
ISTITUTO DI ANALISI DEI SISTEMI ED INFORMATICA

CONSIGLIO NAZIONALE DELLE RICERCHE

L. Palagi, M. Sciandrone

ON THE CONVERGENCE OF A MODIFIED

VERSION OF SVMLIGHT ALGORITHM

R. 567 2002

Laura Palagi – Dipartimento di Informatica e Sistemistica “A. Ruberti”, Università di Roma
“La Sapienza”, via Buonarroti 12 - 00185 Roma, Italy. Email : palagi@dis.uniroma1.it
This author was partially supported by CNR - Agenzia 2000, National Research Program
“Optimization methods for Support Vector Machines”.

Marco Sciandrone – Istituto di Analisi dei Sistemi ed Informatica del CNR, viale Manzoni
30 - 00185 Roma, Italy. Email : sciandro@iasi.rm.cnr.it.

ISSN: 1128–3378

Collana dei Rapporti dell’Istituto di Analisi dei Sistemi ed Informatica, CNR

viale Manzoni 30, 00185 ROMA, Italy

tel. ++39-06-77161
fax ++39-06-7716461
email: iasi@iasi.rm.cnr.it
URL: http://www.iasi.rm.cnr.it

Abstract

In this work we consider the convex quadratic programming problem arising in Support Vec-
tor Machine (SVM), which is a technique designed to solve a variety of learning and pattern
recognition problems. Since the Hessian matrix is dense and real applications lead to large scale
problems, several decomposition methods have been proposed, that split the original problem
into a sequence of smaller subproblems. SVMlight algorithm is a commonly used decomposition
method for SVM, and its convergence has been proved only recently under a suitable block-wise
convexity assumption on the objective function. In SVMlight algorithm, the size q of the working
set, i.e. the dimension of the subproblem, can be any even number. In the present paper we
propose a decomposition method based on a proximal point modification of the subproblem and
on a working set selection rule that includes, as a particular case, the one used by the SVMlight

algorithm. We establish the asymptotic convergence of the method, for any size q ≥ 2 of the
working set, and without requiring any further block-wise convexity assumption on the objective
function. Furthermore we show that the algorithm satisfies in a finite number of iterations a
stopping criterion based on the violation of the optimality conditions.

Key words. Support Vector Machines, SVMlight algorithm, decomposition methods, proximal
point.

3.

1. Introduction

The Support Vector Machine (SVM) [6, 16] is a promising technique for solving a variety of
machine learning, classification, and function estimation problems. Given a training set of
input-target pairs (xi, yi), i = 1, . . . , l, with xi ∈ Rn, and yi ∈ {−1, 1}, the SVM technique
requires the solution of the following convex quadratic programming problem

min f(α) = 1
2α

′
Qα− e

′
α

s.t. y
′
α = 0

0 ≤ α ≤ Ce,

(1)

where α ∈ Rl, Q is a l×l positive semidefinite matrix, e ∈ Rl is the vector of all ones, y ∈ {−1, 1}l

and C is a positive scalar. The generic element qij of the matrix Q is given by yiyjK(xi, xj),
where K(x, z) = φ(x)

′
φ(z) is the kernel function related to the nonlinear function φ that maps

the data from the input space into the feature space.
Problem (1) is a convex problem with a very simple structure; however, since Q is a fully dense

matrix, traditional optimization methods can not be directly employed when the dimension l, i.e.
the number of training data, is extremely large, as it happens in many real applications. This
has motivated the study and design of block decomposition methods [9, 14, 15] which involve
the solution of many subproblems of smaller dimension in place of the original problem.

In a general decomposition framework, at each iteration k, the vector of variables αk is par-
titioned into two subvectors (αk

W , αk
W

), where W ⊂ {1, . . . , l} identifies the variables of the
subproblem to be solved and is called the working set, and W = {1, . . . , l} \W (for notational
convenience the dependence of W and W on k is omitted). Then, starting from the current
vector αk = (αk

W , αk
W

), which is a feasible point, the subvector αk+1
W is computed as the solution

of the following subproblem
min
αW

f(αW , αk
W

)

y′W αW = −y′
W

αk
W

0 ≤ αW ≤ CeW .

