �= 0 from which it follows that there exists t2 > t1 such that
x̃2i(t2) �= 0. Thus, we fall in the case x̃2i �= 0.

C. Controller Design for Saturated Soft Robots

Considering the input saturation in (3), one has

ẋ1 = x2, ẋ2 = F (x1, x2, t) + sat(uc) + d (11)
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whereu = sat(uc) ∈ [umin, umax] accounts for input saturation,
withuc being the virtual control inputs to be designed. Generally,
the saturation exists in τ instead of u, i.e., τ ∈ [τmin, τmax].
Whereas, given a set of system states, the saturation in τ and
u can be easily mapped to each other with u = B̄−1

q Aqτ . Note
that both umin and umax are time-varying. However, as it will
be shown next, this does not affect closed-loop stability.

To achieve configuration-space control, the following sliding
surface is proposed:

s = ė+ αe+ βsν(e) (12)

where e = q − qd, qd is a constant desired reference for q and
sν(e) is defined as

sν(e) =

{
sig(e)ν , s̄ = 0 ∪ s̄ �= 0, |e| ≥ δ
ι1e+ ι2e

2sgn(e), s̄ �= 0, |e| < δ

in which ι1 = (2− ν)δν−1 and ι2 = (ν − 1)δν−2 ensure the
continuity and derivability of sν [30], α > 0, β > 0, 0.5 < ν <
1, δ > 0, and s̄ = ė+ αe+ βsig(e)ν is the standard terminal
sliding surface. The time derivative of s is given by

ṡ = ë+ αė+ βṡν . (13)

Without input saturation, the controller to reach the sliding
surface would have been defined as

u1 = − F (x1, x2, t) + q̈d − (βṡν + αė+ κ1 s

+ κ2sigρ(s) )− d̂. (14)

However, we add an extra term to u1 to compensate for the input
saturation obtaining

uc = − F (x1, x2, t) + q̈d − {βṡν + αė+ κ1 s

+ κ2sigρ(s)} − d̂+ kζζ (15)

in which ζ evolves according to

ζ̇ =

⎧⎨
⎩Δu− �1ζ − �2sigρ(ζ)− sTΔu+

‖Δu‖2
2

‖ζ‖2 ζ, ‖ζ‖ > σ

0, ‖ζ‖ ≤ σ

(16)

where Δu = sat(uc)− uc, kζ is a positive definite matrix and
σ > 0 is a user defined constant. We can now state the following
result.

Theorem 2: Considering a saturated soft robot (11) with the
designed observer (4) and the control law (15), the configuration
space position will converge to a neighborhood of its equilibrium
points in finite time.

Proof: Substituting (15) into (11), we have

ẋ2 = F (x1, x2, t) + uc +Δu+ d

= − {βν|e|ν−1ė+ κ1 s+ κ2sigρ(s) + αė}
+ kζζ + d− d̂+Δu. (17)

Then, (13) can be rewritten as

ṡ = −{κ1 s+ κ2sigρ(s)}+ kζζ + (d− d̂) + Δu. (18)

For ease of reading, we divide the remaining part of the proof
into three steps.

Step 1: The stability of the adaptive law (16) is easily proven
with the Lyapunov candidate V2 = 1

2ζ
Tζ. In the case of ‖ζ‖ >

σ, its time derivative satisfies

V̇2≤− �1‖ζ‖2−�2‖ζ‖ρ+1+‖ζ‖‖Δu‖+‖s‖‖Δu‖− 1

2
‖Δu‖2

≤ −
(
�1 − 1

2

)
‖ζ‖2 − �2‖ζ‖ρ+1 + ‖s‖‖Δu‖

≤ − �̄1V2 − �̄2V
1+ρ
2

2 +Σ (19)

where �̄1 = 2�1 − 1, �̄2 = 2
ρ+1
2 �, and Σ = ‖s‖‖Δu‖. Accord-

ing to (12) and (15), s andΔu are bounded. Thus, from Lemma 3,
ζ is finite-time stable if ‖ζ‖ > σ, and its convergence region
Ψ � {ζ∣∣‖ζ‖ ≤ max{( Σ

