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Abstract. In this paper we study the problem of obtaining meaningful answers
to queries posed over inconsistent DL-Lite ontologies. We consider different vari-
ants of inconsistency-tolerant semantics and show that for some of such variants
answering unions of conjunctive queries (UCQs) is first-order (FOL) rewritable,
i.e., it can be reduced to standard evaluation of a FOL/SQL query over a database.
Since FOL-rewritability of query answering for UCQs over consistent ontologies
under first-order logic semantics is one of the distinguishing features of DL-Lite,
in this paper we actually identify some settings in which such property is pre-
served also under inconsistency-tolerant semantics. We therefore show that in
such settings inconsistency-tolerant query answering has the same computational
complexity of standard query answering and that it can rely on well-established
relational database technology, as under standard DL semantics.

1 Introduction

In the last years there has been a continuously growing use of ontologies in many ICT
applications and Description Logics (DLs) have been recognized as the best means for
the formal specification of ontologies, for their ability of combining modeling power
and decidability of reasoning [2]. For these characteristics, DLs constitute the logical
underpinning of prominent ontology languages, such as OWL 2, the W3C standard
language for ontology specification1. DL ontologies are constituted by a TBox, repre-
senting intensional knowledge, and an ABox, representing extensional knowledge. Mo-
tivated by the fact that the size of real world ontologies is scaling up and that the ability
of dealing with ontologies with very large ABoxes has become a crucial requirement
for many modern applications, various DLs have been recently proposed that allow for
tractable reasoning. Among such DLs, the logics of the DL-Lite family [5, 19] present
the distinguishing characteristic of enabling first-order (FOL) rewritability of query an-
swering of unions of conjunctive queries (UCQs). This means that to answer a UCQ q
in DL-Lite it is possible to first rewrite q into a first-order query qr, only on the basis
of the knowledge specified in the TBox, and then evaluate qr over the ABox, which
can be seen as a plain database. FOL-rewritability of UCQs is a notable property, since
many practical applications require the expressivity of UCQs for query answering, and
their FOL-rewritability allows for delegating the management of the ABox to a rela-
tional DBMS, because the FOL queries produced by the rewriting process are directly

1 http://www.w3.org/TR/owl2-overview/



translatable into SQL. In other words, in this way we reduce a form of reasoning under
incomplete information, i.e., query answering over an ontology, to classical evaluation
of an SQL query. Notably, the ABox does not need to be touched during the rewrit-
ing phase, and no data preprocessing is needed (as for example required in [6, 14]).
This turns out to be crucial, for instance, in all those applications in which ontologies,
and in particular their intensional component, are used to access data stored in external
repositories, such as in ontology-based data integration [19, 3].

In these applications, however, even though the TBox of the ontology is usually
a consistent theory, its axioms may often be contradicted by assertions of the ABox,
in general collected from various autonomous sources. This actually implies that the
resulting ontology is inconsistent, and that reasoning over it is trivialized. The ability
of dealing with such a form of inconsistency is of critical importance, in particular to
obtain meaningful answers to queries posed over inconsistent ontologies.

In a previous paper [15], we have proposed various inconsistency-tolerant seman-
tics that allow for such possibility, and have shown that answering UCQs under some
of these semantics is tractable in DL-LiteA, one of the most expressive logics of the
DL-Lite family, which is at the basis of OWL 2 QL2, a standard tractable fragment of
OWL 2. In [15], however, we left open the problem whether answering UCQs is in
fact FOL-rewritable in the tractable cases we have identified. In the present paper we
positively reply to this question, thus showing that in these cases inconsistency-tolerant
query answering has the same computational complexity of standard query answering,
and that it can rely on relational database technology, as under classical DL semantics.

More precisely, we consider here the Intersection ABox Repair (IAR) semantics and
the Intersection Closed ABox Repair (ICAR) of [15], and provide algorithms for the
FOL-rewritability of UCQs under such semantics. The notion of repair over which such
semantics rely is borrowed from the database literature [1], and it is rooted in research
on belief revision and updates [7, 9]. Roughly speaking, given an ontologyO with TBox
T and ABoxA, in the IAR semantics the (only) repair is obtained as the intersection of
all ABoxes A′ consistent with T that are contained in A and are maximal with respect
to set containment. In the ICAR semantics, instead, we consider also ABox assertions
that are logically implied by the TBox and by any subset of A that is consistent with
T . We call such set of ABox assertions the closure of A with respect to T , denoted
clc(A, T ), and define the (only) repair in the ICAR semantics as the ABox obtained
by the intersection of all ABoxes A′ consistent with T that are contained in clc(A, T )
and are maximal with respect to set containment. As shown in [15], there are cases in
which the IAR semantics produces different repairs for ontologies that should be instead
considered to some extent equivalent to the aims of certain applications, even though
specified in a syntactically different form. The ICAR semantics does not present this
behavior, for its ability of considering essentially only repairs that are “closed” with
respect to the knowledge represented by the TBox, thus flattening differences in the
syntactic specification of the ABox (for ontologies having the same TBox).

