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Abstract:Robotic process automation (RPA) tools are able to capture in dedicated user
interface (UI) logs the execution of high-volume routines previously performed by a
human user on the interface of a computer system, and then emulate their enactment
inplace of theuser bymeans of a software robot. AUI log can record information about
several routines, whose actions and events are mixed in some order that reflects the
particular order of their execution by the user. In addition, the same user action may
belong to different routines, making its automated identification far from trivial. The
issue to automatically understand which user actions contribute to a specific routine
inside the UI log is also known as segmentation. In this contribution, after discussing
in detail the issue of segmentation and all its potential variants, we present a novel
segmentation technique that leverages trace alignment in processmining for automat-
ically deriving the boundaries of a routine by analyzing the UI logs that keep track of
its execution, in order to cluster all user actions associated with the routine itself in
well-bounded routine traces.

Keywords: Robotic process automation, segmentation of user interface logs, trace
alignment in process mining

11.1 Introduction

Robotic process automation (RPA) uses software robots (or simply SW robots) tomimic
and replicate the execution of highly routine tasks (in the following, called routines)
performed by humans in their application’s user interface (UI). SW robots encode, by
means of executable scripts, sequences of fine-grained interactions with a computer
system, such as opening a file, selecting a field in a form or a cell in a spreadsheet,
copy and paste data across cells of a spreadsheet, extract semi-structured data from
documents, read and write from/to databases, open e-mails and attachments, make
calculations, etc. (Willcocks, 2016). A typical routine that can be automated by a SW
robot using a RPA tool is transferring data from one system to another via their re-
spective UIs, e. g., copying records from a spreadsheet application into a web-based
enterprise information system (Leno et al., 2020b).

Commercial RPA tools allow SW robots to automate a wide range of routines in
a record-and-replay fashion. The current practice for identifying the single steps of a
routine is by means of interviews, walk-throughs, and detailed observation of work-
ers conducting their daily work (Jimenez-Ramirez et al., 2019). A recent approach pro-
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posed by Bosco et al. (2019) makes this identification less time consuming and error-
prone, as it enables to automatically extract from a UI log, which records the UI inter-
actions during a routine enactment, those routine steps to be automated with a SW
robot. While this approach is effective in the case of UI logs that keep track of single
routine executions, i. e., there is an exact 1:1 mapping among a recorded user action
and the specific routine it belongs to, it becomes inadequate when the UI log records
information about several routines whose actions are mixed in some order that re-
flects the particular order of their execution by the user. In addition, since the same
user actionmaybelong todifferent routines, the automated identificationof thoseuser
actions that belong to a specific routine is far from trivial. The challenge to automat-
ically understand which user actions contribute to which routines inside a UI log is
also known as segmentation (Agostinelli et al., 2019; Leno et al., 2020b).

In this chapter, after discussing in detail the issue of segmentation and all its po-
tential variants, we present a technique for automatically deriving the boundaries of
a routine by analyzing the UI log that keeps track of its execution, in order to clus-
ter all user actions associated with the routine itself in well-bounded routine traces.
A routine trace represents an execution instance of a routine within a UI log. To be
more precise, as shown in Figure 1, starting from a UI log previously recorded by a
RPA tool and an interactionmodel representing the expected behavior of a routine per-
formed during an interaction session with the UI, we propose a supervised algorithm
that leverages trace alignment in processmining (Adriansyah et al., 2011; de Leoni and
Marrella, 2017; de Leoni et al., 2018) to automatically identify and extract the routine
traces by the UI log. Such traces are finally stored in a dedicated routine-based log,
which captures exactly all the user actions which happened duringmany different ex-
ecutions of the routine, thus achieving the segmentation task. By identifying the rou-
tine traces, we are also able to filter out those actions in the UI log that are not part of
the routine under observation and hence are redundant or represent noise. It is worth
noticing that a routine-based log obtained in this way can eventually be employed by
the commercial RPA tools to synthesize executable scripts in form of SW robots that
will emulate the routine behavior.

Figure 1: Overview of the proposed segmentation technique.
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The rest of the chapter is organized as follows. Section 11.2 introduces a running
example that will be used to explain our technique. Section 11.3 describes the rel-
evant background on interaction models and UI logs. Section 11.4 illustrates the
concept of segmentation and all its peculiarities. Section 11.5 presents the details of
our technique to the automated segmentation of UI logs. Finally, Section 11.6 dis-
cusses the related work, while Section 11.7 draws conclusions and outlines future
works.

11.2 Running example

Below, we describe a RPA use case inspired by a real-life scenario at the Department
of Computer, Control and Management Engineering (DIAG) of Sapienza Universitá di
Roma. The scenario concerns the filling of the travel authorization request formmade
by professors, researchers, and PhD students of DIAG for travel requiring prior ap-
proval. The request applicant must fill a well-structured Excel spreadsheet (cf. Fig-
ure 2a) providing some personal information, such as his or her bio-data and the e-
mail address, togetherwith further information related to the travel, including the des-
tination, the starting/ending date/time, the means of transport to be used, the travel
purpose, and the envisioned amount of travel expenses, associated with the possi-
bility to request an anticipation of the expenses already incurred (e. g., to request in
advance a visa). When ready, the spreadsheet is sent via e-mail to an employee of the
Administration Office of DIAG, which is in charge of approving and (only in this case)
elaborating the request. Concretely, for each row in the spreadsheet, the employee
manually copies every cell in that row and pastes that into the corresponding text
field in a dedicated Google form (cf. Figure 2b), accessible just by the administration
staff. Once the data transfer for a given travel authorization request has been com-
pleted, the employee presses the “Submit” button to submit the data into an internal
database.

