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swarm robotics

swarm robotics studies robotic systems composed of
a multitude of interacting units

¢ homogeneous systems or few heterogeneous groups
* each unit is relatively simple and inexpensive
individual limitations, absence of global information
* limitations can be physical or functional
e access to local and incomplete information only
decentralised control
* no single point of failure

* redundancy is built-in in the system

expected properties:
* parallelism * robustness * adaptivity

* scalability * efficiency



swarm robotics

simple individuals and simple behaviours

complexity results from cooperation

research mainly focuses on:

* development of specific hardware to support
communication and physical interactions

* development and test of swarm control systems

problem:

how to define individual rules?



design of decentralised systems

e distributed

* large number of
interconnected agents

e self-organised
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Reina, A., Valentini, G., Fernandez-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised

Decision Making. PLoS ONE, 10(10), e0140950-18.



design patterns

e reusable solutions for a specific class of problems

e |everage on the principled understanding of
theoretical models of collective systems

Design Pattern

- Purposes
- Constraints
- Preconditions

Design Pattern’s Name | | Solution
) - Multi-level description
Problem

- Guidelines to implement
agent’s behaviour

[ Case Study 2
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- Rules to convert perams
between levels
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what design rationale
for robot swarms?



super-organisms






Swarm-Bots (2004)






Swarmanoid (2011)






Kilobots (2014)
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Verity Studios (2017)






perspectives

e potential application domains
e agriculture and precision farming
e security, search&rescue
* |ogistics
e space exploration

e swarm robotics still confined into the lab

* more research needed for higher cognitive skills
e collective decision-making
e task allocation
e categorisation

e |earning



collective gecisions



collective gecisions

definition:
the process that leads a group to identify
the best option out of several alternatives

precondition:
partial/noisy information about the available alternatives

postcondition:
the group (or a large majority) shares the same choice

constraints:
individuals cannot know/compare all alternatives



decentralised decision making

* pest-of-n decision problem
* set of noptions
* each option / has a quality v;

 GOAL: select the best (or equal-best) option

Macroscopic individual
behaviour agent rules

- discover the options
- m [ 1t
estimate their qualities each agent follow?

- select the best one
\_ J \_ J

which rules should




design rationale

nest-site selection In
honeybees

+ attains near-optimal
speed-accuracy tradeoft

+ no need of direct comparison
between option qualities

+ adaptive mechanisms to tune
decision speed and break
symmetry deadlocks




collective decisions In bees

a swarm needs to select the new nesting site




collective decisions In bees

scout bees identity the available alternatives and
share information through the ‘waggle dance’
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modelling collective decisions

committed agents

uncommitted agents




modelling collective decisions

discovery of alternatives

U - A
U—2+B



modelling collective decisions
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abandonment of commitment

A —— U

B —» |



modelling collective decisions

recruitment to discovered alternatives

U+A —2> A+A
U+B -2+ B+B



nest-site selection model
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nest-site selection model
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modelling collective decisions




nest-site selection model

discovery:
U—A
U——B

abandonment:
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direct switch:
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nest-site selection model
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nest-site selection model
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Inhibition in Collective Decision-Making by Honeybee Swarms”. Science, vol. 335, no. 6064, pp. 108-111, 2012.




modelling collective decisions

cross-inhibition

B+A — U+A
A+B —2+ U+B



nest-site selection model

discovery:
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nest-site selection model
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nest-site selection model
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nest-site selection model
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design pattern solution

multi-level description of the decision process

Reina, A., Valentini, G., Fernandez-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised
Decision Making. PLoS ONE, 10(10), e0140950-18.



design pattern solution

multi-level description of the decision process

Macroscopic Macroscopic Microscopic
description description description

Infinite-size finite-size agent-based
deterministic stochastic stochastic
time continuous time continuous time discrete

System of ODEs Master equation PFSM

R >iz1 Pu;Po,
P
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Reina, A., Valentini, G., Fernandez-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised
Decision Making. PLoS ONE, 10(10), e0140950-18.



design pattern solution

multi-level description of the decision process

Reina, A., Valentini, G., Fernandez-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised
Decision Making. PLoS ONE, 10(10), e0140950-18.



MICro-macro link

transform parameters of the macroscopic model into
the probabilities of the individual PFSM




MICro-macro link

transform parameters of the macroscopic model into
the probabilities of the individual PFSM

Ai = fa(vi) — Pal(vy) = fia(v)T, );E }177?7.7%2}



usage of the design pattern

1. Choice of the macroscopic parameterisation,
including application specific constraints

2. Derivation of the microscopic parameterisation

3. Implementation and testing



Macroscopic parameterisation

* The choice depends on the expected properties
with respect to the options value