(1−χ1)�̄1
)

1
2 , σ}} decreases with the con-

vergence of s and Δu. If ‖ζ‖ ≤ σ then ζ̇ = 0 and ζ ∈ Ψ.
Step 2: To prove the stability of the sliding mode surface,

consider the following Lyapunov function:

V3 =
1

2
sTs+

1

2
ζTζ. (20)

Its time derivative is

V̇3 = sTṡ+ ζTζ̇

= − {κ1‖s‖2 + κ2‖s‖ρ+1}+ sTε+ sTkζζ + sTΔu+ζTζ̇

≤ − {κ1‖s‖2 + κ2‖s‖ρ+1}+ ‖s‖‖ε‖+ ‖s‖‖kζζ‖
+ sTΔu+ ζTζ̇ (21)

where ε = sup{d− d̂} is the maximum estimation error of the
observer. Once again we analyze separately the case when ‖ζ‖ >
σ and ‖ζ‖ ≤ σ.

Case 1: ‖ζ‖ > σ
Considering (16) and the inequality 2‖x‖‖y‖ ≤ ‖x‖2 +

‖y‖2, V̇3 can be upper bounded by

V̇3 ≤ − {κ1‖s‖2 + κ2‖s‖ρ+1}+ ‖s‖2 + 1

2
‖ε‖2 + 1

2
‖kζζ‖2

+ {−�1‖ζ‖2 − �2‖ζ‖ρ+1 − sTΔu− 1

2
ΔuTΔu

+ ζTΔu}+ sTΔu

≤ − {(κ1 + 1)‖s‖2 + κ2‖s‖ρ+1}+ 1

2
‖ε‖2 + 1

2
‖kζζ‖2

+ {−�1‖ζ‖2 − �2‖ζ‖ρ+1 +
1

2
‖ζ‖2}

≤ − κ̄1(‖s‖2 + ‖ζ‖2)− κ̄2(‖s‖ρ+1 + ‖ζ‖ρ+1) +
1

2
‖ε‖2

(22)

with κ̄1 = min{κ1 + 1, 1
2kζ + �1}, κ̄2 = min{κ2, �2}. Ex-

ploiting the inequality (|r1|+ |r2|+ · · ·+ |rn|)p ≤ |r1|p +
|r2|p + · · ·+ |rn|p, 0 < p < 1, one has

− (‖s‖ρ+1 + ‖ζ‖ρ+1
) ≤ −(‖s‖2 + ‖ζ‖2) ρ+1

2 . (23)
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Therefore, (22) yields

V̇3 ≤ −κ̂1V3 − κ̂2V
ρ+1
2

3 +
1

2
‖ε‖2 (24)

where κ̂1 = 2κ̄1, κ̂2 = 2
ρ+1
2 κ̄2. By Theorem 1, ε approaches

zero in finite time. Thus, from (24) in finite time we have V̇3 ≤
−κ̂1V3 − κ̂2V

ρ+1
2

3 which implies, according to Lemma 2, the
finite-time stability of s. Assume now that ε �= 0, which can
happen before the observer is stable or if the observer has static
errors. In this case (24) can be rewritten as

V̇3 ≤ − χκ̂1V3 − (1− χ)κ̂1V3 − κ̂2V
ρ+1
2

3 +
1

2
‖ε‖2 (25)

where 0 < χ < 1. If V3 > ‖ε‖
2(1−χ)κ̂1

, one has V̇3 ≤ −χκ̂1V3 −
κ̂2V

ρ+1
2

3 which implies that s converges in finite time to the set
Π1 � {(s, ζ) | V3(s, ζ) ≤ ‖ε‖

2(1−χ)κ̄1
}. Recalling that d̂ is always

bounded, also ε will be bounded. However, ε will be much
smaller than d after the observer is stabilized, which leads s
to converge to a small Π1 even for small control gains.