In addition, if the request applicant declares that he or shewould like to use his or
her personal car as one of themeans of transport for the travel, thenhe or she has to fill
a dedicated (simple) web form required for activating a special insurance for the part
of the travel that will be performed with the car. This further request will be delivered
to the administration staff via e-mail, and the employee in charge of processing it can
either approve or reject such request. At the end, the applicant will be automatically
notified via e-mail of the approval/rejection of the request.

The above procedure, which involves twomain routines (in the following, we will
denote them as R1 and R2), is performed manually by an employee of the Adminis-
tration Office of DIAG, and it should be repeated for any new travel request. Routines
such as these ones are good candidates to be encoded with executable scripts and en-
acted by means of a SW robot within a commercial RPA tool. However, unless there
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Figure 2: UIs involved in the running example.

is complete a priori knowledge of the specific routines that are enacted on the UI and
of their concrete composition (this may happen only if the exact sequence of user ac-
tions required to achieve the routines’ targets on the UI is recorded in the context of
controlled training sessions), their automated identification from a UI log is challeng-
ing, since the associated user actionsmay be scattered across the log, interleavedwith
other actions that are not part of the routine under analysis, and potentially shared by
many routines.

11.3 Preliminaries

In this section, we present some preliminary concepts used throughout the chapter.
In Section 11.3.1, we describe the Petri Net modeling language, which will be used
to formally specify the interaction models required to represent the structure of the
routines of interest, while in Section 11.3.2 we introduce the notion of UI log.

11.3.1 Interaction models as Petri Nets

The research literature is rich of notations for expressing human–computer dialogs as
interactionmodels that allow to see at a glance the structure of a user interactionwith
aUI (Paternò, 1999;Dix et al., 2004). Existingnotations canbe categorized in twomain
classes: diagrammatic and textual. Diagrammatic notations include (among others)
various forms of state transition networks (STNs) (Wasserman, 1985), Petri nets (Sy
et al., 2000),Harel state charts (Statecharts, 1987), flowcharts (Dix et al., 2004), JSDdi-
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agrams (Sutcliffe andWang, 1991), and ConcurTaskTrees (CTT) (Mori et al., 2002). Tex-
tual notations include regular expressions (van Den Bos et al., 1983), Linear Tempo-
ral Logic (LTL) (Pnueli, 1977), Communicating Sequential Processes (CSPs) (Dignum,
2004), GOMS (John and Kieras, 1996), modal action logic (Campos et al., 2016), and
BNF and production rules (Feary, 2010).

While there are major differences in expressive power between different nota-
tions, an increased expressive power is not always desirable as it may suggest a
harder to understand description, i. e., the dialog of a UI can become unmanageable
(Dix et al., 2004). To guarantee a good trade-off between expressive power and under-
standability of the models, we decided to use Petri Nets for their specification. Petri
Nets have proven to be adequate for defining interaction models (Dix et al., 2004;
Palanque and Petri, 1995; Marrella and Catarci, 2018). They may contain exclusive
choices, parallel branches, and loops, allowing the representation of extremely com-
plex behaviors in a very compact way. Last but not least, Petri Nets provide a formal
semantics, which allows to interpret the meaning of an interaction model unambigu-
ously.

From a formal point of view, a Petri Net W = (P,T , S) is a directed graph with a
set P of nodes called places and a set T of transitions. The nodes are connected via
directed arcs S ⊆ (P × T) ∪ (T × P). Connections between two nodes of the same type
are not allowed. Places are represented by circles and transitions by rectangles. Fig-
ures 3 and 4 illustrate the Petri Nets used to represent the interaction models of R1
and R2. Transitions are associated with labels reflecting the user actions (e. g., system
commands executed, buttons clicked, etc.) required to accomplish a routine on theUI.

Figure 3: Interaction model for R1.
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Figure 4: Interaction model for R2.

For example, a proper execution of R1 requires a path on the UImade by the following
user actions:
– loginMail, to access the client e-mail;
– accessMail, to access the specific e-mail with the travel request;
– downloadAttachment, to download the Excel file including the travel request;
– openWorkbook, to open the Excel spreadsheet;
– openGoogleForm, to access the Google Form to be filled;
– getCell, to select the cell in the i-th row of the Excel spreadsheet;
– copy, to copy the content of the selected cell;
– clickTextField, to select the specific text field of the Google formwhere the content

of the cell should be pasted;
– paste, to paste the content of the cell into the corresponding text field of the

Google form;
– formSubmit, to press the button to finally submit the Google form to the internal

database.

Note that, as shown in Figure 3, the user actions openWorkbook and openGoogleForm
can be performed in any order. Moreover, the sequence of actions ⟨getCell, copy,
clickTextField, paste⟩ will be repeated for any travel information to be moved from
the Excel spreadsheet to the Google form. On the other hand, the path of user actions
in the UI to properly enact R2 is as follows:
– loginMail, to access the client e-mail;
– accessMail, to access the specific e-mail with the request for travel insurance;
– clickLink, to click the link included in the e-mail that opens the Google form with

the request to activate the travel insurance on a web browser;
– approveRequest, to press the button on the Google form that approves the re-

quest;
– rejectRequest, to press the button on the Google form that rejects the request.

Note that the execution of approveRequest and rejectRequest is exclusive. Then, in
the interaction models of R1 and R2, there are transitions that do not represent user
actions but are needed to correctly represent the structure of suchmodels. These tran-
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sitions, drawn with a black-filled rectangle, are said to be “invisible,” and are not
recorded in the UI logs (cf. Inv1, Inv2, and Inv3).