We notice that first-order rewritability of inconsistency-tolerant query answering
has been already considered in the database literature [1, 8, 11]. These papers, however,
provide only sufficient conditions for FOL-rewritability of some fragments of conjunc-

2 http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/
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tive queries, specified over database schemas equipped with limited forms of integrity
constraints (i.e, binary universal constraints [1], or single key dependencies on rela-
tions [8], possibly combined in a controlled way with exclusion dependencies [11],
which impose disjunctions on projections of relations). The only paper considering
FOL-rewriting of UCQs is [16], which provides some preliminary results for database
schemas with only key dependencies. There is also an extensive literature that study
inconsistency in ontologies, which however do not distinguish between inconsistency
at the intensional and extensional level as we do our approach (in other words, also
inconsistency in the TBox are considered) [18, 13, 12, 20, 17, 21]. Our approach is also
deeply connected with the work on belief revision, since the ABox can be considered
the initial knowledge, whereas the TBox represents the incoming knowledge. In this
respect, we notice that the IAR and the ICAR semantics both conform to the WIDTIO
principle of belief revision [7], but also that the special kind of theories that can be
specified in DL-LiteA has not been analyzed by works from these area.

The rest of the paper is organized as follows. In Section 2, we give some prelimi-
naries, and in particular we introduce DL-LiteA and the notion of FOL-rewritability. In
Section 3, we recall the definition of the IAR and the ICAR semantics. In Section 4,
we present FOL-rewritings for UCQs under the IAR and the ICAR semantics, and, in
Section 5 we give a complete example. Finally, in Section 6 we conclude the paper.

2 Preliminaries

A Description Logic ontology O = 〈T ,A〉 consists of a TBox T , representing inten-
sional knowledge, and an ABoxA representing extensional knowledge. ΓO will denote
the alphabet of the ontology, that is, the union of the predicate symbols occurring in T
and A, whereas ΓC will denote the alphabet of constant symbols occurring in A.

In this paper we consider ontologies specified in DL-LiteA, a member of the DL-Lite
family of tractable Description Logics. DL-LiteA distinguishes concepts from value-
domains, which denote sets of (data) values, and roles from attributes, which denote
binary relations between objects and values. Concepts, roles, attributes, and value-
domains in this DL are formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→>D | T1 | · · · | Tn
Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

In such rules,A, P , and U respectively denote an atomic concept (i.e., a concept name),
an atomic role (i.e., a role name), and an attribute name, P− denotes the inverse of an
atomic role, whereas B and Q are called basic concept and basic role, respectively.
Furthermore, δ(U) denotes the domain of U , i.e., the set of objects that U relates to
values; ρ(U) denotes the range of U , i.e., the set of values that U relates to objects;
>D is the universal value-domain; T1, . . . , Tn are n pairwise disjoint unbounded value-
domains. A DL-LiteA TBox T is a finite set of assertions of the form

B v C Q v R E v F U v V (funct Q) (funct U)
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From left to right, the first four assertions respectively denote inclusions between con-
cepts, roles, value-domains, and attributes. In turn, the last two assertions denote func-
tionality on roles and on attributes. In fact, in DL-LiteA TBoxes we further impose that
roles and attributes occurring in functionality assertions cannot be specialized (i.e., they
cannot occur in the right-hand side of inclusions). LetB1 andB2 be basic concepts, and
let Q1 and Q2 be basic roles. We call positive inclusions (PIs) assertions of the form
B1 v B2, and of the form Q1 v Q2, whereas we call negative inclusions (NIs) asser-
tions of the form B1 v ¬B2 and Q1 v ¬Q2.

A DL-LiteA ABox A is a finite set of membership assertions of the forms A(a),
P (a, b), and U(a, v), where A, P , and U are as above, a and b belong to ΓO, the subset
of ΓC containing object constants, and v belongs to ΓV , the subset of ΓC containing
value constants, where {ΓO, ΓV } is a partition of ΓC .

The semantics of a DL-LiteA ontology is given in terms of first-order logic (FOL)
interpretations I = (∆I , ·I). ∆I is a non-empty domain such that ∆I = ∆V ∪ ∆IO,
where ∆IO is the domain used to interpret object constants in ΓO, and ∆V is the fixed
domain (disjoint from ∆IO) used to interpret data values. ·I is an interpretation function
defined as follows:

AI ⊆ ∆IO P I ⊆ ∆IO ×∆IO
(δ(U))I = { o | ∃v. (o, v) ∈ UI } (P−)I = { (o, o′) | (o′, o) ∈ P I }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI } (¬Q)I = (∆IO ×∆IO) \QI
(¬B)I = ∆IO \BI UI ⊆ ∆IO ×∆V

>ID = ∆V (¬U)I = (∆IO ×∆V ) \ UI
(ρ(U))I = { v | ∃o. (o, v) ∈ UI }

Notice that each (Ti)
I and each (v)I are the same in every interpretation. An interpre-

tation I satisfies a concept (resp., role) inclusion assertion B v C (resp., Q v R) if
BI ⊆ CI (resp., QI ⊆ RI). Furthermore, a role functionality assertion (funct Q) is
satisfied by I if, for each o, o′, o′′ ∈ ∆IO, we have that (o, o′) ∈ QI and (o, o′′) ∈ QI
implies o′ = o′′. The semantics for attribute and value-domain inclusion assertions, and
for functionality assertions over attributes can be defined analogously. As for the seman-
tics of ABox assertions, we say that I satisfies the ABox assertions A(a), P (a, b) and
U(a, v) if aI ∈ AI , (aI , bI) ∈ P I and (aI , vI) ∈ UI , respectively. Furthermore, in
DL-LiteA the Unique Name Assumption (UNA) is adopted, i.e., in every interpretation
I, and for every pair c1, c2 ∈ ΓC , if c1 6= c2 then cI1 6= cI2 .

We denote with Mod(O) the set of models of an ontology O, i.e., the set of FOL
interpretations that satisfy both TBox and ABox assertions in O. As usual, an ontology
O entails a FOL sentence φ, denoted O |= φ, if φI is true in every I ∈ Mod(O).

