
Enhancement and Implementation of
Core Computation

Reinhard Pichler and Vadim Savenkov

Technische Universität Wien
[pichler | savenkov]@dbai.tuwien.ac.at

INFINT 2007

Outline

1 Motivation

2 Preliminaries

3 FINDCORE Algorithm of (Gottlob/Nash, 2006)

4 Enhanced Algorithm FINDCOREE

5 Prototype Implementation

6 Conclusion

Outline

1 Motivation

2 Preliminaries

3 FINDCORE Algorithm of (Gottlob/Nash, 2006)

4 Enhanced Algorithm FINDCOREE

5 Prototype Implementation

6 Conclusion

Motivation

Starting Point

1 Arguments in favor of the core (Fagin et al., 2003)
2 Tractability of core computation (Gottlob/Nash, 2006)
3 No implementation of core computation

Goal

1 Prototype Implementation
2 Enhancement:

• No simulation of target EGDs by TGDs
• Strict separation of core computation from solving the data

exchange problem

Motivation

Starting Point

1 Arguments in favor of the core (Fagin et al., 2003)
2 Tractability of core computation (Gottlob/Nash, 2006)
3 No implementation of core computation

Goal

1 Prototype Implementation
2 Enhancement:

• No simulation of target EGDs by TGDs
• Strict separation of core computation from solving the data

exchange problem

Outline

1 Motivation

2 Preliminaries

3 FINDCORE Algorithm of (Gottlob/Nash, 2006)

4 Enhanced Algorithm FINDCOREE

5 Prototype Implementation

6 Conclusion

Preliminaries

Basic Definitions (1)

Embedded dependencies ∀~x
(
φ(~x) → ∃~y ψ(~x , ~y)

)
• TGDs: ψ(~x , ~y) is a conjunction of atoms
• EGDs: ψ(~x , ~y) is a conjunction of equalities

Data exchange setting (S,T,Σst ,Σt):
• source schema S, target schema T, STDs Σst , TDs Σt
• Σst is a set of TGDs
• Σt is a set of EGDs and weakly acyclic TGDs

Data exchange problem for (S,T,Σst ,Σt)
Given source instance S, construct a target instance U, s.t.
all of the STDs Σst and TDs Σt are satisfied.

Basic Definitions (2)

Solving the data exchange problem via chase.
• Preuniversal instance T = (S, ∅)Σst

• (Canonical) universal instance U = T Σt

Homomorphisms.
• endomorphism: homomorphism h : I → I
• retraction: idempotent endomorphism h : I → I
• proper endomorphism/retraction. h non-surjective

Core.
• Core: instance with no proper retraction
• Core of instance I: retract of I which is a core
• Core is unique up to isomorphism
• Core of data exchange problem: core of a universal solution

Outline

1 Motivation

2 Preliminaries

3 FINDCORE Algorithm of (Gottlob/Nash, 2006)

4 Enhanced Algorithm FINDCOREE

5 Prototype Implementation

6 Conclusion

FindCore Algorithm of (Gottlob/Nash, 2006)

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S,T) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt ;
(3) Chase T with Σ̄t (using a nice order) to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy ;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U;
(9) Transform h′ into a retraction r ;
(10) Set U := r(U);
(11) fi;
(12) od;
(13) return U.

FindCore Algorithm of (Gottlob/Nash, 2006)

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S,T) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt ;
(3) Chase T with Σ̄t (using a nice order) to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy ;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U;
(9) Transform h′ into a retraction r ;
(10) Set U := r(U);
(11) fi;
(12) od;
(13) return U.

FindCore Algorithm of (Gottlob/Nash, 2006)

Simulation of EGDs by TGDs

Transformation of Σt into Σ̄t
• Replace all equations x = y with E(x , y).
• Add the following equality constraints:

– E(x , y) → E(y , x)
– E(x , y),E(y , z) → E(x , z)
– R(x1, . . . , xk) → E(xi , xi)

• Add the following consistency constraints:
– R(x1, . . . , xk),E(xi , y) → R(x1, . . . , y , . . . , xk)

Chase with Σ̄t

• Σ̄t is, in general, not weakly acyclic.
• A nice chase order guarantees termination.
• U := T Σ̄t is not a solution.
• The core of U is a solution.

FindCore Algorithm of (Gottlob/Nash, 2006)

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S,T) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt ;
(3) Chase T with Σ̄t (using a nice order) to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy ;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U;
(9) Transform h′ into a retraction r ;
(10) Set U := r(U);
(11) fi;
(12) od;
(13) return U.