To understand our segmentation technique based on trace alignment in process
mining, we also need to briefly illustrate the dynamic behavior of a Petri Net, i. e.,
its operational semantics. Given a transition t ∈ T, ∙t is used to indicate the set of
input places of t, which are the places p with a directed arc from p to t (i. e., such that
(p, t) ∈ S). Similarly, t∙ indicates the set of output places, namely, the places p with
a direct arc from t to p. At any time, a place can contain zero or more tokens, drawn
as black dots. The state of a Petri Net, i. e., its marking, is determined by the number
of tokens in places. Therefore, a marking m is a function m : P → ℕ. In any run
of a Petri net, the number of tokens in places may change, i. e., the Petri Net marking.
A transition t is enabled at amarkingm iff each input place contains at least one token,
i. e., ∀ p ∈ ∙t,m(p) > 0. A transition t can fire at amarkingm if and only if it is enabled.
As a result of firing a transition t, one token is “consumed” from each input place and
one is “produced” in each output place. This is denoted asm t

󳨀→ m󸀠. In the remainder,
given a sequence of transition firing σ = ⟨t1, . . . , tn⟩ ∈ T∗,m0

σ
󳨀→ mn is used to indicate

m0
t1󳨀→ m1

t2󳨀→ . . .
tn󳨀→ mn, i. e.,mn is reachable fromm0.

Since the executions of a routine have a start and a end, the interaction models
represented through Petri Nets need to be associatedwith an initial and finalmarking.
For example, in both routines of Figures 3 and4, themarkingswith respectively one to-
ken in place start or in place end are the initial and finalmarking (andno tokens in any
other place). In the remainder of this paper, we assume all Petri Nets to be 1-bounded.
A Petri Net is 1-bounded if in any reachablemarking from the initial marking, no place
ever contains more than 1 token. One-boundedness is not a large limitation as the be-
havior allowed by interactionmodels can be represented as 1-bounded Petri Nets (Dix
et al., 2004; Marrella and Catarci, 2018).

11.3.2 UI logs
A single UI log in its raw form consists of a long sequence of user actions recorded dur-
ing one user session.1 Such actions include all the steps required to accomplish one
or more relevant routines using the UI of one or many SW applications. For instance,
in Figure 5, we show a snapshot of a UI log captured using a dedicated action log-
ger2 during the execution of R1 and R2. The employed action logger enables to record
the events that happened on the UI, enriched with several data fields describing their
“anatomy.” For a given event, such fields are useful to keep track of the name and the

1 We interpret a user session as a group of interactions that a single user takes within a given time
frame on the UI of a specific computer system.
2 The working of the action logger is described in Agostinelli et al. (2020). The tool is available at
https://github.com/bpm-diag/smartRPA
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Figure 5: Snapshot of a UI log captured during the executions of R1 and R2.

timestamp of the user action performed on the UI, the involved SW application, the
human/SW resource that performed the action, etc.

For the sake of understandability, we assume here that any user action associated
to each event recorded in the UI log is mapped at most with one (and only one) Petri
Net transition, and that the collection of labels associated to the Petri Net transitions
is defined over the same alphabet as the user actions in the UI log,3 i. e., the alphabet
of user actions in the UI log is a superset of that used for defining the labels of Petri Net
transitions. In the running example, we can recognize in R1 and R2 a universe of user
actions of interest Z = {A,B,C,D,E, F,G,H , I , L,M,N ,O}, such that A = loginMail, B =
accessMail, C = downloadAttachment, D = openWorkbook, E = openGoogleForm,
F = getCell, G = copy, H = clickTextField, I = paste, L = formSubmit,M = clickLink,
N = approveRequest, and O = rejectRequest.

As shown in Figure 5, a UI log is not specifically recorded to capture pre-identified
routines. A UI log may contain multiple and interleaved executions of one or many
routines (cf. in Figure 5 the blue/red boxes that group the user actions belonging to R1
and R2, respectively), as well as redundant behavior and noise. We consider as redun-
dant any user action that is unnecessarily repeated during the execution of a routine,
e. g., a text value that is first pasted in a wrong field by mistake and then is moved in
the right place through a corrective action on the UI. On the other hand, we consider
as noise all those user actions that do not contribute to the achievement of any routine
target, e. g., a window that is resized. In Figure 5, the sequences of user actions that
are not surrounded by a blue/red box can be safely labeled as noise.

Based on the foregoing, our segmentation technique aims at extracting from the
UI log all those user actions thatmatch a distinguishable pattern as represented by the
interactionmodel of a generic routine R, filtering out redundant actions and noise. To
be more specific, any sequence of user actions in the UI log that can be replayed from

3 In de Leoni and Marrella (2017), it is shown how these assumptions can be removed.
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the initial to the final marking of the Petri Net-based interaction model of R is said to
be a routine trace of R, i. e., a complete execution instance of R within the UI log. For
example, a valid routine trace of R1 is ⟨A,B,C,D,E, F,G,H , I , L⟩. The interactionmodel
of R1 suggests that valid routine traces are also those oneswhere (1)A is skipped (if the
user is already logged in the client e-mail); (2) the pair of actions ⟨D,E⟩ is performed
in reverse order; (3) the sequence of actions ⟨F,G,H , I⟩ is executed several times be-
fore submitting the Google form. On the other hand, two main routine traces can be
extracted from R2: ⟨A,B,M,N⟩ and ⟨A,B,M,O⟩, again with the possibility to skip A,
i. e., the access to the client e-mail. Note that within a routine trace, the concept of
time is usually defined in a way that user actions in a trace are sorted according to the
timestamp of their occurrence.