An atomic conceptA in T is unsatisfiable if T |= A v ¬A, i.e., if the interpretation
of A is empty in every model of T . Analogously, we say that an atomic role P is
unsatisfiable in T if T |= P v ¬P , and a concept attribute U is unsatisfiable in T if
T |= U v ¬U .

In the following, we we will mainly consider boolean unions of conjunctive queries
(UCQ) expressed over a DL-LiteA ontology, i.e., first order sentences of the form
∃y1.conj 1(t1)∨ · · · ∨ ∃yn.conjn(tn), where y1, . . . ,yn are variables, t1, . . . , tn are
terms (i.e., constants or variables), such that each variable in ti occurs also in yi, and
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each conj i(ti) is a conjunction of atoms of the form A(z), P (z, z′) and U(z, z′) where
A is a concept name, P is a role name and U is an attribute name, and z, z′ are terms.
Each ∃yi.conj i(ti) is a boolean conjunctive query (CQ) over the ontology. A boolean
conjunctive query q evaluates to true over an Abox A if there exists a substitution σ
from the variables in q to constants of A such that the set containing all and only the
atoms in σ(q) is contained in A. With a little abuse of notation we write such condition
as σ(q) ⊆ A. We call each such σ(q) an image of q onA. A boolean UCQQ =

∨n
i=1 qi

evaluates to true on an ABox A if there exists i ∈ {1, . . . n} such that qi is true on A.
UCQs is a particularly interesting class of queries since entailment of a boolean

UCQ by a DL-LiteA ontology O = 〈T ,A〉 can be reduced to standard evaluation of a
FOL query, in fact a UCQs, over the ABox A, i.e., entailment of UCQs in DL-LiteA
is FOL-rewritable [5, 19]. More formally, query answering of UCQs is FOL-rewritable
if, for every union of conjunctive queries q and every DL-LiteA TBox T , there exists a
FOL query qr, over the alphabet of T , such that for every non-empty ABox A it holds
that 〈T ,A〉 |= q if and only if qr evaluates to true over A, i.e., 〈∅,A〉 |= q. The query
qr is called the perfect FOL reformulation of q w.r.t. T . An algorithm for computing
such reformulation, called PerfectRef, is provided in [5, 19]. In a nutshell, PerfectRef
takes as input a UCQ q and a DL-LiteA TBox T and compiles in q the knowledge of
T useful for answering q, returning another UCQs over T which is the perfect FOL
reformulation of q w.r.t. T .

Obviously, if a DL-LiteA ontology O is unsatisfiable, query answering is trivial-
ized, and in particular every boolean query over O is entailed by O.3 To avoid this,
inconsistency-tolerant semantics are needed, which ensure the existence of models even
in the presence of contradictions in the ontology. In the following, we consider this
problem and study FOL-rewritability of UCQs under some inconsistency-tolerant se-
mantics. All results we achieve on boolean UCQs can be easily extended in the usual
way to the presence of free variables in queries (see e.g. [10]).

3 Inconsistency-tolerant semantics

In this section we recall the IAR and ICAR semantics of [15]. Such semantics are based
on the notion of repair. Intuitively, given a DL ontologyO = 〈T ,A〉, a repairAR forO
is an ABox such that the ontology 〈T ,AR〉 is satisfiable under the first-order semantics,
andAR “minimally” differs fromA. The IAR and the ICAR semantics differ indeed on
the notion of minimality they adopt. Formally, the IAR semantics is defined as follows:

Definition 1. Let O = 〈T ,A〉 be a DL ontology. The Intersection ABox Repair (IAR)
of O is the set IAR-Rep(O) obtained by the intersection of all sets A′ of membership
assertions such that:

1. A′ ⊆ A
2. Mod(〈T ,A′〉) 6= ∅
3 The algorithm PerfectRef given in [5, 19] assumes in fact that the ontology of interest is sat-

isfiable. Extending it to obtain also trivial answers entailed by unsatisfiable ontologies is easy
(see, e.g., [4]), but it is not of practical interest.
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3. there does not exist A′′ such that A′ ⊂ A′′ ⊆ A and Mod(〈T ,A′′〉) 6= ∅

An interpretation I is an Intersection ABox repair model, or simply an IAR-model,
of O if I |= 〈T ,A′〉, with A′ = IAR-Rep(O). The set of ABox repair models is
denoted by IAR-Mod(O). Furthermore, let O be a DL ontology, and let φ be a first-
order sentence, we say that φ is IAR-consistently entailed, or simply IAR-entailed, by
O, written O |=IAR φ, if I |= φ for every I ∈ IAR-Mod(O).

As shown in [15], the IAR-semantics is a sound approximation of another se-
mantics, called AR-semantics, whose repairs actually coincide with the subset of the
ABox satisfying conditions 1, 2, and 3 of Definition 1. In other words, IAR-Rep =⋂
Ai∈AR-Rep(O)Ai, where AR-Rep denotes the set of the AR-repairs. In the same paper,

it has been also shown that the AR-semantics, and consequently the IAR-semantics,
has the characteristic to be “syntax-dependent”, in the sense that two ontologies O =
〈T ,A〉 and O′ = 〈T ,A′〉 that differ simply because A′ includes assertions that log-
ically follow, using T , from a consistent subset of A, may give rise to different AR-
and IAR- repairs. This may be considered an unwanted behavior in some applications,
and has led to the introduction of the CAR-semantics and of its sound approximation
called the ICAR-semantics, whose definition is based on the notion of consistent log-
ical consequences of O, denoted clc(O). Formally, we have that clc(O) = {α | α ∈
HB(O) and there exists S ⊆ A such that Mod(〈T , S〉) 6= ∅ and 〈T , S〉 |= α}, where
HB(O) denotes the Herbrand Base of O, i.e., the set of ground atoms that can be built
over the alphabet of O. With this notion in place we can now recall the definition of
Intersection Closed ABox Repair.4