FindCore Algorithm of (Gottlob/Nash, 2006)

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S,T) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt ;
(3) Chase T with Σ̄t (using a nice order) to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy ;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U;
(9) Transform h′ into a retraction r ;
(10) Set U := r(U);
(11) fi;
(12) od;
(13) return U.

FindCore Algorithm of (Gottlob/Nash, 2006)

Search for a proper endomorphism h′ : U → U

Observation.
• Search for homomorphism is exponential w.r.t. block size.
• Block size in T is bounded by a constant; but not in U.

Idea: Split search for h′ into 2 steps.
• Search for a homomorphism h : Txy → U with h(x) = h(y).
• Then h is extended to endomorphism h′ : U → U.

Construction of Txy .

• Define parent and sibling relation on variables in T Σ̄t .
• Construct Txy , s.t. T ⊆ Txy ⊆ T Σ̄t and

dom(Txy) is closed under parents and siblings.
• The block size of Txy is bounded by a constant.

FindCore Algorithm of (Gottlob/Nash, 2006)

Search for a proper endomorphism h′ : U → U

Observation.
• Search for homomorphism is exponential w.r.t. block size.
• Block size in T is bounded by a constant; but not in U.

Idea: Split search for h′ into 2 steps.
• Search for a homomorphism h : Txy → U with h(x) = h(y).
• Then h is extended to endomorphism h′ : U → U.

Construction of Txy .

• Define parent and sibling relation on variables in T Σ̄t .
• Construct Txy , s.t. T ⊆ Txy ⊆ T Σ̄t and

dom(Txy) is closed under parents and siblings.
• The block size of Txy is bounded by a constant.

FindCore Algorithm of (Gottlob/Nash, 2006)

Search for a proper endomorphism h′ : U → U

Observation.
• Search for homomorphism is exponential w.r.t. block size.
• Block size in T is bounded by a constant; but not in U.

Idea: Split search for h′ into 2 steps.
• Search for a homomorphism h : Txy → U with h(x) = h(y).
• Then h is extended to endomorphism h′ : U → U.

Construction of Txy .

• Define parent and sibling relation on variables in T Σ̄t .
• Construct Txy , s.t. T ⊆ Txy ⊆ T Σ̄t and

dom(Txy) is closed under parents and siblings.
• The block size of Txy is bounded by a constant.

FindCore Algorithm of (Gottlob/Nash, 2006)

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S,T) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt ;
(3) Chase T with Σ̄t (using a nice order) to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy ;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U;
(9) Transform h′ into a retraction r ;
(10) Set U := r(U);
(11) fi;
(12) od;
(13) return U.

FindCore Algorithm of (Gottlob/Nash, 2006)

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S,T) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt ;
(3) Chase T with Σ̄t (using a nice order) to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy ;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U;
(9) Transform h′ into a retraction r ;
(10) Set U := r(U);
(11) fi;
(12) od;
(13) return U.

FindCore Algorithm of (Gottlob/Nash, 2006)

Retractions

Property 1.
Let r : A → A be a retraction with B = r(A) and let Σ be a
set of embedded dependencies. If A |= Σ, then B |= Σ.
Property 2.
Let h : A → A be an endomorphism s.t. h(x) = h(y) for
some x , y ∈ dom(A)

• Then there is a proper retraction r on A s.t. r(x) = r(y).
• Such a retraction can be found in time O(|dom(A)|2).

Outline

1 Motivation

2 Preliminaries

3 FINDCORE Algorithm of (Gottlob/Nash, 2006)

4 Enhanced Algorithm FINDCOREE

5 Prototype Implementation

6 Conclusion

FindCore Algorithm of (Gottlob/Nash, 2006)

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S,T) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt ;
(3) Chase T with Σ̄t (using a nice order) to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy ;
(6) Look for h : Txy → U s.t. h(x) = h(y);
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U;
(9) Transform h′ into a retraction r ;
(10) Set U := r(U);
(11) fi;
(12) od;
(13) return U.

Enhanced Algorithm FINDCOREE

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S,T) := (S, ∅)Σst ;
(2) Chase T with Σt to obtain U := T Σt ;
(3) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(4) Compute Txy ;
(5) Look for h : Txy → U s.t. h(x) = h(y);
(6 if there is such h then
(7) Extend h to an endomorphism h′ on U;
(8) Transform h′ into a retraction r ;
(9) Set U := r(U);
(10) fi;
(11) od;
(12) return U.