We conclude this section by introducing the concept of routine-based log as a spe-
cial container that stores all the routine traces extracted by a UI log and associated to
a generic routine R. Thus, the final outcome of our segmentation technique will be a
collection of as many routine-based logs as are the interaction models of the routines
of interest.

11.4 Segmentation
Given a UI log consisting of events including user actions having the same granular-
ity4 and potentially belonging to different routines, in the RPA domain segmentation
is the task of clustering parts of the log together which belong to the same routine.
In a nutshell, the challenge is to automatically understand which user actions con-
tribute to which routines, and organize such user actions in well-bounded routine
traces Agostinelli et al. (2019), Leno et al. (2020b).

As shown in Section 11.3.2, in general a UI log stores information about several
routines enacted in an interleaved fashion, with the possibility that a specific user
action is shared by different routines. Furthermore, actions providing redundant be-
havior or not belonging to any of the routine under observationmay be recorded in the
log, generating noise that should be filtered out by a segmentation technique. We can
distinguish among three main forms of UI logs, which can be categorized according
to the fact that (1) any user action in the log exclusively belongs to a specific routine;
(2) the log records the execution of many routines that do not have any user action in
common; (3) the log records the execution of many routines, and the possibility exists
that some performed user actions are shared by many routines at the same time. In
the following, we analyze in detail case by case.

4 The UI logs created by generic action loggers usually consist of low-level events associated one-by-
one to a recorded user action on the UI (e. g., mouse clicks, etc.). We will discuss the abstraction issue
in Section 11.6, where state-of-the-art techniques are shown that enable to flatten the content of a log
to a same granularity level.
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– Case 1: This is the case when a UI log captures many executions of the same rou-
tine. Of course, in this scenario it is not possible to distinguish between shared
and non-shared user actions by different routines, since the UI log keeps track
only of executions associated to a single routine.
Starting from our running example in Section 11.2, let us consider the simplest
case of aUI logU that records a sequence of user actions resulting frommanynon-
interleaved executions of R1: U = {A11,B11,C11,D11,E11, F11,G11,H11, I11, L11, . . . ,A12,
B12,C12,D12,E12, F12,G12,H12, I12, L12}. For the sake of understandability, we use
a numerical subscript ij associated to any user action to indicate that it be-
longs to the j-th execution of the i-th routine under study. Of course, this in-
formation is not recorded in the UI log, and discovering it (i. e., the identifi-
cation of the subscripts) is one of the “implicit” effects of segmentation when
routine traces are built. Applying a segmentation technique to the above UI
log would trivially produce a routine-based log UR1 where the (already well-
bounded) executions of R1 are organized as different routine traces: UR1 =
{⟨A11,B11,C11,D11,E11, F11,G11,H11, I11, L11, ⟩, . . . , ⟨A12,B12,C12,D12,E12, F12,G12,H12, I12,
L12⟩}.
The same routine-based log UR1 would be obtained when the executions of R1 are
recorded in an interleaved fashion in the UI log, e. g., U = {A,B11,B12,C11,D11,C12,
D12,E12, F12,G12,H12, I12, L12,E11, F11,G11,H11, I11, L11, . . .}. Here, the segmentation
task becomes more challenging, not only because the user actions of different
executions of a same routine are interleaved among each others, and it is not
known a priori to which execution they belong, but also for the presence of some
user actions that potentially belong at the same time to many executions of the
routine itself. This is the case of A (that corresponds to loginMail), which can be
performed exactly once at the beginning of a user session and can be “shared” by
many executions of the same routine.
Another variant is when the execution of a routine is affected by noise or redun-
dant actions. For example, let us consider the followingUI log recordedaftermany
executions of R1: U = {A11,B11,C11,Y1,D11,E11, F11,G11,G11,G11,H11, I11, L11, . . . ,A12,
Yn−1,B12,C12,D12,E12,Yn, F12,G12,H12, I12, I12, I12, L12}. This log contains elements of
noise, i. e., user actions Yk∈{1,n} ∈ Z (recall that Z is the universe of user actions
allowed by aUI log, as introduced in Section 11.3.2) that are not allowed byR1, and
redundant actions like G11 (copy action) and I12 (paste action) that are unneces-
sarily repeatedmultiple times. Noise and redundant actions need to be filtered out
during the segmentation task because they do not contribute to the achievement
of the routine’s target.

– Case 2: In this case, a UI log captures many executions of different routines, with
the assumption that the interaction models of such routines include only transi-
tions associated to user actions that are exclusive for those routines. For example,
let us suppose that in both interactionmodels of R1 and R2 the transitionsA andB
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are not required, and the UI log is as follows: U = {C11,D11,E11, F11,G11,H11, I11, L11,
M21,N21, . . . ,C12,D12,E12, F12,G12,H12, I12, L12,M22,O22}. The output of the segmenta-
tion task would consist of two routine-based logs, one per routine, which include
the following routine traces:
– UR1 = {⟨C11,D11,E11, F11,G11,H11, I11, L11⟩, . . . , ⟨C12,D12,E12, F12,G12,H12, I12, L12⟩};
– UR2 = {⟨M21,N21⟩, . . . , ⟨M22,O22⟩}.
Similarly to what was already seen in Case 1, it may happen that many executions
of the same routine (and, in this case, also of many different routines) are inter-
leaved among each other, and that noise and redundant actions are also recorded
in the log. Sincewe are assuming that there are no shared actions among different
routines, the complexity of the segmentation task in the presence of interleaved
actions, noise, and redundancy can be reduced to the case of a single routine; cf.
Case 1.