* Value-sensitive decision-making

Vi = Pi = — = Uy O, =0
g
Pais et al. (2013). A Mechanism for Value-Sensitive Decision-Making. PLoS ONE, 8(9), e73216

e Best-of-N decisions
1 h

’}/f,;:—:lﬁ}i pi:()'i:hvi T = —
87 k

Reina et al. (2017). Model of the best-of-N nest-site selection process in honeybees. Physical Review E, 95(5), 052411-15



value sensitivity

Vi = Pi = — — Uy O, =0

deadlock
breaking
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best-of-N decisions
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best-of-N decisions
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best-of-N decisions

One superior and two inferior options
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case studles

1.
Multiagent simulations

on fully-connected
networks

Basic case study to
Investigate several
parameterisations

2
Swarm robotics

system for search &
exploitation

s
Multiagent simulations

for search &
exploration

Mobile point-size
particles capable to
move in a 2D
environment

4.
Coexistence in
heterogeneous

cognitive networks

Robots exemplity
embodiment challenges

fully-decentralised
solution for channel
selection in cognitive
radio networks




case study #1

Convergence time
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Reina, A., Valentini, G., Fernandez-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised
Decision Making. PLoS ONE, 10(10), e0140950-18.



case study #2
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Multiagent simulations

for search &
exploration

Mobile point-size
particles capable to
move in a 2D
environment
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Reina, A., Valentini, G., Fernandez-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised

Decision Making. PLoS ONE, 10(10), e0140950-18.



case study #3

Coh
Swarm robotics

system for search &
exploitation

Robots exemplity
embodiment challenges

video by A. Reina

Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015). A quantitative micro—-macro link
for collective decisions: the shortest path discovery/selection example. Swarm Intelligence, 9(2-3), 75-102.



case study #3

Options' quality

V=5 Speed 30x

Coh
Swarm robotics

system for search &
exploitation

Robots exemplity
embodiment challenges

The

Universits .
= of SHEFFIELD
¥ Sheffield. ROBOTICS

video by A. Reina

Reina et al (2016): Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms.
In: Proceedings of DARS 2016, pp. 1-8, Natural History Museum in London, UK



task allocation



task allocation

definition:
the process that leads a group to (equally)
divide labour among the group members

precondition:
a set of tasks with different labour demands (utility)

postcondition:
agents are deployed to execute one or more tasks

constraints:
iIndividuals do not know task reguirements
and other’s preferences/choices



task allocation: variants

e single-task (ST) versus multi-task robots (MT)
* single-robot (SR) versus multi-robot tasks (MR)

* instantaneous (IA) versus time-extended assignment (TA)

Gerkey, B. P., & Matari¢, M. J. (2004). A Formal Analysis and Taxonomy of Task Allocation in
Multi-Robot Systems. The International Journal of Robotics Research, 23(9), 939-954.



TA via response thresholds

Theraulaz, G., Bonabeau, E., & Denuebourg, J. N. (1998). Response threshold reinforcements
and division of labour in insect societies. Proceedings of the Royal Society of London. Series
B: Biological Sciences, 265(1393), 327-332.



TA via response thresholds

* tasks are associated with a utility (stimulus)
Sj,j ~ {1,...,M}

e agents have a response threshold for each task
Qij,i - {1,,N}



TA via response thresholds

e agents apply a simple decision rule

e task utility varies over time

spontaneous /\4

rowth .
| Si =0

Individual execution rate A




TA via response thresholds

@  jogcounts b logcounts

 How to distribute thresholds S——— i*:—i—
for optimal task allocation? - Ifé ;
* How to assign threshold to have asoooé 73X
specialised agents” zoom0 FIR f
What about generalists” i }

5000 1f 1

* Adaptive response thresholds: :
’S O P D R PO P P PP

0;; < 0;; — At if agent ¢ performs task j threshold. 8 threshold. 95

0i; < 0;; + AL if agent ¢ does not perform task j



confronting TA with CD

task allocation collective decision

e discover tasks and e discover alternatives and
evaluate utility evaluate quality

e |eave tasks when e abandon commitment for
completed low quality options

e recruit workers to tasks e recruit agents to
that need attention favourable options

¢ . e Cross-inhibition between

competing options



coupled dynamical models

* the utility of executing a task is dependent on the
number of enrolled agents:
U; = —umz((Snz — fn?), U; € [O, 1]

* the optimal number of agents depends on the utility

dynamics: Y
nt —

R
* coupled dynamics of task allocation and utility:
Vi = ku;
a; = kH(v — u;)
pi = hu;
oij = hu, 20 ;?fnj’ i #£ ]

(BEN — 20)(3EN i + 20p;)
462
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coupled dynamical models

the utility of executing a task is dependent on the
number of enrolled agents:
U; = —umz((Snz — fn?), U; € [O, 1]

the optimal number of agents depends on the utility

dynamics: 2
n" = —
3¢

coupled dynamics of task allocation and utility:

dynamics controlled by the ratio between
interactive and spontaneous transitions

r= —

k



single task
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1A In a nutshell

task allocation and collective decisions
share many important aspects

recruitment and inhibition dynamics provide means to
implement different task allocation strategies

strategies varies from utility-proportional to
winner-take-all strategies

giving more importance to interactions,
task allocation becomes responsive to changes in utility
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