Enhanced Algorithm FINDCOREE

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S,T) := (S, ∅)Σst ;
(2) Chase T with Σt to obtain U := T Σt ;
(3) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(4) Compute Txy ;
(5) Look for h : Txy → U s.t. h(x) = h(y);
(6 if there is such h then
(7) Extend h to an endomorphism h′ on U;
(8) Transform h′ into a retraction r ;
(9) Set U := r(U);
(10) fi;
(11) od;
(12) return U.

Modifications required in FINDCOREE

Shrinking the canonical universal instance to the core

compute an instance Txy

search for a non-injective homomorphism h : Txy → U
lift h to a proper endomorphism h′ : U → U
construct a proper retraction r from h′ and compute r(U)

Modifications required in FINDCOREE

Shrinking the canonical universal instance to the core

compute an instance Txy

• without EGDs, we have T ⊆ Txy ⊆ T Σ̄t

• with EGDs, we do not even have T ⊆ T Σt

search for a non-injective homomorphism h : Txy → U
lift h to a proper endomorphism h′ : U → U
construct a proper retraction r from h′ and compute r(U)

Modifications required in FINDCOREE

Shrinking the canonical universal instance to the core

compute an instance Txy

search for a non-injective homomorphism h : Txy → U
• positive effect of EGDs: variables may be eliminated
• negative effect of EGDs: blocks of T may be merged

lift h to a proper endomorphism h′ : U → U
construct a proper retraction r from h′ and compute r(U)

Modifications required in FINDCOREE

Shrinking the canonical universal instance to the core

compute an instance Txy

search for a non-injective homomorphism h : Txy → U
lift h to a proper endomorphism h′ : U → U

• modification required since Txy is defined differently
• proof has to be completely rewritten

construct a proper retraction r from h′ and compute r(U)

Modifications required in FINDCOREE

Shrinking the canonical universal instance to the core

compute an instance Txy

search for a non-injective homomorphism h : Txy → U
lift h to a proper endomorphism h′ : U → U
construct a proper retraction r from h′ and compute r(U)

• no changes required

Modifications required in FINDCOREE

Shrinking the canonical universal instance to the core

compute an instance Txy

search for a non-injective homomorphism h : Txy → U
lift h to a proper endomorphism h′ : U → U
construct a proper retraction r from h′

• no changes required

Concentrate on Facts (rather than Variables)

Introduction of an id.

Every fact R(x1, x2, . . . , xn) is equipped with a unique id:
R(id , x1, x2, . . . , xn)

Identify facts with their id, i.e.:
R(id1, x1, x2, . . . , xn) = R(id2, y1, y2, . . . , yn) iff id1 = id2.
Variables disappear, facts (and positions in facts) persist.

Definition of Txy

Txy contains facts where x , y were introduced by TGDs.
All facts of T are in Txy , and Txy ⊆ T Σt .
Txy is closed under parents and siblings over facts.

Concentrate on Facts (rather than Variables)

Introduction of an id.

Every fact R(x1, x2, . . . , xn) is equipped with a unique id:
R(id , x1, x2, . . . , xn)

Identify facts with their id, i.e.:
R(id1, x1, x2, . . . , xn) = R(id2, y1, y2, . . . , yn) iff id1 = id2.
Variables disappear, facts (and positions in facts) persist.

Definition of Txy

Txy contains facts where x , y were introduced by TGDs.
All facts of T are in Txy , and Txy ⊆ T Σt .
Txy is closed under parents and siblings over facts.

Search for a non-injective homomorphism h : Txy → U

Definition

Effect of EGDs. Let J ′ = JΣt

• [u] = term to which u is mapped by the chase
• u ∼ v if [u] = [v]

Rigidity. A domain element y is rigid in an instance K , if
h(y) = y for every endomorphism h on K .

Rigidity Lemma – analogously to (Fagin et al, 2003)

Let J be the preuniversal instance and J ′ = JΣt the canonical
universal instance, and let x and y be nulls of J with x v y .
If [x] is non-rigid in J ′, then x and y are in the same block of J.

FINDCORE vs. FINDCOREE

What the algorithms have in common

identical overall structure (apart from the target chase)
asymptotic worst-case complexity

Theorem

Let (S,T,Σst ,Σt) be a data exchange setting and let S be a
ground instance of the source schema S.
If this data exchange problem has a solution, then both
FINDCORE and FINDCOREE correctly compute the core of a
canonical universal solution in time O(|dom(S)|b) for some b
that depends only on Σst ∪ Σt .