Case 2: ‖ζ‖ ≤ σ
In this case (21) yields

V̇3 ≤ − {κ1‖s‖2 + κ2‖s‖ρ+1}+ ‖s‖‖ε‖+ ‖s‖‖kζζ‖
+ sTΔu (26)

that is

V̇3 ≤ − {κ1‖s‖2 + κ2‖s‖ρ+1} − {‖ζ‖2 + ‖ζ‖ρ+1}
+ {‖σ‖2 + ‖σ‖ρ+1}+ (kζσ + ‖ε‖+ ‖Δu‖)‖s‖

≤ − κ̂1V3 − κ̂2V
ρ+1
2

3 + Γ (27)

where κ̂1 = min{2κ1, 2}, κ̂2 = min{2 ρ+1
2 κ2, 2

ρ+1
2 }, Γ =

‖σ‖2 + ‖σ‖ρ+1|+ (kζσ + ‖ε‖+ ‖Δu‖)‖s‖. From Lemma 3
and the proof of Case 1, it follows that s converges to Π2 �
{(s, ζ) | V3(s, ζ) ≤ Γ

2(1−χ)κ̂1
} in finite time.

In Theorem 1 we proved the finite-time stability of the
observer. For practical systems, the estimation error d̃ will
not escape in finite time. According to the results presented
in [31] and discussions in Step 2, the proposed sliding surface
is finite-time stable.

Step 3: This step proves that the state will converge to a
neighborhood of the equilibrium point along the sliding surface
s. As discussed in Step 2, s converges to a neighborhood of the
origin. Without loss of generality, we consider the scalar case.
From previous discussions, one has s = ė+ αe+ βsν(e) ≤ Π.
Since sν(e) is piecewise, two scenarios are analyzed.

Case 1: |e| ≥ δ. In this case, one has ė+ αẽ+ βsig(e)ν =
Π̂, Π̂ ≤ Π, implying

ė+ αe+
(
β − Π̂sig(e)−ν

)
sig(e)ν = 0 (28)

ė+
(
α− Π̂e−1

)
e+ βsig(e)ν = 0. (29)

From (28), we have ė = −αe− (β − Π̂ sig(e)−ν)sig(e)ν . The
time derivative of the Lyapunov function Ve =

1
2e

2 is

V̇e = −αe2 −
(
β − Π̂ sig(e)−ν

)
|q|ν+1

= −2αVe − 2
ν+1
2

(
β − Π̂ sig(e)−ν

)
V

ν+1
2

e . (30)

Hence, if β − Π̂sig(e)−ν > 0, i.e., |e| > ( Π̂β )
1/ν , then e will

be finite-time stable. The convergence region and time can
be calculated according to Lemma 2. Alike, one can obtain
similar results from (29). In conclusion, e will converge to

Ω � {e∣∣|e| ≤ min( ν

√
Π
β ,

Π
β ), |e| > δ}.

Case 2: |e| < δ. In this case, the tracking error is already in
Ω, which can be treated as an attraction region under |e| < δ.�

IV. SIMULATION

In this section, simulations are conducted to verify the ef-
fectiveness of the proposed control scheme. We consider an
extensible 3-D soft arm with its base rotated such that in a straight
configuration q = 0m, the robot has its tip pointing downward
while being aligned with the gravitational field. In the simula-
tions, we consider two scenarios: a) the arm being discretized
with one constant curvature (CC) [23] segment and b) the arm
consisting of two CC segments. We will only report the settings
for the two-segment case for conciseness. The parameters for
the one-segment case correspond to those of the first segment in
the two-segment case.

The configuration of the soft robotic arm is defined as
q = [Δx,1 Δy,1 δL1 Δx,2 Δy,2 δL2]

T according to the
Δ-parameterization [22] of the piecewise constant curvature
(PCC) assumption. Each segment has a length of 1m and mass
of 0.3 kg. The stiffness and damping matrices are assumed di-
agonal and equal to K̄i = 1Nm and D̄i = 0.1Nsm−1, i = 1, 2,
respectively. The saturated DOSMC controller is compared with
a PID+ controller [6], hereinafter GC-PID, and a traditional
integral sliding mode controller [19] referred to as ISMC.