(2)

The subvector αk+1
W

is unchanged, i.e. αk+1
W

= αk
W

, and the new iterate is given by αk+1 =
(αk+1

W , αk+1
W

). In general, the cardinality q of the working set, i.e. the dimension of the subprob-
lem, is prefixed according, for instance, to the available computational capability, and is kept
constant for all iterates. The rule used for selecting the working set W at each iteration plays a
crucial role, since it influences the convergence properties of the generated sequence {αk}. Note
that the most popular convergent decomposition methods for nonlinear optimization, such as
the Successive Overrelaxation algorithm and the Jacobi and Gauss-Seidel algorithms are appli-
cable only when the feasible set is the Cartesian product of subsets defined in smaller subspaces
[3]. Since Problem (1) contains an equality constraint, such decomposition methods can not be
employed.

A very simple decomposition method for SVM is the Sequential Minimal Optimization (SMO)
algorithm [15], where only two variables are selected in the working set at each iteration, i.e.
q = 2, so that an analytical solution of the subproblem (2) can be found, and this eliminates
the need to use an optimization software. The choice of the two variables with respect to
optimization is performed, is determined by some heuristic devoted to individuate which ones
may provide a better contribution to the progress towards the solution.

4.

A modified version of SMO has been proposed in [10], where the two indices of the working
set are those corresponding to the “maximal violation” of the Karush-Kuhn-Tucker (KKT)
conditions. This modification of SMO algorithm can in turn be viewed as a special case of the
SVMlight algorithm [9], which is based on a specific procedure for choosing the q elements of the
working set, being q any even number.

SVMlight algorithm is a commonly used decomposition method for SVM, and its convergence
properties have been established only recently. In particular, for any even size q of the working
set, the asymptotic convergence of the algorithm has been proved in [11] under a suitable strict
block-wise convexity assumption on f . However, as remarked in [12], this assumption may not
hold if, for instance, some data points in the training set are the same. In [12], the convergence
of the algorithm is proved, for the special case of q = 2, without requiring the strict block-wise
convexity assumption on f .

In this work we define a decomposition method which is similar to the SVMlight algorithm.
The differences are in the selection rule and in the objective function of the subproblem to be
solved at each iteration. In particular, we introduce a working set selection rule that includes,
as a particular case, the one used by the SVMlight algorithm, but does not restrict the size q of
the working set to be an even number (the only constraint is q ≥ 2). Moreover, alternatively to
the standard subproblem (2), we define a modified subproblem of the form

min
αW

f(αW , αk
W

) + τ‖αW − αk
W ‖2

y′W αW = −y′
W

αk
W

0 ≤ αW ≤ CeW ,

where the objective function contains the additional quadratic proximal point term τ‖αW−αk
W ‖2,

being τ > 0. Roughly speaking, the proximal point term plays the role of a “convexifying” term
of the objective function of the subproblem with respect to the subvector αW . This allows us to
remove the block-wise convexity assumption on f needed to prove convergence of the SVMlight

algorithm. In particular, under the only assumption that f is convex, we prove that any limit
point of the sequence {αk} generated by our decomposition method is a solution of Problem (1).
The convergence analysis is based on some key ideas exploited in [11], but follows a different
guideline inspired from preceding papers [7], [8] concerning decomposition methods for nonlinear
optimization.

We emphasize that the focus of this paper is theoretical, namely the study of the convergence
properties of the proposed SVMlight-type decomposition algorithm. However we believe that
the proximal point modification may be helpful also from a numerical point of view when using
iterative methods to solve the subproblems (hence in the case q > 2). In our opinion, the study
of methods for solving the subproblems and the definition of suitable truncated criteria deserve
attention and need further work, but this is out of the scope of this paper.

The paper is organized as follows. In section 2, we state some definitions and technical results
that we use to prove convergence of the method. In section 3 we introduce the working set
selection rule and the decomposition algorithm (called Algorithm PPD). Section 4 is devoted to
the convergence analysis of Algorithm PPD, and we prove that every limit point of the sequence
generated is a global minimum of Problem (1). In section 5 we show that a stopping criterion,
derived in [10], used in [5] and analysed in [13], which is based on the gap of the violation
of the optimality conditions, can be used in Algorithm PPD. Finally section 6 contains some
concluding remarks.

5.

2. Notation and preliminary results

In this section we state some results on problem (1) (whose proofs are reported in the Appendix)
that will be used for the convergence analysis of the decomposition algorithm defined in the next
section. Actually, these results, except for Proposition 2.3, have been proved in [14], where a
decomposition method for problem of type (1) is proposed that uses a different approach with
respect to the SVMlight one for the working set selection.