FINDCORE vs. FINDCOREE

What the algorithms have in common

identical overall structure (apart from the target chase)
asymptotic worst-case complexity

Theorem

Let (S,T,Σst ,Σt) be a data exchange setting and let S be a
ground instance of the source schema S.
If this data exchange problem has a solution, then both
FINDCORE and FINDCOREE correctly compute the core of a
canonical universal solution in time O(|dom(S)|b) for some b
that depends only on Σst ∪ Σt .

FINDCORE vs. FINDCOREE

Major differences between the algorithms

Canonical solution vs. core. In FINDCOREE , the chase first
produces a solution of the data exchange problem, while
the core computation is considered as an optional add-on.

Chase order. FINDCOREE selects the TDs with don’t care
nondeterminism. Hence, several instantiations of a single
TGD can be enforced simultaneously.
Simulation of the EGDs by TGDs. This simulation in
FINDCORE increases the set of TDs and the result of the
chase (but, of course, this increase easily fits into the
polynomial time upper bound).

FINDCORE vs. FINDCOREE

Major differences between the algorithms

Canonical solution vs. core. In FINDCOREE , the chase first
produces a solution of the data exchange problem, while
the core computation is considered as an optional add-on.
Chase order. FINDCOREE selects the TDs with don’t care
nondeterminism. Hence, several instantiations of a single
TGD can be enforced simultaneously.

Simulation of the EGDs by TGDs. This simulation in
FINDCORE increases the set of TDs and the result of the
chase (but, of course, this increase easily fits into the
polynomial time upper bound).

FINDCORE vs. FINDCOREE

Major differences between the algorithms

Canonical solution vs. core. In FINDCOREE , the chase first
produces a solution of the data exchange problem, while
the core computation is considered as an optional add-on.
Chase order. FINDCOREE selects the TDs with don’t care
nondeterminism. Hence, several instantiations of a single
TGD can be enforced simultaneously.
Simulation of the EGDs by TGDs. This simulation in
FINDCORE increases the set of TDs and the result of the
chase (but, of course, this increase easily fits into the
polynomial time upper bound).

FINDCORE vs. FINDCOREE

Example

Let J = {R(x , y),P(y , x)} and Σt = {R(z, v),P(v , z) → z = v}.

Σ̄t = {R(z, v),P(v , z) → E(z, v); E(x , y) → E(y , x);
E(x , y),E(y , z) → E(x , z); R(x , y) → E(x , x);
R(x , y) → E(y , y); P(x , y) → E(x , x); P(x , y) → E(y , y);
R(x , y),E(x , z) → R(z, y); R(x , y),E(y , z) → R(x , z);
P(x , y),E(x , z) → P(z, y); P(x , y),E(y , z) → P(x , z)}

JΣ̄t = {R(x , y),R(x , x),R(y , x),R(y , y),P(y , x),P(y , y),
P(x , y),P(x , x),E(x , x),E(x , y),E(y , x),E(y , y)}.

The core of JΣ̄t is {R(x , x),P(x , x)}.

Chasing J = {R(x , y),P(y , x)} directly with Σt yields the
universal solution JΣ = {R(x , x),P(x , x)}.

FINDCORE vs. FINDCOREE

Example

Let J = {R(x , y),P(y , x)} and Σt = {R(z, v),P(v , z) → z = v}.

Σ̄t = {R(z, v),P(v , z) → E(z, v); E(x , y) → E(y , x);
E(x , y),E(y , z) → E(x , z); R(x , y) → E(x , x);
R(x , y) → E(y , y); P(x , y) → E(x , x); P(x , y) → E(y , y);
R(x , y),E(x , z) → R(z, y); R(x , y),E(y , z) → R(x , z);
P(x , y),E(x , z) → P(z, y); P(x , y),E(y , z) → P(x , z)}

JΣ̄t = {R(x , y),R(x , x),R(y , x),R(y , y),P(y , x),P(y , y),
P(x , y),P(x , x),E(x , x),E(x , y),E(y , x),E(y , y)}.

The core of JΣ̄t is {R(x , x),P(x , x)}.

Chasing J = {R(x , y),P(y , x)} directly with Σt yields the
universal solution JΣ = {R(x , x),P(x , x)}.

FINDCORE vs. FINDCOREE

Example

Let J = {R(x , y),P(y , x)} and Σt = {R(z, v),P(v , z) → z = v}.

Σ̄t = {R(z, v),P(v , z) → E(z, v); E(x , y) → E(y , x);
E(x , y),E(y , z) → E(x , z); R(x , y) → E(x , x);
R(x , y) → E(y , y); P(x , y) → E(x , x); P(x , y) → E(y , y);
R(x , y),E(x , z) → R(z, y); R(x , y),E(y , z) → R(x , z);
P(x , y),E(x , z) → P(z, y); P(x , y),E(y , z) → P(x , z)}

JΣ̄t = {R(x , y),R(x , x),R(y , x),R(y , y),P(y , x),P(y , y),
P(x , y),P(x , x),E(x , x),E(x , y),E(y , x),E(y , y)}.