Definition 2. LetO = 〈T ,A〉 be a DL ontology. The Intersection Closed ABox Repair
(ICAR) of O is the set ICAR-Rep(O) obtained by the intersection of all sets A′ of
membership assertions such that:

1. A′ ⊆ clc(O)
2. Mod(〈T ,A′〉) 6= ∅
3. there does not exist A′′ such that A′ ⊂ A′′ ⊆ clc(O) and Mod(〈T ,A′′〉) 6= ∅

The set of ICAR-models of an ontologyO, denoted ICAR-Mod(O), is defined anal-
ogously to IAR-models. Also, ICAR-entailment, denoted |=ICAR, is defined in a way
analogous to IAR-entailment.

4 Perfect reformulation of UCQs in DL-LiteA

In this section we show that answering UCQs over DL-LiteA is FOL-rewritable under
both the IAR and the ICAR semantics. First of all, we notice that a DL-LiteA TBox
is always satisfiable, i.e., it admits always a model under standard FOL semantics, and
that in a DL-LiteA ontologyO = 〈T ,A〉 an inconsistency may arise only for one of the
following reasons:

4 The definition provided here of the CAR-semantics (and hence of the ICAR-semantics) is a
slight simplification of the one originally proposed in [15]: this modification, however, does
not affect any of the computational results presented in [15].
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1. there exist an atomic concept A (resp. an atomic role or an attribute Z) in the TBox
alphabet ΓO and a constant d (resp. a pair of constants d1 and d2) in the alphabet
of constants ΓC such that T |= A v ¬A and A(d) ∈ A (resp. T |= Z v ¬Z and
Z(d1, d2) ∈ A);

2. there exist an atomic role P ∈ ΓO and a constant d ∈ ΓC such that T |= P v ¬P−
or T |= ∃P v ¬∃P− and P (d, d) ∈ A;

3. there exist an attribute U ∈ ΓO, a constant d ∈ ΓC , and a constant v ∈ ΓV such
that T |= ρ(U) v T , U(d, v) ∈ A and the interpretation of v does not belong to
the interpretation set of T ;

4. there is a negative inclusion γ such that T |= γ and γ is contradicted by asser-
tions of the ABox. For example, T |= A v ¬∃P and {A(d), P (d, c)} ⊆ A (and
analogously for all the various possible forms of negative inclusions);

5. there is an atomic role P ∈ ΓO and constants d, d1, d2 belonging to ΓC such that
(funct P ) ∈ T (resp. (funct P−) ∈ T ) and {P (d, d1), P (d, d2)} ⊆ A (resp.
{P (d1, d), P (d2, d)} ⊆ A);

6. there is an attribute U , a constant d ∈ ΓC and constants d1, d2 belonging to ΓV
such that (funct U) ∈ T and {U(d, d1), U(d, d2)} ⊆ A.

Interestingly, each possible violation of a TBox axiom involves either one member-
ship assertion (cases 1, 2, and 3) or two membership assertions (cases 4, 5, and 6). It
can be shown that no other violations than those described above are indeed possible in
DL-LiteA. We also call each such violation a clash in the ontology. In the following, we
will not consider violations described at point 3 (type violations). It is indeed possible
to easily extend our reformulation technique to deal with this kind of violations, but due
to lack of space we omit details on this aspect.

Roughly speaking, in the reformulation of a query q over a DL-LiteA TBox T ,
we encode into a FOL formula all violations that can involve membership assertions
belonging to images of q on any ABox A. Indeed, this can be done by reasoning only
on the TBox, and considering each query atom separately. Intuitively, we deal with
inconsistency by rewriting each atom at of q into a FOL formula atr in such a way that
atr evaluates to true over A only if there exists a substitution σ of the variables in q to
constants of A such that σ(q) ⊆ A and σ(at) is not involved in any of the violations of
TBox assertions mentioned above.

This inconsistency-driven rewriting is then suitably casted into the final reformu-
lation, which takes into account also positive knowledge of the TBox, i.e., positive
inclusions. As we will show later in this section, this can be done by means of the algo-
rithm PerfectRef of [5, 19], which is used in the perfect rewriting of UCQs under both
the IAR and the ICAR semantics (even though in different ways).

To formalize the above idea, we need to introduce some preliminary definitions. The
first definition that we give can be used to establish whether a certain atom is consistent
with the TBox axioms (cf. cases 1 and 2 above). We distinguish below the various
possible cases. Let A be an atomic concept in ΓO and t a term (i.e., either a constant or
a variable symbol), we pose

ConsAtomTA(t) =

{
false if T |= A v ¬A
true otherwise
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In words, ConsAtomTA(t) is false if the conceptA is unsatisfiable, true otherwise. The
analogous holds for an attribute U ∈ ΓO and terms t and t′:

ConsAtomTU (t, t
′) =

{
false if T |= U v ¬U
true otherwise

For an atomic role P ∈ ΓO and terms t, t′, we instead have:

ConsAtomTP (t, t
′) =

 false if T |= P v ¬P
t 6= t′ if T |= P v ¬P− ∨ T |= ∃P v ¬∃P−
true otherwise

Here, besides taking into account the case when P is an unsatisfiable role, we need
to also deal with violations caused by an assertion of the form P (a, a) when P
is antisymmetric, which is considered by the second option. The conditions gener-
ated by ConsAtom will be used in our reformulation in conjunction with the cor-
responding query atoms. For example, given the atom ∃x, y.P (x, y) and the TBox
T = {∃P v ¬∃P−}, we have that ConsAtomTP (x, y) = x 6= y, which is used to
generate ∃x, y.P (x, y)∧ x 6= y. A membership assertion of the form P (d, d) can be an
image for ∃x, y.P (x, y) in any ABox, but not for ∃x, y.P (x, y) ∧ x 6= y, i.e., through
the rewriting we are able to filter out images of q that are inconsistent with the TBox.

