Using oentelegies for P2P data sharing
and ETL design

Dimitrios Skoutas

(Joint work with' Alkis' Simitsis, Verena Kantere, and Timos Sellis)

Dept. of Electrical and Computer Engineering
National Technical University of Athens, Hellas
dskoutas@dblab.ece.ntua.gr
http://www.dblab.ece.ntua.gr

Bertinoro Workshop on Information Integration (INFINT 2007)
Bertinoro, Italy.

Outline

@ Dzitelsiplelflnle) 1 PRIVIS)

« Ontology-basea E I'L design

v

4

.

-
\'
/

Peer Data Vlanagement Systems

« P2P networks

B massive sharing of structured or unstructured data

« Structured vs. unstructured overlays

m Structured

» data is indexed and stored at peers with pre-specified
characteristics, e.g. peer id

» peers are connected to specific peers

m Unstructured

» no pre-specified connection of peers and storage/indexing of
data

Preblem description

« An unstructured PDMS
m |ocal relational database
B pairwise mappings of the forms GAV/LAV/GLAV

m SPJ queries
» expressed on the local schema
» reformulated according to the mappings

« An OWL ontology describing the application domain

Problem| description (cont'd)

« Semantic peer P = (R, O, A)
B R:|ocal database schema
B O: the domain ontology.

B A: semantic annotation

« Two issues
B Semantic similarity between peer schemas

m Semantic similarity between reformulated queries

Sample ontelogy and peer schemas

P, i bands (name, members, year)
P, : bands (name, singer, year)

Mg, p,: bands (name, members, year) :- bands (name, singer, year)

-

-

-

-

Semantic annotations

[, : bands having at least one album

P> : bands that play Jazz music, were formed before the year
2000, and have released at least 3 albums

Band_P, = Band n >, released

Band_P,

Band n V type.Jazz n >, released

n Vv year.(<2000)

Comparisen ofi peer schemas

Express the degree of relevance between the interests of
Peers (subset, superset, overlap, etc.)

Semantic similarity i1s assessed by comparing the classes
annotating the peer schemas

The similarity function needs to be asymmetric

Recall and Precision

« Use notions recall and precision from Information Retrieval

| relevant M retrieved | .
recall = RELEVEN Retrieved

e ()
orecision = | relevant M retrieved | o
| retrieved |)
TP: True Positive
F o (1+«)- precision - recall FP: False Positive

(21

o - precision + recall FN: False Negative

L]

Adapting| recall and! precision

\We adapt the notions of recall and precision as follows:

recall(C,, C,) = |

precision(C,, C,) =

{x]xe(C, n Cz)}|

[{xixe(C, nC,)}

[{x1xeC}|

|{X | X € Cz}l
Relationship | equivalent | subset | superset overlap disjoint
Recall 1 1 <1 <1 0
Precision 1 <1 1 <1 0

Semantic similarity

« Similarity 1siassessed by the semantic information provided
by the ontology

B class hierarchy.

B properties
» property hierarchy
» Vvalue and cardinality restrictions

Calculating| recallfand precision

« Based on the class hierarchy

B ratio of common ancestors
» similarity increases with the hierarchy depth

| A(C) n ACy)|
| A(C,)|

recall. (C,, C,) =

| AC) n ACy)|
| AC)|

precision. (C,, C,) =

Calculating| recallfand precision (cont'd)

« Based on the properties of classes

N property hierarchy.

| A(R) N A(R,) |
[ACP) |

recall(p,, p,) =

) LAG) A Ap)|

precision(p,, p
4 | A(Py) |

Calculating| recallfand precision (cont'd)

« Based on the properties of classes (cont'd)

B property: restrictions
~ Vvalue restrictions on object properties: V type.Jazz
» Value restrictions on datatype properties: v year.(< 2000)
~ cardinality restrictions: >, released

case recall(R,,R,) precision(R;,R,)
R =R, 1 1
R, cR, 1 0.5
R oR, 0.5 1
R,NR, #J 0.5 0.5

RNR =0 0 0

Calculating| recallfand precision (cont'd)

« Based on the properties of classes (cont'd)

m combining property hierarchy and restrictions

recall(p,, p,) = ool D AR T precall(R:(p,), R (p,))

| A(p,) | R(p,)