– Case 3: In this case, a UI log captures many executions of different routines, and
there exist user actions that are shared by such routines. This case perfectly re-
flectswhat happens in the running example of Section 11.2. Let us consider the fol-
lowing UI log: U = {A,B,C11,D11,E11, F11,G11,H11, I11, L11,B,M21,N21, . . . ,B,C12,D12,
E12, F12,G12,H12, I12, L12,B,M22,O22}, whereA andB are shared byR1 andR2, as they
are included in the interactionmodels of both routines. By analyzing the log, it can
be noted thatA is potentially involved in the enactment of any execution of R1 and
R2, while B is required by all executions of R1 and R2, but the association between
the single executions of B and the routine executions they belong to is not clear.
The complexity of the segmentation task here lies in understanding to which rou-
tine traces the execution ofA andB belong. The outcome of the segmentation task
will be a pair of routine-based logs generated as follows:
– UR1 = {⟨A,B11,C11,D11,E11, F11,G11,H11, I11, L11⟩, . . . , ⟨A,B12,C12,D12,E12, F12,G12,

H12, I12, L12⟩};
– UR2 = {⟨A,B21,M21,N21⟩, . . . , ⟨A,B22,M22,O22⟩}.
Consider that while A can belong to some routine executions and not to others,
making it impossible to understand to which exact routine execution it can be
associated, in the case of B it is important to identify the association between its
i-th execution and the specific routine execution it belongs to.

The above cases have in common that all the user actions are stored within a single UI
log. It may happen that the same routine is spread across multiple UI logs, in particu-
lar when there are multiple users that are involved in the execution of the routine on
different computer systems. This case can be tackled by “merging” the UI logs where
the routine execution is distributed into a single UI log, reducing the segmentation
issue to one of the already analyzed cases.
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11.5 Segmentation technique

In this section, we present our technique to tackle the segmentation issue of UI logs
that leverages trace alignment in process mining for deriving the boundaries of a rou-
tine by analyzing the UI log that keeps track of its execution, in order to cluster all user
actions associated with the routine itself in well-bounded routine traces. Specifically,
in Section 11.5.1, we first provide the relevant background on trace alignment. Then,
in Section 11.5.2, we present an overview of the general approach underlying our seg-
mentation technique depicting its main steps, and we describe the technical details
of the algorithm that implements the technique.

11.5.1 Alignment between UI logs and interaction models as Petri
Nets

Trace alignment (Adriansyah et al., 2011; de Leoni and Marrella, 2017; de Leoni et al.,
2018) is a conformance checking technique within process mining that is employed
to replay the content of any trace of an event log against a process model represented
as a Petri Net, one event at a time. For each trace in the log, the technique identifies
the closest corresponding trace that can be parsed by the model, i. e., an alignment,
together with a fitness value, which quantifies howmuch the trace adheres to the pro-
cess model. The fitness value can vary from 0 to 1. A fitness value equal to 1 means a
perfect matching between the trace and the model.

We perform trace alignment by constructing an alignment of a UI log U (note that
we can consider the entire content of the UI log as a single trace) and an interaction
modelW as a Petri Net, which allows us to exactly pinpointwhere deviations occur. To
this aim, the events inU need to be related to transitions in themodel, and vice versa.
Building this alignment is far from trivial, since the log may deviate from the model at
an arbitrary number of places. To be more specific, we need to relate “moves” in the
log to “moves” in themodel in order to establish an alignment between an interaction
model and a UI log. However, it may be that some of the moves in the log cannot be
mimicked by the model and vice versa. We explicitly denote such “no moves” by≫.

Definition 11.5.1 (Alignment moves). LetW = (P,T , S) be a Petri Net and let U be a UI
log. A legalalignmentmove forW andU is representedby apair (qU , qW ) ∈ (T∪{≫}×T∪
{≫}) \ {(≫,≫)} such that:
– (qU , qW ) is amove in log if qU ̸= ≫ and qW = ≫;
– (qU , qW ) is amove in model if qU =≫ and qW ∈ T;
– (qU , qW ) is a synchronous move if qU = qW .

An alignment is a sequence of alignment moves.
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Definition 11.5.2 (Alignment). LetW = (P,T , S) be a Petri Net with an initial marking
and final marking denoted with mi and mf . Let also U be a UI log. Let ΓW be the uni-
verse of all alignment moves forW and U . Sequence γ ∈ Γ∗W is an alignment ofW and
U if, ignoring all occurrences of≫, the projection on the first element yieldsU and the

projection on the second yields a sequence σ󸀠󸀠 ∈ T∗ such thatmi
σ󸀠󸀠
󳨀󳨀→ mf .

Amove in log for a transition t indicates that t occurredwhen not allowed; amove
in model for a visible transition t indicates that t did not occur when, conversely, ex-
pected. Many alignments are possible for the same UI log and a Petri Net. For exam-
ple, Figure 6 shows two possible alignments for a UI log consisting of the following
sequence of user actions ⟨A,B,M,N⟩ and the Petri Net in Figure 4, representing the
interaction model of R2. Note how moves are represented vertically. For example, as
shown in Figure 6, the first move of γ1 is (A,A), i. e., a synchronous move of A, while
the first and second moves of γ2 are a move in log and model, respectively. We aim at
finding a complete alignment of U and W with minimal number of deviations (i. e.,
of moves in log/model) for visible transitions, also known in the literature as opti-
mal alignments. With reference to the alignments in Figure 6, γ1 has four synchronous
moves and γ2 has onemove in log for visible transitions and onemove inmodel for the
invisible transition Inv3 (that does not count for the computation of the fitness value).
As a consequence, γ1 is an optimal alignment and can be returned. Note that its fit-
ness value is exactly equal to 1, since it consists only of synchronous moves enabling
U to be completely replayed from the initial to the final marking ofW . For the sake of
simplicity, we are assuming here that all the deviations have the same severity. How-
ever, the severity of a deviation can be customized on an ad hoc basis (de Leoni and
Marrella, 2017).