Now we deal with possible clashes involving negative inclusions, which are also
called disjointnesses. Let B be a basic concept built from an atomic concept or an
atomic role of ΓO, and let t be a term. Then, we define NotDisjClashTB(t) as the fol-
lowing FOL formula: ∧

A∈DisjConcepts(B,T )

¬(A(t) ∧ ConsAtomTA(t))∧∧
P∈DisjRoleDom(B,T )

¬(∃y.P (t, y) ∧ ConsAtomTP (t, y))∧∧
P∈DisjRoleRan(B,T )

¬(∃y.P (y, t) ∧ ConsAtomTP (y, t))∧∧
U∈DisjAttrDom(B,T )

¬(∃y.U(t, y) ∧ ConsAtomTU (t, y))

where y is a variable symbol such that y 6= t 5, DisjConcepts , DisjRoleDom ,
DisjRoleRan , and DisjAttrDom are defined as follows:

DisjConcepts(B, T ) = {A | A is an atomic concept of ΓO and T |= B v ¬A}
DisjRoleDom(B, T ) = {P | P is an atomic role of ΓO and T |= B v ¬∃P}
DisjRoleRan(B, T ) = {P | P is an atomic role of ΓO and T |= B v ¬∃P−}
DisjAttrDom(B, T ) = {U | U is an attribute of ΓO and T |= B v ¬δ(U)}

Notice that if t is a variable, B(t) represents the atoms ∃t.A(t), ∃t, y.P (t, y),
∃y, t.P (y, t), or ∃t, y.U(t, y), for B equal to A, ∃P , ∃P−, or δ(U), respectively. The

5 Notice that, if t is a variable symbol, then t is a free variable in NotDisjClashTB(t)
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case in which t is a constant is analogous. Intuitively, we will use NotDisjClashTB(t)
to reformulate a query atom of the form B(t), in order to properly manage all possi-
ble clashes that can be caused by assertions of an ABox and that involve TBox axioms
of the form B v ¬B′, where B′ is a basic concept. In NotDisjClashTB(t), the use
of ConsAtom formulas guarantees that we do not consider as real clashes the clashes
on negative inclusions that involve a membership assertion α such that 〈T , {α}〉 is
unsatisfiable. To clarify this point, consider the following example: Given the TBox
T = {A1 v ¬A2, A2 v ¬A2} and the ABox A = {A1(d), A2(d)}, we have that
A1(d) and A2(d) clashes on A1 v ¬A2, but since A2(d) alone violates A2 v ¬A2,
the first one is not a “real” clash, indeed both the IAR and the ICAR semantics include
A1(d) in their repair.

Let us now consider disjointness clashes for roles. Let P be a role name from ΓO
and let t, t′ be terms, we define the formula NotDisjClashTP (t, t

′) as follows:∧
S∈DisjRoles(P,T ) ¬(S(t, t

′) ∧ ConsAtomTS (t, t′)) ∧NotDisjClashT∃P (t)∧∧
S∈DisjInvRoles(P,T ) ¬(S(t

′, t) ∧ ConsAtomTS (t′, t)) ∧NotDisjClashT∃P−(t′)

where, again, if either t or t′ are variable symbols, then they are free variables, and the
sets DisjRoles(P, T ) and DisjInvRoles(P, T ) are defined as follows:

DisjRoles(P, T ) = {S | S is a role name of ΓO and T |= P v ¬S}
DisjInvRoles(P, T ) = {S | S is a role name of ΓO and T |= P v ¬S−}.

Intuitively, NotDisjClashTP (t, t
′) will be used in the reformulation to deal with possible

violations of negative inclusions involving P . This means considering role inclusions,
through the sets DisjRoles(P, T ) and DisjInvRoles(P, T ), and concept inclusions of
the form ∃P v ¬B and of the form ∃P− v ¬B, through the use of NotDisjClashT∃P (t)
and NotDisjClashT∃P−(t′), respectively. ConsAtomTS (t, t

′) plays here a role analogous
to the one played by ConsAtom formulas in NotDisjClashTB(t).

Let us now consider disjontnesses on attributes. Let U be an atomic attribute from
ΓO and let t, t′ be terms. We define NotDisjClashTU (t, t

′) as the following FOL for-
mula: ∧

T∈DisjAttributes(U,T )

¬(T (t, t′) ∧ ConsAtomTU (t, t
′)) ∧NotDisjClashTδ(U)(t)

where, again, if t or t′ are variable symbols they are free variables, and DisjAttributes
is defined as follows:

DisjAttributes(U, T ) = {W |W is an atomic attribute of ΓO and T |= U v ¬W}

Notice that NotDisjClashTU (t, t
′) is similar to NotDisjClashTR(t, t

′), but simpler, ac-
cording to the syntax of TBox inclusions involving attributes.

