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• swarm robotics studies robotic systems composed of 
a multitude of interacting units 

• homogeneous systems or few heterogeneous groups 
• each unit is relatively simple and inexpensive

• individual limitations, absence of global information 
• limitations can be physical or functional 
• access to local and incomplete information only

• decentralised control 
• no single point of failure 
• redundancy is built-in in the system

• expected properties:

swarm robotics

• parallelism 
• scalability 

• robustness 
• efficiency 

• adaptivity



swarm robotics

• simple individuals and simple behaviours
• complexity results from cooperation
• research mainly focuses on: 

• development of specific hardware to support 
communication and physical interactions 

• development and test of swarm control systems

• problem:  how to define individual rules?
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design patterns
• reusable solutions for a specific class of problems 
• leverage on the principled understanding of  

theoretical models of collective systems



what design rationale 
for robot swarms?
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perspectives
• potential application domains  

• agriculture and precision farming 
• security, search&rescue 
• logistics 
• space exploration 

• swarm robotics still confined into the lab 
• more research needed for higher cognitive skills 

• collective decision-making 
• task allocation 
• categorisation 
• learning



collective decisions



collective decisions
• definition: 

the process that leads a group to identify 
the best option out of several alternatives 

• precondition: 
partial/noisy information about the available alternatives 

• postcondition: 
the group (or a large majority) shares the same choice 

• constraints: 
individuals cannot know/compare all alternatives



decentralised decision making
• best-of-n decision problem
• set of n options
• each option i has a quality vi 

• GOAL: select the best (or equal-best) option

which rules should 
each agent follow?

- discover the options 
- estimate their qualities 
- select the best one

macroscopic 
behaviour

individual 
agent rules

?



design rationale

nest-site selection in 
honeybees 

+ attains near-optimal 
speed-accuracy tradeoff 

+ no need of direct comparison 
between option qualities 

+ adaptive mechanisms to tune 
decision speed and break 
symmetry deadlocks



collective decisions in bees
a swarm needs to select the new nesting site 



collective decisions in bees
scout bees identify the available alternatives and 

share information through the ‘waggle dance’



modelling collective decisions
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modelling collective decisions
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modelling collective decisions
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modelling collective decisions
A
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design pattern solution 
multi-level description of the decision process

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised 
Decision Making. PLoS ONE, 10(10), e0140950–18.



design pattern solution 
multi-level description of the decision process

Macroscopic 
description

infinite-size 
deterministic 

time continuous

Macroscopic description: infinite-size, deterministic, time/state-space continuous Let us consider a population of N

agents. At the macroscopic level, we model the population fractions of committed agents Yi = Ni/N (with Ni the number
of agents committed to option i) and the fraction of uncommitted agents YU = NU/N (with NU the number of uncommitted
agents). Agents change their commitment state through four different processes: discovery (g), abandonment (a), recruitment
(r) and cross-inhibition (s ).

We extend the model for binary decisions proposed in3 to the best-of-n decision problem. The model describes the mean
system behaviour as a system of n coupled ODEs and an algebraic equation for mass conservation:

⇢
Ẏi = giYU �aiYi +riYiYU �Â j 6=i s jYiY j

YU = 1�Âi Yi

(1)

Each differential equation in (1) describes the variation of the fraction of agents in each population. The fraction of agents
committed to option i 2 {1, . . . ,n} increases through the discovery of option i (at a rate gi) and through recruitment proportional
to the population committed to i (at a rate riYi). Conversely, the fraction decreases through abandonment (at a rate ai) or
through cross-inhibition proportional to the contrasting populations (at a rate Â j 6=i s jY j,). All model parameters represent the
rate at which agents change their commitment state. Therefore, we assume all model parameters to be non-negative:

ai,gi,ri,si � 0, i 2 {1, . . . ,n}. (2)

For a decision-making problem based on the quality of the available options, all model parameters could be linked to the option
quality vi:

ai = fa(vi), gi = fg(vi), ri = fr(vi), si = fs (vi), (3)

where each function describes a specific relationship between transition rate and option quality (see4 for an example).
This model describes the average proportion of agents in each population for a system with an infinite number of agents.

It is deterministic and continuous in time and in the state space. The model can be exploited to determine the macroscopic
behaviour corresponding to a given parameterisation, and to provide constraints to the possible parameterisations in order to
obtain a desired system behaviour. This ultimately translates in constraints in the design of the relationship between option
quality vi and transition rates gi, ai, ri, and si.

Macroscopic description: finite-size, stochastic, time continuous, state-space discrete The mean-field model can be
derived from a Markov process.3 We can represent the generalised case for best-of-n decisions through chemical reactions
representing agents changing their commitment state, either spontaneously or by interacting with other agents:

CU

Qgi��! Ci

Ci

Qai��! CU

CU +Ci

Qri��! 2Ci

Ci +Cj

Qs j��! CU +Cj, i 6= j

(4)

where the Qli
,l 2 {a,g,r,s} represent reaction constants.5 Starting from the above description, it is possible to derive the

master equation, which describes the time evolution of the system as a stochastic, discrete-state process. More precisely, the
master equation describes the time evolution of the probability mass function related to each possible state in which the system
can be found:

d
d t
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where N = hNU ,N1, . . . ,Nni corresponds to the system state, and the term bk is the probability that the system is one transition
k “away” from state N at time t, and undergoes the transition k in (t, t +d t). The quantities Qk are defined as follows:

Q1 = NUQg1 Q2 = N1Qa1
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Figure S1. Probabilistic Finite State Machines (PFSMs) describing the microscopic behaviour of an agent in average. Here,
the notation Pli