The robot starts at rest, and the simulation runs for 25 s. The
lumped uncertainty, containing a time-varying term throughout
the whole simulation and a perturbation term from t = 14 s to
t = 20 s, is set as

d(t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
st ct s0.5t st ct s0.5t

]T
, t∈ [0, 14)∪[20, 25] s[

st + 4 ct + 4 s0.5t + 3

st + 3 ct + 5 s0.5t + 3
]T

, t ∈ [14, 20) s

where cx = cosx, sx = sinx. The saturation constraints are
imposed on the control inputs, i.e., τ ∈ [−τ̂ , τ̂ ] with τ̂ =
[10 10 15 10 10 15]T Nm. The commands to the controllers
include three successive targets (in m)

qd(t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
2 2 1 −2 −2 1

]T
, 0 ≤ t < 10 s[

1 1 0.5 −1 −1 0.5
]T

, 10 ≤ t < 20 s[
0 0 0 0 0 0

]T
, t ≥ 20 s.
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Fig. 2. Simulation results: Configuration evolution of an one segment
soft robot using the three controllers. (a) Saturated DOSMC. (b) GC-PID.
(c) ISMC.

Fig. 3. Simulation results: Configuration evolution of a two-segment
soft robot and inputs of the three controllers. Panels (a)–(c) plot the time
evolution of the robot’s motion. Panels (d)–(f) show the control inputs.
(a) and (d) Saturated DOSMC. (b) and (e) GC-PID. (c) and (f) ISMC.

When tuning the control gains, the stability of the closed-
loop system has the highest priority. Given this base re-
quirement, the tracking accuracy and response speed are
considered the main performance indicators during the tun-
ing of the control gains. The gains of the saturated
DOSMC are taken as k1 = 9.4 · I6, k2 = 5.6 · I6, μ = 1.0 ·
I6, ν = 0.55, δ = 0.01, α = diag(2.6, 2.5, 2.3, 3.1, 3.3, 2.7),
β = diag(1.9, 1.5, 1.5, 2.6, 2.8, 2.2), ρ = 0.7, κ1 = 5.4 · I6,
κ2 = diag(1.7, 1.3, 1.1, 2.3, 2.5, 2.0), �1 = 3.0 · I6, �2 = 2.0 ·
I6, σ = 0.001, and kζ = 0.7 · I6. The gains of the GC-PID are
set as KP = 20 · I6, KD = 7.5 · I6, and KI = 1.2 · I6. For the
ISMC, k1 = 3, k2 = 1, and η = 0.01 are chosen. The simulation
results are given in Figs. 2–5.

Fig. 2 shows the configuration evolution for the one-segment
case. Overall, all three controllers can track the reference com-
mands. However, the proposed method can better deal with un-
certainty, especially when the additional perturbation is applied
at t = 14 ∼ 20 s.

Figs. 3–5 illustrate the simulation results for the two-segment
case. All the controllers yield stable closed-loop systems with
a small tracking error. However, at the beginning of the simu-
lation (t = 0 s) and the moment when the reference command
is switched (t = 8 s), the proposed method yields better tran-
sient performance. As the additional perturbations appear at

Fig. 4. Simulation results: Time evolution of the saturation law and of
the observer estimation errors for the one-segment case. (a) Saturation
law. (b) Estimation errors.

Fig. 5. Simulation results: Panels (a)–(c) plot the stroboscopic views
of the motion of the two-segment soft robot under the control of the
saturated DOSMC. Panels (d)–(f) show the motion with the GC-PID
regulator. Panels (g)–(i) visualize the trajectory while using the ISMC
controller. (a), (d), and (g) t ∈ [0, 10] s. (b), (e), and (h) t ∈ [10, 20] s.
(c), (f), and (i) t ∈ [20, 25] s.