[ACR) A AR [T precision(R; (p,), R:(p,))

precision(p,, p,) =
A | A(pl)l R(py1)

Calculating| recallfand precision (cont'd)

« Based on the properties of classes (cont'd)

> recall(p/(C,), p(C,))

recall(C,, C,) = =&

| P(C,)]

2. precision(p(C,), p'(C,))

P(C)

precision(C,, C,) =
= | P(Cy) |

Calculating| recallfand precision (cont'd)

« Extending to sets of classes

> recall(C;, C))

recall(C,, C,) = === <
1

> precision(C/, C,)

Ci ECZ

recision(C,, C.) =
p (C,, C,) C]

Query: reformulation

A query Q, Is forwarded from peer P; to peer P;, and is
reformulated as Q.

B some attributes may not be rewritten
m some attributes may be rewritten approximately
B some conditions may be lost

B some conditions may be inserted

Extending the similarity: measure

« Rewritten attributes

m twas rewrittentot
~ recall(t,t”)=recall(p,, p;)
~ precision(t, t") = precision(p;, p;)

m twas not rewritten
» recall=0
» precision is not affected

Extending the similarity measure (cont'd)

« Rewritten conditions

1.

2.

5"

A query Q, is issued at peer P.
Cq, € the set of classes annotating the relations in Q,

Cq, . € the classes in C,_enhanced with additional value
restrlctlons according to the conditions specified in Q,

Q, is forwarded to peer P; and is rewritten as Q

Cq, . € apply steps 2 and 3 for Q,

Example

Q. SELECT name, members, year FROM bands
WHERE year 2 1960 AND' year < 1990

Coye- Band_P, = Band n =, released n V year.([1980,1990))

Q,: SELECT name, singer, year FROM bands
WHERE year 2 1980 AND year < 1990

Core: Band_P, = Band n V type.Jazzn >, released
n v year.([1980,1990))

Similarity: measure for rewritten gueries

« Combine results for attributes and conditions

> recall(p,, p,)
recall (Cq,,, Co,,, Q0. Q) = tES(QO)l S(Q,)|

. recall (CQO,e ,CQW)

> precision(p,, p,)
precision(C, ,C, ,Q ,Q) = =&
- Q)]

: precision(CQo’e ,CQr,e)

Outline

« Data sharing in PDIVIS

(L
)
(L)
=

L OnieleoVRased Elll ©

.

Extract=-Transtorm-Load (ETL)

Data Back-End Data Front-End
Sources ETL Tools Warehouse Decision Support Tools

Reporting

Web Sites A
Data

Flat Visualization

Files

Preblem description

« The problem ol heterogeneity in data sources

m structural heterogenelity.
> data stored under different schemata

B semantic heterogeneity
» different naming conventions
= €.9., homonyms, synonyms
» different representation formats
= €.g., units of measurement, currencies, encodings
» different ranges of values

« Jwo main goals

B specify inter-schema mappings

m identify appropriate transformations

Overview

« Construct a suitable application ontology

« Annotate the datastores

m establish mappings between the datastore schemas and the
ontolegy

« Apply reasoning technigues to
m select relevant sources

m to identify required transformations

Reference example

Source schema Trarget schema

emp employee
[at least 1 Frame =il /(attleast }
/\ WO

Iname project =] -
- =y
[EUR \prj salary —— USD, above]
salary city \L basic

address street

TThe application ontology

« A suitable application entology: Is constructed to model
m the concepts of the domain
m the relationships between those concepts
m the attributes characterizing each concept

m the different representation formats or (ranges of) values for each
attribute

« A graph representation specified for the ontology
m graph nodes - classes
m graph edges - properties

® visual notation
» different symbols used for each type of class or property

Ontolegy graph notation

aggre gation-node

type-node
format-node
range-node

aggre gated-node

property-edge

convertsTo-edge

agoregates-edge
sroups-edge
subclass-edge

dhgjomt-edge dhsjomtness of classes

[Reference example (cont'd)

TThe application ontelogy graph

.___\

. {gceives (C Address

s .
\ AboveBasic |

e, -~

Datastore Annotation

Semantic annotation - correspondences between the datastore
schema and the ontology

Relations are mapped to concept-nodes

Attributes are mapped to nodes of the following types:
m type-node
m format-node
m range-node
m aggregated-node