,l 2 {g,a,r,s}, i 2 {1, . . . ,n} is a shorthand for Pl (vi). (A) PFSM describing the basic commitment
dynamics for n possible options. Spontaneous transitions are represented by bold lines, while interactive transitions are
represented by dashed lines. (B) PFSM describing the coupled commitment and activity dynamics. Latent states are indicated
in grey, and dash-dotted lines represent changes between latent and interactive states.
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design pattern solution 
multi-level description of the decision process
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micro-macro link
transform parameters of the macroscopic model into 
the probabilities of the individual PFSM

�i = f�(vi) ! P�(vi) = f�(vi)⌧,
�2 {�,↵, ⇢,�}
i2 {1, . . . , n}



usage of the design pattern

1.Choice of the macroscopic parameterisation, 
including application specific constraints

2.Derivation of the microscopic parameterisation 

3. Implementation and testing



macroscopic parameterisation

• The choice depends on the expected properties 
with respect to the options value

• Value-sensitive decision-making

• Best-of-N decisions

�i = ⇢i =
1

↵i
= vi �i = �̂

Pais et al. (2013). A Mechanism for Value-Sensitive Decision-Making. PLoS ONE, 8(9), e73216

Reina et al. (2017). Model of the best-of-N nest-site selection process in honeybees. Physical Review E, 95(5), 052411–15
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best-of-N decisions
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best-of-N decisions
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case studies

.3. 
Swarm robotics 

system for search & 
exploitation

Robots exemplify 
embodiment challenges
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case study #1

.1. 
Multiagent simulations 

on fully-connected 
networks 

Basic case study to 
investigate several 
parameterisations
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case study #2

.2. 
Multiagent simulations 

for search & 
exploration

Mobile point-size 
particles capable to 

move in a 2D 
environment

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised 
Decision Making. PLoS ONE, 10(10), e0140950–18.



case study #3

.3. 
Swarm robotics 

system for search & 
exploitation

Robots exemplify 
embodiment challenges

video by A. Reina

Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015). A quantitative micro–macro link  
for collective decisions: the shortest path discovery/selection example. Swarm Intelligence, 9(2-3), 75–102.



case study #3

.3. 
Swarm robotics 

system for search & 
exploitation

Robots exemplify 
embodiment challenges

video by A. Reina

Reina et al (2016): Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms. 
In: Proceedings of DARS 2016, pp. 1–8, Natural History Museum in London, UK 



task allocation



task allocation
• definition: 

the process that leads a group to (equally)  
divide labour among the group members 

• precondition: 
a set of tasks with different labour demands (utility) 

• postcondition: 
agents are deployed to execute one or more tasks  

• constraints: 
individuals do not know task requirements 
and other’s preferences/choices  



task allocation: variants

• single-task (ST) versus multi-task robots (MT)  

• single-robot (SR) versus multi-robot tasks (MR)  

• instantaneous (IA) versus time-extended assignment (TA) 

Gerkey, B. P., & Matarić, M. J. (2004). A Formal Analysis and Taxonomy of Task Allocation in 
Multi-Robot Systems. The International Journal of Robotics Research, 23(9), 939–954.



TA via response thresholds

Theraulaz, G., Bonabeau, E., & Denuebourg, J. N. (1998). Response threshold reinforcements 
and division of labour in insect societies. Proceedings of the Royal Society of London. Series 
B: Biological Sciences, 265(1393), 327–332.



• tasks are associated with a utility (stimulus)

• agents have a response threshold for each task

TA via response thresholds

Sj , j 2 {1, . . . ,M}

✓ij , i 2 {1, . . . , N}



TA via response thresholds
• agents apply a simple decision rule

• task utility varies over time

Ṡj = � � ↵
nj

N

Pi(Sj) =
S2
j

S2
j + ✓2ij

�

���

���

���

���

�

� � � � � �

��
��
��
����
�

���������

���
�����
�����

spontaneous 
growth

enrolled agents

individual execution rate



TA via response thresholds

• How to distribute thresholds 
for optimal task allocation?

• How to assign threshold to have  
specialised agents?  
What about generalists?

• Adaptive response thresholds:

✓ij  ✓ij � ⇠�t if agent i performs task j

✓ij  ✓ij + ⇠�t if agent i does not perform task j



confronting TA with CD
task allocation 

• discover tasks and 
evaluate utility 

• leave tasks when 
completed 

• recruit workers to tasks 
that need attention 

• … 

collective decision 

• discover alternatives and 
evaluate quality 

• abandon commitment for 
low quality options 

• recruit agents to 
favourable options 

• cross-inhibition between 
competing options



coupled dynamical models
• the utility of executing a task is dependent on the 

number of enrolled agents:

• the optimal number of agents depends on the utility 
dynamics:

• coupled dynamics of task allocation and utility:

u̇i = �uini(�ni � ⇠n2
i ), ui 2 [0, 1].

n? =
2�

3⇠

�i = kui

↵i = kH(⌫ � ui)

⇢i = hui

�ij = hui
2� � 3⇠nj

2�
, i 6= j

�ii =
(3⇠N � 2�)(3⇠N�i + 2�⇢i)

4�2



coupled dynamical models
• the utility of executing a task is dependent on the 

number of enrolled agents:

• the optimal number of agents depends on the utility 
dynamics:

• coupled dynamics of task allocation and utility:

• dynamics controlled by the ratio between  
interactive and spontaneous transitions

u̇i = �uini(�ni � ⇠n2
i ), ui 2 [0, 1].

n? =
2�

3⇠

r =
h

k



single task
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TA in a nutshell
• task allocation and collective decisions  

share many important aspects  

• recruitment and inhibition dynamics provide means to 
implement different task allocation strategies 

• strategies varies from utility-proportional to  
winner-take-all strategies 

• giving more importance to interactions,  
task allocation becomes responsive to changes in utility



Thanks for 
your attention