The core of JΣ̄t is {R(x , x),P(x , x)}.

Chasing J = {R(x , y),P(y , x)} directly with Σt yields the
universal solution JΣ = {R(x , x),P(x , x)}.

FINDCORE vs. FINDCOREE

Example

Let J = {R(x , y),P(y , x)} and Σt = {R(z, v),P(v , z) → z = v}.

Σ̄t = {R(z, v),P(v , z) → E(z, v); E(x , y) → E(y , x);
E(x , y),E(y , z) → E(x , z); R(x , y) → E(x , x);
R(x , y) → E(y , y); P(x , y) → E(x , x); P(x , y) → E(y , y);
R(x , y),E(x , z) → R(z, y); R(x , y),E(y , z) → R(x , z);
P(x , y),E(x , z) → P(z, y); P(x , y),E(y , z) → P(x , z)}

JΣ̄t = {R(x , y),R(x , x),R(y , x),R(y , y),P(y , x),P(y , y),
P(x , y),P(x , x),E(x , x),E(x , y),E(y , x),E(y , y)}.

The core of JΣ̄t is {R(x , x),P(x , x)}.

Chasing J = {R(x , y),P(y , x)} directly with Σt yields the
universal solution JΣ = {R(x , x),P(x , x)}.

FINDCORE vs. FINDCOREE

Example

Let J = {R(x , y),P(y , x)} and Σt = {R(z, v),P(v , z) → z = v}.

Σ̄t = {R(z, v),P(v , z) → E(z, v); E(x , y) → E(y , x);
E(x , y),E(y , z) → E(x , z); R(x , y) → E(x , x);
R(x , y) → E(y , y); P(x , y) → E(x , x); P(x , y) → E(y , y);
R(x , y),E(x , z) → R(z, y); R(x , y),E(y , z) → R(x , z);
P(x , y),E(x , z) → P(z, y); P(x , y),E(y , z) → P(x , z)}

JΣ̄t = {R(x , y),R(x , x),R(y , x),R(y , y),P(y , x),P(y , y),
P(x , y),P(x , x),E(x , x),E(x , y),E(y , x),E(y , y)}.

The core of JΣ̄t is {R(x , x),P(x , x)}.

Chasing J = {R(x , y),P(y , x)} directly with Σt yields the
universal solution JΣ = {R(x , x),P(x , x)}.

Outline

1 Motivation

2 Preliminaries

3 FINDCORE Algorithm of (Gottlob/Nash, 2006)

4 Enhanced Algorithm FINDCOREE

5 Prototype Implementation

6 Conclusion

Prototype Implementation

Basic ideas

Java. The core computation is implemented in Java with
access to RDBMSs via JDBC.
XML configuration file for data exchange scenario.
Use of XSLT to generate the scenario-dependent code
parts (in particular, the SQL-statements) from the XML file.
DBMS back-end. Core computation on top of an RDBMS

• Add tables (e.g., variable mappings of a homomorphism)
and views (e.g. image of a homomorphism).

• Chase and basic operations of the core computation (e.g.,
searching for a homomorphism) realized via SQL.

Prototype Implementation

Overview

Source
Database

Data
Exchange
engine XSLT

Target
Database

<XML/>
Data

Exchange
Scenario

SQL

Experimental Results

successful scenarios

10 relations
100 tuples per table
1000 variables
dependencies of 2 to 6
atoms.

Experimental Results

successful scenarios

10 relations
100 tuples per table
1000 variables
dependencies of 2 to 6
atoms.

Outline

1 Motivation

2 Preliminaries

3 FINDCORE Algorithm of (Gottlob/Nash, 2006)

4 Enhanced Algorithm FINDCOREE

5 Prototype Implementation

6 Conclusion

Conclusion

Main Results

enhanced algorithm for core computation
prototype implementation
first experimental results

Future Work

bottleneck analysis of implementation
more efficient implementation
approximation? subclasses?

Conclusion

Main Results

enhanced algorithm for core computation
prototype implementation
first experimental results

Future Work

bottleneck analysis of implementation
more efficient implementation
approximation? subclasses?

	Motivation
	Preliminaries
	FindCore Algorithm of (Gottlob/Nash, 2006)
	Enhanced Algorithm FindCoreE
	Prototype Implementation
	Conclusion