Finally, we consider clashes on functionalities and define NotFunctClashTP (t, t
′)

as the following FOL formula:

– if (funct P ) 6∈ T and (funct P−) 6∈ T , then NotFunctClashTP (t, t
′) = true;
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– if (funct P ) ∈ T and (funct P−) 6∈ T , then NotFunctClashTP (t, t
′) =

¬(∃y.P (t, y) ∧ y 6= t′ ∧ ConsAtomTP (t, y));
– if (funct P ) 6∈ T and (funct P−) ∈ T , then NotFunctClashTP (t, t

′) =
¬(∃y.P (y, t′) ∧ y 6= t ∧ ConsAtomTP (y, t));

– if (funct P ) ∈ T and (funct P−) ∈ T , then NotFunctClashTP (t, t
′) =

¬(∃y.P (t, y) ∧ y 6= t′ ∧ ConsAtomTP (t, y)) ∧ ¬(∃y.P (y, t′) ∧ y 6= t ∧
ConsAtomTP (y, t)).

Analogously, NotFunctClashTU (t, t
′) is as follows:

– if (funct U) 6∈ T then NotFunctClashTU (t, t
′) = true;

– if (funct U) ∈ T then NotFunctClashTU (t, t
′) = ¬(∃y.U(t, y) ∧ y 6= t′ ∧

ConsAtomTU (t, y)).

As usual, ConsAtom formulas are used in NotFunctClash formulas to guarantee
that only “real” clashes on functionalities are taken into account.

We are finally able to define for each DL-LiteA construct the formula that combines
together the various formulas we have introduced for dealing with the various possible
clashes.

– NotClashTA(t) = NotDisjClashTA(t) for an atomic concept name A and term t;
– NotClashTZ (t, t

′) = NotDisjClashTZ (t, t
′) ∧ NotFunctClashTZ (t, t

′) for a role or
attribute name Z and terms t, t′.

4.1 Perfect reformulation of UCQs in DL-LiteA under the IAR-semantics

Let q be a CQ of the form

∃x1, . . . , xk.
n∧
i=1

Ai(t
1
i ) ∧

m∧
i=1

Pi(t
2
i , t

3
i ) ∧

∧̀
i=1

Ui(t
4
i , t

5
i ) (1)

where everyAi is an atomic concept, every Pi is an atomic role, every Ui is an attribute,
and every t1i , t

2
i , t

3
i , t

4
i , t

5
i is either a constant or a variable xj with 1 ≤ j ≤ k.

Then, we define IncRewritingIAR(q, T ) as the following FOL sentence

∃x1, . . . , xk.
n∧
i=1

Ai(t
1
i ) ∧ ConsAtomTAi

(t1i ) ∧NotClashTAi
(t1i )∧∧m

i=1 Pi(t
2
i , t

3
i ) ∧ ConsAtomTPi

(t2i , t
3
i ) ∧NotClashTPi

(t2i , t
3
i )∧`

i=1 Ui(t
4
i , t

5
i ) ∧ ConsAtomTUi

(t4i , t
5
i ) ∧NotClashTUi

(t4i , t
5
i )

In words, for each atom Ai(t
1
i ) we specify the conditions that each membership as-

sertion in every image of Ai(t1i ) over an ABox A has not to be inconsistent with the
TBox (condition ConsAtomTAi

(t1i )), and has not be involved in any clash with some
other assertion of A on any negative inclusion (condition NotClashTAi

(t1i )). Similarly
for atoms of the form Pi(t

2
i , t

3
i ) and Ui(t4i , t

5
i ).
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Let Q be the UCQ q1 ∨ . . . ∨ qn. Then, we define

IncRewritingUCQIAR(Q, T ) =
n∨
i=1

IncRewritingIAR(qi, T )

We are then able to give our final results on reformulation of UCQs under the IAR-
semantics.

Theorem 1. Let T be a DL-LiteA TBox and let Q be a UCQ. Then, for every ABox A,
〈T ,A〉 |=IAR Q iff 〈∅,A〉 |= IncRewritingUCQIAR(PerfectRef(Q, T ), T ).

We call IncRewritingUCQIAR(PerfectRef(Q, T ), T ) the perfect rewriting of Q with
respect to T under the IAR-semantics, and denote it with PerfectRefIAR(Q, T ). In the
theorem, PerfectRef(Q, T ) denotes the perfect reformulation of a UCQ Q with respect
to a DL-LiteA TBox T under standard semantics [5, 19]. This algorithm returns a UCQ
specified over T . Through such reformulation we first preprocess the query according
to “positive” knowledge of the TBox, thus obtaining a new UCQ. Such a UCQ is then
rewritten according to functionalities and negative inclusions implied by the TBox in
order to realize inconsistency tolerance of query answering under the IAR semantics.

The following complexity result is a direct consequence of the above theorem, since
establishing whether 〈∅,A〉 |= PerfectRefIAR(Q, T ) simply amounts to evaluating a
FOL query over the ABoxA, which is in AC 0 in data complexity, that is, the complex-
ity computed w.r.t. the size of the ABox only.

Corollary 1. Let O be a DL-LiteA ontology and let Q be a UCQ. Deciding whether
O |=IAR Q is in AC 0 in data complexity.