γ1 =
A B M N
A B M N

γ2 =
A ≫ B M N
≫ Inv3 B M N

Figure 6: Alignments of ⟨A,B,M,N⟩ and the Petri Net in Figure 4.

11.5.2 The general approach and the segmentation algorithm

The general approach underlying our segmentation techniques consists of two meth-
odological phases, filtering and trace alignment, to be applied in sequence, as shown
in Figure 7. Algorithm 1 shows the technical details of the algorithm that concretely
implements such phases.



214 | S. Agostinelli et al.

Figure 7: Overview of the general approach underlying the proposed segmentation technique.

The algorithm takes as input aUI logU anda set of interactionmodelsWset and returns
a set of routine-based logs Uset. For each interaction model w ∈ Wset (one for each
routine of interest) represented as Petri Nets, the algorithm performs the following
steps:
1. Filtering: The filtering phase is used to filter out noisy actions from the UI log.

Specifically, for each interaction model w ∈ Wset, a local copy of the UI log Uw

is created (line 3). Then, all user actions that appear in Uw but that cannot be
replayed by any transition of w are removed from Uw. The output of this step is
a model-based filtered UI log Uw

ϕ (line 4). Working with Uw
ϕ rather than with Uw

will allow us to apply the trace alignment technique neglecting all the potential
moves in the log with user actions that could never be replayed by w. As a con-
sequence, this will drastically reduce the number of alignment steps required to
find optimal alignments, and at the same time optimize the performance of the al-
gorithm. Before moving to the next step, a new routine-based logUw

R is initialized
(line 5).

2. Trace alignment: The second step consists of applying the trace alignment tech-
nique discussed in Section 11.5.1 for any interaction model w ∈ Wset and its asso-
ciated model-based filtered UI log Uw

ϕ . This enables to extract from Uw
ϕ all those

user actions that match a distinguishable pattern with w in the form of an opti-
mal alignment γopt (line 7). Trace alignment allows to pinpoint the synchronous
moves between Uw

ϕ and w. If they exist, the user actions involved in synchronous
moves are extracted and stored into γoptsm (line 8). Note that focusing just on syn-
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Algorithm 1: Algorithm implementing our segmentation technique.
Parameters:: a UI log U, a set of interaction modelsWset
Result: A set Uset of routine-based logs

1 Uset← 0;
2 forall w ∈Wset do
3 Uw ← duplicate(U);
4 Uw

ϕ ← filter(Uw);
5 Uw

R ← 0;
6 repeat
7 γopt← trace alignment (Uw

ϕ ,w);
8 γoptsm ← extract(γopt);
9 if γoptsm is not empty then
10 create a trace τsm from γoptsm ;
11 create a temporary UI log Uw

sm from τsm;
12 fitness← compute fitness from trace alignment (Uw

sm,w);
13 if fitness is 1 then
14 add τsm to Uw

R ;
15 else
16 discard τsm;
17 end
18 remove the events associated to τsm from Uw

ϕ ;
19 end
20 until γoptsm is not empty;
21 add Uw

R to Uset;
22 end
23 return Uset

chronousmoves allowsus to exclude all redundant user actions from the analysis.
Then, the algorithm:
(a) creates a trace τsm consisting of the user actions associated with the syn-

chronous moves stored in γoptsm (line 10);
(b) creates a (temporary) UI log Uw

sm containing only the trace τsm (line 11),
which is required to properly run (again) trace alignment;

(c) performs a new alignment between Uw
sm and w with the goal to compute the

fitness value (line 12).
In the case the fitness value is equal to 1, this means that Uw

sm (and, consequently,
τsm) can be replayed from the start to the final marking of w, making τsm a valid
routine trace ofw. In such a case, τsm is stored intoUw

R (line 14) and all the events
associated to the synchronous moves in τsm are removed by Uw

ϕ (line 18). On the
contrary, a fitness value lower than 1 indicates the presence of at least one move
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in the model in τsm with respect to w, i. e., τsm cannot be completely replayed by
w and is not a valid routine trace, meaning that we can discard it (line 16).

The above two steps can be repeated until γoptsm is not empty (line 20), i. e., until there
are synchronous moves in the computed alignment. At the end of the iteration, the
routine-based log Uw

R is stored into Uset (line 21), and the algorithm starts to analyze
the next interactionmodel intoWset. In conclusion, the algorithm computes a number
of routine-based logs equal to the number of interaction models under study.

It is worth to notice that: (i) for the computation of the trace alignment, the algo-
rithm relies on the highly scalable planning-based alignment technique implemented
in our previous work (de Leoni and Marrella, 2017), which we have properly cus-
tomized for our purposes; and (ii) the algorithm is able to achieve cases 1, 2, and 3
discussed in Section 11.4, except when there are interleaved executions of shared user
actions by different routines. In that case, the risk exists that a shared user action is
associated to a wrong routine execution, i. e., clustered in a wrong routine trace.