First we introduce some basic notation and definitions. Throughout the paper, we denote by
F the feasible set of Problem (1), namely

F = {α ∈ Rl : y′α = 0, 0 ≤ α ≤ Ce},

and by ∇f = Qα− e the gradient of f .
Given a vector α ∈ Rl, and an index set W ⊆ {1, . . . , l}, we have already introduced the

notation αW ∈ R|W | to indicate the subvector of α made up of the component αi with i ∈ W .
Furthermore, given a matrix Q and two index sets U, V ⊆ {1, . . . , l}, we denote by QUV the
|U | × |V | submatrix made up of elements qij with i ∈ U and j ∈ V .

For every feasible point α, we denote the sets of indices of active (lower and upper) bounds
as follows:

L(α) = {i : αi = 0}, U(α) = {i : αi = C}.
Since the feasible set F is compact, Problem (1) admits solution. Moreover, as f is convex and
the constraints are linear, a feasible point α∗ is a solution of Problem (1) if and only if the
Karush-Kuhn-Tucker (KKT) conditions are satisfied, i.e. a scalar λ∗ exists such that

(∇f(α∗))i + λ∗yi




≥ 0 if i ∈ L(α∗)
≤ 0 if i ∈ U(α∗)
= 0 if i /∈ L(α∗) ∪ U(α∗).

The KKT conditions can be written in a different form. To this aim the sets L and U can be
split in L−, L+, and U−, U+ respectively, where

L−(α) = {i ∈ L(α) : yi < 0}, L+(α) = {i ∈ L(α) : yi > 0}
U−(α) = {i ∈ U(α) : yi < 0}, U+(α) = {i ∈ U(α) : yi > 0}.

We report the KKT conditions in the following proposition.

Proposition 2.1 (Optimality conditions) A point α∗ ∈ F is a solution of Problem (1) if
and only if there exists a scalar λ∗ satisfying

λ∗ ≥ −(∇f(α∗))i

yi
∀ i ∈ L+(α∗) ∪ U−(α∗)

λ∗ ≤ −(∇f(α∗))i

yi
∀ i ∈ L−(α∗) ∪ U+(α∗)

λ∗ = −(∇f(α∗))i

yi
∀ i /∈ L(α∗) ∪ U(α∗).

(3)

In correspondence to a feasible point α, the following index sets can be defined:

R(α) = L+(α) ∪ U−(α) ∪ {i : 0 < αi < C},
S(α) = L−(α) ∪ U+(α) ∪ {i : 0 < αi < C}.

6.

These sets have been introduced in [11] in the form

R(α) = {i : (αi < C and yi > 0) or (αi > 0 and yi < 0)},
S(α) = {i : (αi < C and yi < 0) or (αi > 0 and yi > 0)}. (4)

where the indices in R(α) are called “bottom” candidates, and the indices in S(α) are “top”
candidates.

We have the following results.

Proposition 2.2. A feasible point α∗ is a solution of Problem (1) if and only if there exists no
pair of indices i and j, with i ∈ R(α∗) and j ∈ S(α∗), such that

−(∇f(α∗))i

yi
> −(∇f(α∗))j

yj
. (5)

Proposition 2.3. Let {αk} be a sequence of feasible points convergent to a point ᾱ. Then for
sufficiently large values of k we have

R(ᾱ) ⊆ R(αk) and S(ᾱ) ⊆ S(αk).

The set of the feasible directions at α is the cone

D(α) = {d ∈ Rl : y
′
d = 0, di ≥ 0, ∀ i ∈ L(α), and di ≤ 0, ∀ i ∈ U(α)}.

Then we can state the following result.

Proposition 2.4. Let α̂ be a feasible point. For each pair i ∈ R(α̂) and j ∈ S(α̂), the direction
d ∈ Rl such that

di =
1
yi

dj = − 1
yj

dh = 0 for h 6= i, j

is a feasible direction at α̂, i.e. d ∈ D(α̂).

3. A proximal point modification of SVMlight algorithm

The basic strategy of a decomposition method is that of performing, at each iteration, the
minimization of the objective function with respect only to a subset of variables, holding fixed
the remaining variables. With reference to SVM problem (1), the subproblem (2) to be solved
at any iteration k takes the form:

min
αW

f(αW , αk
W

) = 1
2α′W QWW αW − (e−QWW αk

W
)′αW

y′W αW = −y′
W

αk
W

0 ≤ αW ≤ CeW ,

(6)

where W is the working set at iteration k and W = {1, . . . , l}\W (for notational convenience we
have omitted the dependence of W and W on the iteration counter k when this is not confusing).
Note that, due to the presence of the linear equality constraint, the smallest number of variables
that can be changed at each iteration to retain feasibility is two, so that the cardinality q of the
working set W must be at least two.