4.2 Perfect reformulation of UCQs in DL-LiteA under ICAR-semantics

Given a CQ q of the form (1), and a DL-LiteA TBox T , we denote by
IncRewritingICAR(q, T ) the following FOL sentence

∃x1, . . . , xk.
n∧
i=1

PerfectRef(Ai(t1i ), T ) ∧ ConsAtomTAi
(t1i ) ∧NotClashTAi

(t1i )∧∧m
i=1 PerfectRef(Pi(t2i , t

3
i )) ∧ ConsAtomTPi

(t2i , t
3
i ) ∧NotClashTPi

(t2i , t
3
i )∧`

i=1 PerfectRef(Ui(t4i , t
5
i )) ∧ ConsAtomTUi

(t4i , t
5
i ) ∧NotClashTUi

(t4i , t
5
i )

Differently from what we have done for the IAR-semantics, the algorithm PerfectRef
is used here to rewrite each atom α of q, considering all variables occurring in α as
bound terms. This is done to take into account the presence in the ICAR repair of atoms
belonging to clc(O).

Let Q be the UCQ q1 ∨ . . . ∨ qn. Then, IncRewritingUCQICAR(Q, T ) is the FOL
sentence

IncRewritingUCQICAR(Q, T ) =
n∨
i=1

IncRewritingICAR(qi, T )
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Theorem 2. Let T be a DL-LiteA TBox and let Q be a UCQ. Then, for every ABox A,
〈T ,A〉 |=ICAR Q iff 〈∅,A〉 |= IncRewritingUCQICAR(PerfectRef(Q, T ), T ).

We call IncRewritingUCQICAR(PerfectRef(Q, T ), T ) the perfect rewriting of Q
with respect to T under the ICAR-semantics, and denote it with PerfectRefICAR(Q, T ).
As for the IAR-semantics, the following corollary is a direct consequence of the above
theorem.

Corollary 2. Let O be a DL-LiteA ontology and let Q be a UCQ. Deciding whether
O |=ICAR Q is in AC 0 in data complexity.

5 Example

This example aims to highlight the differences between the IAR semantics and the
ICAR semantics and to clarify the algorithms for query reformulation presented before.
Let us consider a simple DL-LiteA ontology O = 〈T ,A〉 describing a wine catalogue.
The TBox T is constituted by the following assertions:

RedWine v Wine WhiteWine v Wine RedWine v ¬WhiteWine

Wine v ¬Beer Wine v ∃producedBy ∃producedBy v Wine

∃producedBy− v Winery Wine v ¬Winery Beer v ¬Winery

(funct producedBy)

In words, T specifies that red wines (RedWine) and white wines (WhiteWine)
are wines (Wine), but red wines are not white wines. Every wine is produced by
(producedBy) a winery (Winery). Moreover the role producedBy has Wine as do-
main and Winery as range, and it is also functional, i.e., every wine can be produced
by at most one winery. Finally, a wine is neither a beer (Beer) nor a winery, and a beer
is not a winery.

The ABox A is formed by the following set of assertions:

A : { RedWine(wine1), WhiteWine(wine1), WhiteWine(wine2),
Beer(wine3), producedBy(wine3,winr) }

This ABox states that wine1 is both a red wine and a white wine, wine2 is a white
wine, wine3 is a beer, and wine3 is produced by winr. Notice that this implies that
wine3 is a wine and that winr is a winery. It is easy to see that O is unsatisfiable, since
wine1 violates the disjointness between red wine and white wine, and since wine3

violates the disjointness between beer and wine.
Suppose we are interested in asking if a wine exists in the catalogue and to know

if winr is a winery, that is to evaluate respectively the queries q = ∃x.Wine(x) and
q′ = Winery(winr).

Let us start considering the IAR-semantics. The first step to perform the perfect
reformulation of q and q′ under the IAR-semantics consists in computing the classical
perfect reformulation of q and q′ with respect to T . We obtain:

PerfectRef(q, T ) = (∃x.Wine(x)) ∨ (∃x.RedWine(x)) ∨ (∃x.WhiteWine(x))∨
(∃x, y.producedBy(x, y))

PerfectRef(q′, T ) = Winery(winr) ∨ (∃x.producedBy(x,winr))

12



The corresponding perfect reformulation of the queries under IAR-semantics are:

PerfectRefIAR(q, T ) =
(∃x.Wine(x) ∧ ¬Beer(x) ∧ ¬Winery(x) ∧ ¬(∃y.producedBy(y, x) ∧ x 6= y))∨ (d1)
(∃x.RedWine(x) ∧ ¬WhiteWine(x) ∧ ¬Beer(x) ∧ ¬Winery(x)∧ (d2)

¬(∃y.producedBy(y, x) ∧ x 6= y))∨
(∃x.WhiteWine(x) ∧ ¬RedWine(x) ∧ ¬Beer(x) ∧ ¬Winery(x)∧ (d3)

¬(∃y.producedBy(y, x) ∧ x 6= y))∨
(∃x, y.producedBy(x, y) ∧ x 6= y∧ (d4)

¬(∃z.producedBy(x, z) ∧ z 6= y ∧ x 6= z)∧
¬Beer(x) ∧ ¬Winery(x) ∧ ¬(∃w.producedBy(w, x) ∧ w 6= x)∧
¬Beer(y) ∧ ¬Wine(y) ∧ ¬(∃k.producedBy(y, k) ∧ y 6= k))

and

PerfectRefIAR(q
′, T ) =

(Winery(winr) ∧ ¬Beer(winr) ∧ ¬Wine(winr)∧ (d5)
¬(∃y.producedBy(winr, y) ∧ winr 6= y))∨

(∃x.producedBy(x,winr) ∧ x 6= winr∧ (d6)
¬(∃z.producedBy(x, z) ∧ z 6= winr ∧ x 6= z)∧
¬Beer(x) ∧ ¬Winery(x) ∧ ¬(∃w.producedBy(w, x) ∧ w 6= x)∧
¬Beer(winr) ∧ ¬Wine(winr) ∧ ¬(∃k.producedBy(winr, k) ∧ k 6= winr))

It is easy to verify that 〈∅,A〉 |= PerfectRefIAR(q, T ), since the disjunct (d3)
evaluates to true on the ABox A. On the contrary, the perfect rewriting of q′ under
the IAR-semantics evaluates to false on A. Observe that this is exactly what we ex-
pect since, by Definition 1, we have that the Intersection ABox Repair of O is the set
IAR-Rep(O) = {WhiteWine(wine2)}.