11.5.2.1 An execution instance of the segmentation algorithm

We show now an execution instance of Algorithm 1 applied to the following UI log:
U = {A,B,C,Y1,D,E, F,G,G,G,H , I , L,B,M,N , . . . ,B,Yn−1,C,D,E,Yn, F,G,H , I , I , I , L,B,
M,O}. The log contains elements of noise, i. e., user actions Yk∈{1,n} that are not al-
lowed by R1 and R2, and redundant actions like G and I that are unnecessarily re-
peated multiple times. In addition, A and B are shared by R1 and R2, as they are in-
cluded in the interaction models of both routines. In particular, A is potentially in-
volved in the enactment of any execution of R1 and R2, while B is required by all exe-
cutions of R1 and R2.

The algorithm takes as input (1) the UI log U and (2) the interaction models of
R1 and R2, and computes a set of routine-based logs Uset by executing the following
steps:
– (line 1): initializes the set of interaction models Uset;
– (line 2): iterates on the interactionmodels of R1 and R2; for the sake of space, we

focus only on the steps computed in the case of R1;
– (line 3): creates a local copy of U, namely Uw;
– (line 4): filters Uw from noise, so Uw

ϕ = {A,B,C,D,E, F,G,G,G,H , I , L,B, . . . ,B,C,
D,E, F,G,H , I , I , I , L,B}; in this step, the user actions Yk∈{1,n} and M,N ,M (being
exclusively related to R2) are filtered out by the log; on the other hand, redundant
actions still remain in the log;

– (line 5): initializes the routine-based log Uw
R ;
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– (line 7): computes the trace alignment betweenUw
ϕ and the interactionmodel of

R1, namely, w;

γopt = A B C D E F G G G H I L B . . . B
A B C D E F G ≫ ≫ H I L ≫ . . . ≫

– (line 8): extracts the synchronous moves from γopt into γoptsm ;
– (line 9): evaluates to True, as γoptsm is not empty;
– (line 10): computes the trace τsm starting from γoptsm , so τsm = ⟨A,B,C,D,E, F,G,H ,

I , L⟩;
– (line 11): adds the trace τsm in Uw

sm;
– (line 12): computes trace alignment between Uw

sm and w;

A B C D E F G H I L
A B C D E F G H I L

Uw
sm can be replayed without deviations from the start to the final marking of w,

meaning a perfect fitness between the log and the interaction model;
– (line 13): evaluates to True, as the fitness of the alignment (cf. line 12) is equal

to 1;
– (line 14): adds τsm in Uw

R , i. e., τsm is recognized as a valid routine trace;
– (line 18): removes all the events associated with the synchronous moves in τsm

from Uw
ϕ ; thus, U

w
ϕ = {G,G,B, . . . ,B,C,D,E, F,G,H , I , I , I , L,B};

– (line 20): since γoptsm is not empty, the algorithm comes back to line 6.
After repeating the above steps from line 7 to line 14, the algorithm discovers a
second routine trace τsm = ⟨B,C,D,E, F,G,H , I , L⟩ and adds it to Uw

R . Like before,
all the events associated with the synchronous moves in τsm are removed from
Uw
ϕ . Thus, U

w
ϕ = {G,G,B, . . . , I , I ,B}.

The subsequent iterations of the algorithm do not discover new routine traces for
R1, since the only synchronous moves extracted in the various alignment steps
between w and Uw

ϕ are the Bs,Gs, and Is that are discarded (due to the fitness
value of γoptsm that is < 1). It is worth to notice that redundant user actions G and I
are removed from Uw

ϕ during these iterations. The algorithm ends to iterate when
γoptsm is empty, that is, when there are no more synchronous moves to extract;

– (line 21): after the last iteration ends, the routine-based logUw
R is stored intoUset,

and the algorithm starts to analyze the interaction model of R2.

The outcome of the segmentation task will be a set of routine-based logs (in this case
two, since the number of interactionmodels under study is two) generated as follows:
Uset = {{⟨A,B11,C11,D11,E11, F11,G11,H11, I11, L11⟩, . . . , ⟨B12,C12,D12,E12, F12,G12,H12, I12,
L12⟩}, {⟨A,B21,M21,N21⟩, . . . , ⟨B22,M22,O22⟩}}.
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11.6 Related work
In the field of RPA, segmentation is an issue still not so much explored, since the cur-
rent practice adopted by commercial RPA tools for identifying the routine steps often
consists of detailed observations of workers conducting their daily work. Such obser-
vations are then “converted” in explicit flowchart diagrams (Jimenez-Ramirez et al.,
2019), which are manually modeled by expert RPA analysts to depict all the potential
behaviors (i. e., the traces) of a specific routine. In this setting, as the routine traces
have been already (implicitly) identified, segmentation can be neglected.

On the other hand, following a similar trend that has been occurring in the busi-
ness process management (BPM) domain (Marrella et al., 2018; Marrella, 2019), the
research on RPA is moving towards the application of intelligent techniques to auto-
mate all the steps of a RPA project, as proven by many recent works in this direction
(see below). In this context, segmentation can be considered as one of the “hot” key
research topics to investigate (Agostinelli et al., 2019; Leno et al., 2020b).

With regard to previous works, even if more focused on traditional business pro-
cesses in BPM rather than on RPA routines, Fazzinga et al. (2018) comes closest to our
technique. This work proposes a probabilistic interpretation approach that employs
predefined behavioral models to establish which process activities (generated by an
arbitrary number of process instances) belong to which process model. Similarly to
Fazzinga et al. (2018), our segmentation technique falls in the supervised category, as
it can be applied only in the presence of pre-defined interaction models in input. On
the other hand, differently from Fazzinga et al. (2018), our approach is not probabilis-
tic, but is thoroughly quantitative, based on the computation of fitness values.