t = 14 s, the saturated DOSMC soon adapts to these, while the
performance of the GC-PID and ISMC controllers deteriorates.
Looking at the control inputs, we can observe that saturation
occurs when the reference is changed. For the proposed method,
the saturation law starts producing additional control signals to
compensate for the saturation at these instants [see Fig. 4(a)],
leading to a better transient performance. Contrarily, since both
GC-PID and ISMC do not take saturation into account, the
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Fig. 6. Soft robotic platform used for the experiments. The left-hand side of the figure illustrates the components of the platform. The soft robot is
actuated pneumatically, and the air pressure is controlled via a pressure regulator. We measure the robot’s shape with a motion capture system.
A workstation is used to process all the data and evaluate the controller. On the right-hand side of the picture, we zoom in on the two-segment
continuum soft robot used during the experiments. We also present a schematic representation of the mapping Mi ∈ R2×4 from the internal forces
f ∈ R4 within the air cavities to the generalized wrench τ ∈ R2 in Cartesian space used as the control input. The force fk is applied at the center
of pressure of the kth top chamber wall and proportional to both the cross-sectional area Ak and the applied pressure pk.

performance deteriorates to varying degrees. Fig. 4(b) shows the
estimation errors of the observer. The proposed observer has a
fast convergence property. During t = 14–20 s, when additional
perturbations are added to the system, it responds quickly, pre-
venting the system from being significantly influenced by the
disturbances. For a better illustration of the dynamic behavior in
the workspace, Fig. 5 shows stroboscopic views of the motion
of the soft robot for all three controllers.

V. EXPERIMENT

We present here the experimental results of the proposed
DOSMC for the pneumatically actuated soft robotic platform
shown in Fig. 6. A motion capture system is used to mea-
sure the SE(3) pose of the distal end of each segment, which
is communicated to a workstation that runs inverse kinemat-
ics to identify the current robot configuration q(t). The con-
troller is implemented in Simulink and its control inputs are
sent to a pressure regulator that actuates the robot. The soft
arm is fabricated through the means of silicone casting [32]
and consists of two segments, with the second segment hav-
ing four active inflatable chambers. The segment length and
mass are measured as 110mm and 108 g, respectively. Under
the PCC [23] assumption, we model the robot as inextensi-
ble through the Δ-parameterization [22] so that the configu-

ration is represented by q =
[
Δx,1 Δy,1 Δx,2 Δy,2

]T
∈

R4. The stiffness and damping matrices are identified
through the same least square approach used in [24], result-
ing in K = diag(1.4496, 1.4496, 1.2544, 1.2544)Nm−1 and
D = 4.3× 10−3 · I4 Nsm−1, respectively. Since the actual in-
puts to the system are pressures pk, k = 1, . . . , 4, the mapping
from torques to pressures proposed in [33] is adopted.

Therefore, the controller output τj , j = 1, . . . , 2; is mapped
into a set of linear forces fi, i = 1, . . . , 4; acting along the axial
direction of each chamber at a distance di from the segment
backbone. These are finally converted into the pressures pk

via fk = pkAk, where Ak is the cross-sectional area of the
kth chamber. di and Ak are extracted from the CAD model
as di = 13.5mm and Ak = 210 mm2, respectively.

Since the first segment is unactuated, we treat its influence
on the second as a dynamic uncertainty. Note that this makes
the control problem significantly more challenging compared to
considering just a one-segment robot. The reference configura-
tions for the second segment are set as (in m) as

q(3,4),d(t) =

⎧⎪⎨
⎪⎩
[
−0.3 −0.3

]T
, 0 ≤ t < 8 s[

0.2 0.2
]T

, t ≥ 8 s.
(31)

The experiment lasts 16 s and the control loop is executed at
100Hz. The pressure vector p = [p1 p2 p3 p4]

T is restricted to
the set p ∈ [0, pmax]with pmax = [0.55 0.55 0.45 0.45]T bar.
These pressure limits can then be mapped into configuration
space using the actuation matrix Aq (e.g., τq,max = Aq pmax) and
subsequently used in the controller.

