Multi-column Substring Matching For Database Schema Translation (And other wild thoughts while shaving)

Robert H. Warren¹ Dr. Frank Wm Tompa¹

¹rhwarren,fwtompa@uwaterloo.ca David R. Cheriton School of Computer Science University of Waterloo Waterloo, Canada

Bertinoro PhD School on Data and Service Integration, 2006

Where in the world am I from?

Database Integration

- ...seen as a large, monolithic, one-off project.
- ...solved by database and domain experts with the time and motivation.

But!

- The number, size and complexity of databases keeps growing. (+10,000 tables, +1,600 columns)
- Integration is an every day issue. (Semantic web, opportunistic data sources...)
- Multiple representation standards in use. (22 Locales)
- Standardized database access (JDBC, ODBC) possible.
- End user knows the data is available, can't access it and wants it right NOW!

Database Integration

- ...seen as a large, monolithic, one-off project.
- ...solved by database and domain experts with the time

 $\frac{an}{an} \Rightarrow$ Need automation to deal with this problem.

But!

- The number, size and complexity of databases keeps growing. (+10,000 tables, +1,600 columns)
- Integration is an every day issue. (Semantic web, opportunistic data sources...)
- Multiple representation standards in use. (22 Locales)
- Standardized database access (JDBC, ODBC) possible.
- End user knows the data is available, can't access it and wants it right NOW!

Database schema matching and translation

Objective

A generalisable method capable of resolving complex schema matches and the translation required to convert the instance data using substrings concatenation.

Example

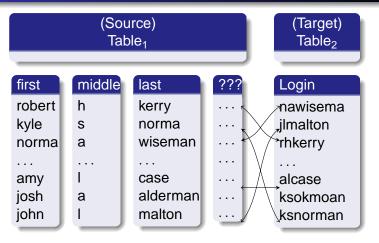
- Name(Warren, Rob) in database D → First(Rob) + Last(Warren) in D'
- 2005/05/29 in database D
 ightarrow 05-29-2005 in database D'
- LastName(warner) + Birthdate(980102) in $D \rightarrow$ Userid(warn98) in D'.
- PartNumber(04350306) in D → Number(0435)
 +PlantId(03) + Year(2006) in D'.

Problem formalization

Definition

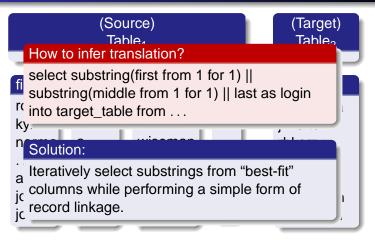
For a given target database table T_2 with a target column A ...and a source table T_1 with a set of likely source columns $(B_1, B_2, ..., B_n)$

Find a transformation such that:

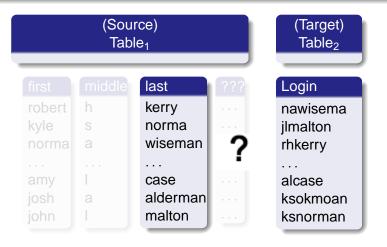

 $A = \omega_1 + \omega_2 + \cdots + \omega_{\nu}$ Where ω_i represents a substring of column B_i

Translation model

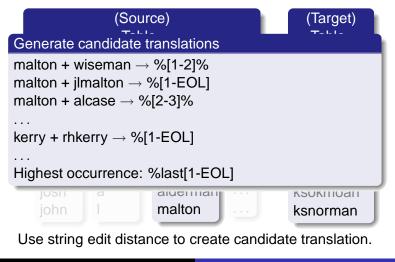
$$t' = t \left[\beta_1^{x_1 \dots y_1} + \beta_2^{x_2 \dots y_2} + \dots + \beta_{\nu}^{x_{\nu} \dots y_{\nu}} \right]$$
 (chars $x_{\nu} \dots y_{\nu}$ of col B_{ν})

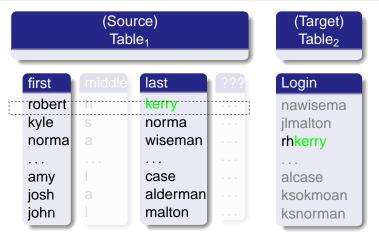

vaterloo

Basic example


Waterloo

Basic example


Basic example - Find initial column. (1)

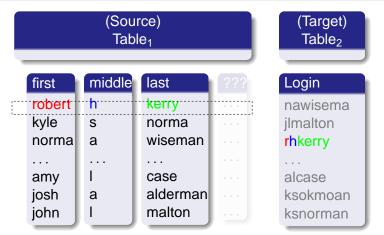

Waterloo

Basic example - Find a partial translation. (1)

Waterloo

Basic example - Search for additional columns. (1)

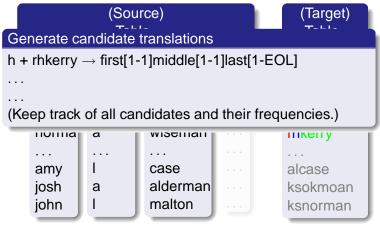
Sample the tuples formed from translation formula.