In Bosco et al. (2019), the authors provide a method to analyze UI logs in order to
discover routines that are fully deterministic and thus amenable for automation. The
method combines a technique for compressing a set of sequences of user actions into
an acyclic automaton using rule mining techniques and data transformations. How-
ever, this approach is effective in the case of UI logs that keep track of well-bounded
routine executions, and becomes inadequate when the UI log records information
about several routines whose actions are potentially interleaved.

In Leno et al. (2020a), the authors propose a technique to identify candidate rou-
tines to be automated starting from an unsegmented UI log. The technique is able to
discover the execution traces of a specific routine relying on the automated synthesis
of a control-flow graph that describes the observed directly follow relations between
the user actions. The technique in Leno et al. (2020a) is effective to tackle some simple
variants of Case 1 and Case 2 (cf. Section 11.4), while it loses accuracy in the presence
of recurrent noise and interleaved routine executions.

In Gao et al. (2019), the authors propose a self-learning approach to automatically
detect high-level RPA rules from captured historical low-level behavior logs. An if-
then-else deduction logic is used to infer rules frombehavior logs by learning relations
between the different routines performed in the past. Then, such rules are employed
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to facilitate the SW robots instantiation. A similar approach is adopted in Le and Gul-
wani (2014), where the FlashExtract framework is presented. FlashExtract allows to
extract relevant data from semi-structured documents using input–output examples,
from which one can derive some relations underlying the working of a routine. Differ-
ently fromour segmentation technique,which is able to extract the routine traces, i. e.,
the concrete behaviors of a routine, the above works allow to discover partial views of
the working of a routine.

There exist other approaches that focus on learning the anatomy of routines not
analyzingUI logs but fromnatural languagedescriptions of theprocedures underlying
such routines. In this direction, the work (Ito et al., 2020) defines a new grammar for
complex workflows with chaining machine-executable meaning representations for
semantic parsing. In Leopold et al. (2018), the authors provide an approach to learn
activities from text documents employing supervised machine learning techniques
such as feature extraction and support vectormachine training. Similarly, inHan et al.
(2020) the authors adopt a deep learning approach based on long short-termmemory
(LSTM) recurrent neural networks to learn the relationship between user actions.

Moreover, even if the target is not to resolve the segmentation issue, many re-
search works exist that analyze UI logs at different levels of abstraction and that can
be potentially useful to realize segmentation techniques. With the term “abstraction”
we mean that groups of user actions are to be interpreted as executions of high-level
activities. In Baier et al. (2014), the authors present a semi-automated approach for
finding a set of candidate mappings between the user actions stored in a UI log and
instances of high-level activities. This scenario requires a human-in-the-loop to be in-
volved in the filtering phase to resolve the ambiguities on the mapping between user
actions and activities. The work (Baier et al., 2015) proposes a method to find a global
one-to-one mapping between the user actions that appear in the UI log and the high-
level activities of a given interaction model. This method leverages constraint satis-
faction techniques to reduce the set of candidatemappings. Similarly, in Ferreira et al.
(2014), starting from a state machine model describing the routine of interest in terms
of high-level activities, the authors employ heuristic techniques to find a mapping
from a “micro-sequence” of user actions to the “macro-sequence” of activities in the
statemachinemodel. Finally, inMannhardt et al. (2018), a technique is presented that
maps low-level event types tomultiple high-level activities (while the event instances,
i. e., with a specific timestamp in the log, can be coupled with a single high-level ac-
tivity). However, segmentation techniques in RPA must enable to associate low-level
event instances (corresponding to our UI actions) to multiple routines.

In addition to the above supervised techniques, there are unsupervised tech-
niques (Günther et al., 2009; Bose and van der Aalst, 2009; Folino et al., 2014, 2015)
that try to convert each sequence of user actions into a sequence of higher-level ac-
tivities without any background knowledge on the structure of the routines whose
execution generates the UI log. Starting from the UI log, such works exploit cluster-
ing techniques to aggregate user actions into clusters, where any cluster represents
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a high-level activity associated to a well-defined sequence of user actions. The final
outcome is an abstracted view of the UI log, obtained by replacing each user action
with a label identifying the cluster containing it.

11.7 Conclusion

To tackle the segmentation challenge, in this chapter we have presented a technique,
coupled with a supervised algorithm, leveraging trace alignment in process mining to
identify sequences of user actions in aUI log that belong to specific routine executions,
clustering them inwell-bounded routine traces. Our work is based on a supervised as-
sumption since we know a priori the structure of the routines, namely, the interaction
models. Despite this limitation, we consider this contribution as an important first
step towards the development of a more complete and unsupervised technique to the
segmentation of UI logs.

In this direction, as a future work, we are going to perform a robust evaluation
of the algorithm on synthetic and real-world case studies with heterogeneous UI logs.
In addition, we aim at relaxing the supervised assumption in different ways: (1) by
employing declarative rules (Pesic et al., 2007) rather than Petri Nets to represent in-
teraction models, allowing us to reason over a partial knowledge of the working of
the routines; (2) by investigating sequential pattern mining techniques (Dong, 2009)
to examine frequent sequences of user actions having common data attributes; (3) by
analyzingweb logmining techniques (Mobasher and Nasraoui, 2011), whose input is a
set of clickstreams and the goal is to extract sessions where a user engages with a web
application to fulfill a goal; (4) by employingmachine learning techniques to automat-
ically identify sequences of user actions associated with a routine execution without
any previous knowledge of the routines’ structure.
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