For comparison purposes, experiments with the GC-PID and
ISMC controllers are also conducted. We use the same tuning
strategy to identify control gains as for the simulations. The
gains of the GC-PID are chosen as KP = diag(0.88, 0.55),
KD = diag(0.15, 0.12), and KI = diag(0.9, 0.7). The gains
of ISMC are set to k1 = 3, k2 = 4.5, and η = 0.01. For the
saturated DOSMC, the gains of the observer and the saturation
law are the same as the simulations, while the control gains are
ν = 0.55, δ = 0.01, α = diag(8.9, 6.7), β = diag(4.5, 4.8),
ρ = 0.7, κ1 = diag(5.1, 4.7), and κ2 = diag(2.3, 3.0). To
avoid possible chattering introduced by the sgn function, the
boundary layer technique proposed in [27] is adopted.

The experimental results are presented in Figs. 7–11. Figs. 7
and 8 show the evolution of system states and input pressures
of GC-PID and ISMC, respectively. The closed-loop behaviors
of the two controllers are comparable. Both of them can reg-
ulate the system to the preset configuration, but the transient
performances are poor with long settling times (around 5 s for
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Fig. 7. Experimental results: Time evolution of the configuration vari-
ables and the input pressures for the GC-PID regulator. (a) Configuration
for the GC-PID. (b) Input pressures of the GC-PID.

Fig. 8. Experimental results: Time evolution of the configuration vari-
ables and the input pressures for the ISMC regulator. (a) Configuration
for the ISMC. (b) Input pressures of the ISMC.

Fig. 9. Experimental results: Time evolution of the configuration vari-
ables and of the input pressures for the DOSMC without the saturation
law (16). (a) Configuration for the DOSMC. (b) Input pressures for the
DOSMC.

both controllers) and persistent small oscillations. Fig. 9 shows
the results for the DOSMC without saturation law (16). As it is
possible to observe from Fig. 9(a), the DOSMC yields signifi-
cantly better performance compared to GC-PID and ISMC, the
system states are smoother, and the settling time is dramatically
reduced (within 0.5 s). As presented in Fig. 9(b), the corre-
sponding control inputs of the DOSMC are more aggressive
than GC-PID and ISMC. This is because the observer generates
additional input signals that quickly compensate for the system
uncertainty, as shown in Fig. 10(c). We also tried to increase the
control gains of GC-PID and ISMC to improve their transient
performance, but this did not achieve better results. Note that
when the reference is switched at t = 8 s, the DOSMC without

Fig. 10. Experimental results for the saturated DOSMC. Panels (a)
and (c) depict the time evolution of configuration variables and input
pressures. Panel (c) plots the outputs of the observer, and panel (d)
shows the outputs of the saturation law. (a) States evolution. (b) Inputs
pressures. (c) Observer performance. (d) Saturation law.

Fig. 11. Experimental results: Motion sequence of the saturated
DOSMC.

saturation law is very aggressive and produces large control
signals resulting in an overshooting behavior. Reducing observer
and controller gains would help reduce the overshoot, but it
may sacrifice performance with respect to other metrics, such
as response speed and steady-state error. There exists a variety
of tradeoffs for tuning the observer and controller gains, and
the used gain selection strategy should always be based on the
respective task requirements. While tuning the control gains in
this article, we aimed for a small steady-state error and a fast
response speed while accepting some overshoot. This overshoot
is slightly reduced when using the saturated DOSMC instead of
the plain DOSMC, as shown in Fig. 10(a). The corresponding
saturation law curves are plotted in Fig. 10(d). The motion
sequence of the system for the proposed controller is presented
in Fig. 11 to aid the interpretation of the robot’s configuration
values.

VI. CONCLUSION

In this work, we proposed a model-based control architecture
for shape regulation of soft robots robust to system uncertainties
and can deal with input saturation. The scheme included an SMC
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to steer the configuration to the desired equilibrium, an observer
to estimate the system uncertainty, and an adaptive law to ensure
closed-loop stability despite the presence of input saturation. We
analyzed the controller from a theoretical standpoint to assess
the stability in closed loop. We validated the theoretical results
through simulations and experiments. Future work will extend
the architecture to execute tasks involving interactions with an
unstructured environment.
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