Let us now show how the queries q and q′ are reformulated and evaluated under the
ICAR-semantics. The perfect reformulation PerfectRefICAR(q, T ) corresponds to the
following sentence6:

(∃x.Wine(x) ∧ ¬Beer(x) ∧ ¬Winery(x) ∧ ¬(∃y.producedBy(y, x) ∧ x 6= y))∨ (d7)
(∃x.RedWine(x) ∧ ¬Beer(x) ∧ ¬Winery(x) (d8)
∧¬(∃y.producedBy(y, x) ∧ x 6= y))∨

(∃x.WhiteWine(x) ∧ ¬Beer(x) ∧ ¬Winery(x) (d9)
∧¬(∃y.producedBy(y, x) ∧ x 6= y))∨

(∃x.producedBy(x, y) ∧ ¬Beer(x) ∧ ¬Winery(x) (d10)
∧¬(∃y.producedBy(y, x) ∧ x 6= y))∨

(∃x.RedWine(x) ∧ ¬WhiteWine(x) ∧ ¬Beer(x) ∧ ¬Winery(x)∧ (d11)
¬(∃y.producedBy(y, x) ∧ x 6= y))∨

(∃x.WhiteWine(x) ∧ ¬RedWine(x) ∧ ¬Beer(x) ∧ ¬Winery(x)∧ (d12)
¬(∃y.producedBy(y, x) ∧ x 6= y))∨

(∃x, y.producedBy(x, y) ∧ x 6= y∧ (d13)
¬(∃y.producedBy(x, ) ∧ z 6= y ∧ x 6= z)∧
¬Beer(x) ∧ ¬Winery(x) ∧ ¬(∃w.producedBy(w, x) ∧ w 6= x)∧
¬Beer(y) ∧ ¬Wine(y) ∧ ¬(∃k.producedBy(y, k) ∧ y 6= k))

6 For the sake of exposition, we have slightly transformed the sentence produced by
PerfectRefICAR(q, T ) by distributing the logic operator ∧ over the logic operator ∨.
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which evaluates to true on A since (d7), (d8), and (d9) evaluate to true on A, and
therefore O |=ICAR q.

Moreover, we have also that O |=ICAR q′. Indeed, PerfectRefICAR(q
′, T ) corre-

sponds to

PerfectRefIAR(q
′, T ) =

(Winery(winr) ∧ ¬Beer(winr) ∧ ¬Wine(winr) (d14)
∧¬(∃y.producedBy(winr, y) ∧ winr 6= y))∨

(∃x.producedBy(x,winr) ∧ x 6= winr)∧ (d15)
¬Beer(winr) ∧ ¬Wine(winr) ∧ ¬(∃y.producedBy(winr, y) ∧ winr 6= y))∨

(∃x.producedBy(x,winr) ∧ x 6= winr∧ (d6)
¬(∃z.producedBy(x, z) ∧ z 6= winr ∧ x 6= z)∧
¬Beer(x) ∧ ¬Winery(x) ∧ ¬(∃w.producedBy(w, x) ∧ w 6= x)∧
¬Beer(winr) ∧ ¬Wine(winr) ∧ ¬(∃k.producedBy(winr, k) ∧ k 6= winr))

where the disjunct (d15), and therefore the reformulated query, evaluates to true on A.
The differences with respect to the IAR-semantics are due to the use in the ICAR-

semantics of the consistent logical consequences of O, which is:

clc(O) = { RedWine(wine1), WhiteWine(wine1), WhiteWine(wine2),
Beer(wine3), producedBy(wine3,winr), Wine(wine1),
Wine(wine2), Wine(wine3), Winery(winr) }

It follows from Definition 2 that the Intersection Closed ABox Repair ofO is the set
ICAR-Rep(O) = {WhiteWine(wine2),Wine(wine1),Wine(wine2),Winery(winr)}.

6 Conclusions

In this paper we have shown that inconsistency-tolerant query answering of UCQs for
DL-LiteA ontologies under both the IAR and the ICAR semantics is FOL-rewritable,
and therefore it is in the complexity class AC 0 with respect to data complexity. By
virtue of this property, tools offering such reasoning task can rely over well-established
relational database technology, exactly as it is done in DL-LiteA for the classical DL
semantics.

The results of the present paper actually refine the results given in [15], where an-
swering UCQs over DL-LiteA ontologies has been shown to be in PTIME in data com-
plexity under both the IAR and ICAR semantics. In [15], it has been also shown (in
Lemma 2) that answering atomic ground queries, a.k.a., instance checking, under the
ICAR semantics in fact coincides with instance checking under the CAR semantics
(cf. Section 2). This actually means that instance checking is FOL-rewritable under the
CAR semantics. A direct consequence of this result is that query answering of ground
CQs is FOL rewritable under the CAR semantics.
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