Defined classes are created to express the semantics of the
schema elements

[Reference example (cont'd)

« Datastore mappings

Source schema Target schema
-

hasName x \“-—-—-.,,___ employee

"

worksAt "_’.,..-:-' -.\......__\!gcein.r35

< N ST {1,1} name

e - = — =,
(Y Project p)] (C Salary P)]
m— = e —

= {2,-} project
: {1,1} salary
{1,1} city

{1,1} street

ra Y
: AboveBasic :

e -

L]

[Reference example (cont'd)

Datastore definitions

m S_Emp = Employee 11 VhasName.Name 1 =1hasName [
VWOrksAt.Project 1 =i1woerksAt 1 Vrecerves.EUR T
—1receinves 1 VIives.Address i =1l 1ves

m [_.Employee = Employee 1 VhasName.Name [
—1hasName "1 VworksAt.Project 'l =2worksAt I
Vreceilves.AboveBasic [l =i1recelves I
Viives._Address 1 =1l1ves

ETL Transtormations

« Generic types of ETL transtormations

RETRIEVE (n) Eetrieves recordsets from the underlying provider node n
EXTRACT (<) Extracts, from incoming recordsets, the part denoted by <
MERZE Merges recordsets from two or more prowider nodes
Filters incoming recordsets allowing only records with walues ofthe template
trpe sp ecified 1‘I" o
Converts incoming recordsets from the templ ate type denoted by <, to the

FILTEER{c)

CONVERT (o1, <2)
~ template type denoted by <,

Aggregates incoming recordsets over the attnbutes g1, o, g applying the

AGGREGATE (£ _, oy, e, o)
Fgr d1ees dn agoregate function denoted by £

MINCARD (p, min) Filters out incoming recordsets having cardinality less than min on property p

MAXCARD (o, max) Filters out incoming recordsets having cardinality more than max on property p

UNION TTmtr 1::|:|1|1 etz fromm two of more sources

atores 111|::|:|Imn;g, IEE:I:II'[lEET.L-‘. to a target datastore

Generating ETL transiormations

Two main steps

B select relevant sources, to populate a target element
m identify required data transformations

Based on the use of a reasoner to infer subsumption

relationships between the defined classes representing the
datastores

Generating ETL transiormations

« Selecting relevant sources
B a source node ns, mapped to class cs
B a3 target node nr, mapped to class c:

B ns IS provider for ng, If
» Cs and cr have a common superclass

= ensures that the integrated data records refer to the same
kind of entity in the domain

» Cs and cr are not disjoint

= prevents integration between datastores with conflicting
constraints

Generating ETL transiormations

« |dentifying data transformations (1)
m a RETRIEVE operation for each provider node

m a MERGE operation to combine data from several provider
nodes

m an EXTRACTT operation to extract a portion of data from a
provider node

Generating ETL transiormations

« |dentifying data transformations, (11)

m fCs=C7orCs L Cr7,no transformations are required

m I CyC Cs, AGGREGATE, FILTER and/or
MINCARD/MAXCARD operations are required

» choice of specific operation(s) is based on parsing the class
definitions and analyzing the value and cardinality restrictions
found

m else, as previous plus CONVERT operations

Generating ETL transiormations

« |dentifying data transformations, (llI)

m a JOIN operation to.combine recordsets from nodes, whose
corresponding classes are related by a property

m a UNION operation to combine recordsets from nodes, whose
corresponding classes have a common superclass

m a STORE operation to denote loading of data to the target
datastore

[Reference example (cont'd)

Source schema

(

{1,1} fname
{1,1} 1name
{1,-}pr]
{1,1} salary

{1,1} address

.

Datastore mappings

Target schema

-

hasMName N T—
L N

'_,___,_..,__-:#':___,_‘_\::‘_:‘J
MName P}
—

lives

T
(¢ Address)

“\receives ;
e

worksAt

——

Project)
e

(C

s

g LY
L AboveBasic :

-

[Reference example (cont'd)

Source elements Target elements

employee

fname name

e O prosect

pPri salary

salary city

address street

Current and Future Work

« PDMS

B route queries in the network

m apply the approach to social network applications

« ETL

m NLG techniques for textual representation of datastore descriptions
and ETL operations

m impact of schema evolution

« Semantic Web services

m service ranking

m QoS aspects

Thank You