Basic example - Search for additional columns. (1)

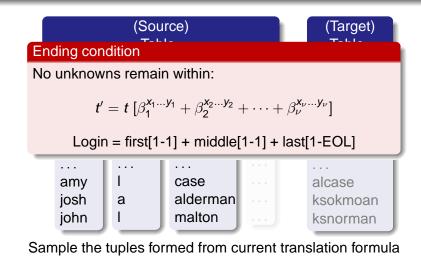
Generate c	(Sou T ₋ L andidate	rce) '- translations		(Target)		
robert + rhkerry \rightarrow first[1-1]%last[1-EOL]						
(Keep track of all candidates and their frequencies.)						
поппа	a	WISCHIGH		пкену		
amy		case		alcase		
josh	а	alderman		ksokmoan		
john	1	malton		ksnorman		
			_			

Sample the tuples formed from translation formula.

Waterloo


Basic example - Search for additional columns. (2)

Sample the tuples formed from current translation formula


Basic example - Search for additional columns. (2)

Sample the tuples formed from current translation formula

Basic example - Search for additional columns. (2)

Experimental setup - Noise column

Add and populate the following noise columns:

- A random RFC-2822 timestamp.
- A random street address.
- A random long integer.
- A random value, variable length string.
- War and peace by Leo Tolstoy.

Definition

Simulate noisy matching environment and ensure proper algorithmic behavior.

Waterloc

Citeseer & DBLP Dataset

Citeseer

Extracted 526,000 records from OAI dump. Created Title, Year and Author (15) columns. Created Citation column from Title, Year and First Author. (Successfully matched at 1% sampling.)

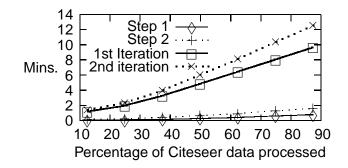
DBLP

Extracted 233,000 records from web dump. Created Title, Year and Author (15) columns. Created Citation column from Title, Year and First Author. (Successfully matched at 1% sampling.)

Waterloo

Cross Citeseer and DBLP Dataset translation

Expected result


Match Citeseer Citation column to DBLP source table. Only 714 records match across Title, Year and First Author.

Actual result

Citeseer Citation = DBLP Title + DBLP Year + DBLP Second Author. 378 citations have their First and Second authors reversed! Returned mapping is "correct" according to the data.

Incremental wall-clock performance

Warren & Tompa Multi-column Substring Matching

- Previous approaches required specialized domain specific matchers to form both the match and the translation.
- This algorithm is a generalized algorithm for string-based concatenations matches.
- Meant to function as part of larger database integration framework.
- It is un-supervised, does not need examples or a known record overlap and can be implemented using basic SQL statement.

• Pre This is all old stuff!! Now what?						
	ma	 Sampling extremely large tables. 				
٩	Thi	 Data-driven, machine readable 	ased			
	cor	descriptions of extremely large database.				
٩	Me	Questing for linear time data matching of	on			
	fra	attributes.				
٩	lt is	• Using ontologies as integration negotiation	วwn			
	rec	documents.	SQL			
	statement.					

Sampling extremely large tables

... or MY database is bigger that YOUR database.

- Currently two approaches: equidistant and random sampling.
- As the size of a table grows, a traversal can become almost impossible.
- Behavior is like that of a data stream or tape drive.
- Disk access can also be more efficient if we use it as a linear device.
- Can we use clever statistics to guess how deep into the table to go?

Waterloc

Data-driven, machine readable descriptions of extremely large database.

Q:

How are we going to advertise and describe data in a format that automated integration system can actually use. (And maybe not lie about?)

Questing for linear (or better) time data matching of attributes.

- Currently two methods: *q*-gram or KL-divergence.
- What happens when we can't read the entire table?
- Are information theory methods useful? ...and faster?
- Can we use any clever sampling techniques?

Using ontologies as integration negotiation documents.

...mostly used for hierarchy of concepts now.

- Ontological standards a good way to document the data exchange process (e.g.: constraints, dependencies, ...) in a machine readable way.
- What about 'pushing' database information rules to the outside world? (e.g.: Records are only accepted is they contain attributes (First, Middle and Last) or if the attributes (Name and DOB) are available.

THE END