7.

As already observed in the introduction, a fundamental issue in the design of a decomposition
method is the rule for selecting the working set W at each iteration. SVMlight algorithm is a
commonly used decomposition method for SVM, and is based on a specific rule related to the
violation of the optimality conditions.

In particular, the idea in [9] is to find a steepest descent feasible direction with exactly q non
zero elements and to select in the working set the indices corresponding to these elements. This
leads to solve the problem

min
d

{
∇f(αk)′d : d ∈ D(αk), − e ≤ d ≤ e,

∣∣∣{i : di 6= 0}
∣∣∣ = q

}
.

A simple strategy to solve it, and hence to identify the indices in W , has been proposed in [9].
In [4] it has been point out that, in theory, a solution satisfying the constraint

∣∣∣{i : di 6= 0}
∣∣∣ = q

may not exist. Later in [11], it has been proved that, the procedure proposed in [9] really solves
the problem:

min
d

{
∇f(αk)′d : d ∈ D(αk), − e ≤ d ≤ e,

∣∣∣{i : di 6= 0}
∣∣∣ ≤ q

}
.

The procedure for the solution of problem above has been described in a compact form in [11, 13]
using the sets R(α) and S(α) given in (4).

We introduce here a slightly more general rule than that of the SVMlight, which mimics one
introduced in [13]. To this aim, at any feasible point α we define the index sets

I(α) =

{
i : i = argmax

h∈R(α)
−(∇f(α))h

yh

}
, J(α) =

{
j : j = argmin

h∈S(α)
−(∇f(α))h

yh

}
. (7)

At iteration k, the Working Set Selection (WSS) Rule can be described as follows.

Working Set Selection (WSS) Rule

Data: integers q1, q2 ≥ 1.

(i) select q1 indices in R(αk) sequentially so that

−∇f(αk)i1(k)

yi1(k)
≥ −∇f(αk)i2(k)

yi2(k)
≥ · · · ≥ −∇f(αk)iq1 (k)

yiq1 (k)

with i1(k) ∈ I(αk)

(ii) select q2 indices in S(αk) sequentially so that

−∇f(αk)j1(k)

yj1(k)
≤ −∇f(αk)j2(k)

yj2(k)
≤ · · · ≤ −∇f(αk)jq2(k)

yjq2 (k)

with j1(k) ∈ J(αk)

(iii) set W k = {i1, . . . , iq1 , j1, . . . , jq2}.

8.

We remark that the working set selection rule employed in SVMlight algorithm is a particular
case of WSS Rule, with q1 = q2 = q/2, being q an even number.

The asymptotic convergence of SVMlight algorithm has been established in [11], under the
assumption that

min
I: |I|≤q

(eigmin(QII)) > 0, (8)

where I is any subset of {1, . . . , l} with |I| ≤ q and eigmin(QII) denotes the minimum eigenvalue
of the matrix QII . Note that assumption (8) implies that the objective function is strictly
convex with respect to block components of cardinality less or equal than q. However, it does
not hold, for example, if some training data are the same. As showed in [12], assumption (8) is
not necessary for ensuring the convergence of SVMlight algorithm in the particular case of q = 2
which corresponds to the well-known SMO algorithm.

From the convergence analysis performed in [11] we may deduce that the key role of hypothesis
(8) stays in the fact that it permits to ensure that the distance between successive points of the
sequence {αk} generated by the decomposition methods tends to zero, i.e. that

lim
k→∞

‖αk+1 − αk‖ = 0. (9)

This is an important requirement to establish convergence properties in the context of a de-
composition strategy. Indeed, in a decomposition method, at the end of each iteration k, only
the satisfaction of the optimality conditions with respect to the variables associated to W k is
ensured. Therefore, to get convergence towards KKT points, it may be necessary to ensure that
consecutive points, which are solutions of the corresponding subproblems, tend to the same limit
point.

In order to ensure property (9) without requiring assumption (8), we employ a proximal point
technique (see, e.g., [1, 2, 8]). In particular, a proximal point term of the form τ‖αW − αk

W ‖2,
with τ > 0, is added to the objective function of the subproblem (6), thus obtaining the following
subproblem

min
αW

f(αW , αk
W

) + τ‖αW − αk
W ‖2

y′W αW = −y′
W

αk
W

0 ≤ αW ≤ CeW .

(10)

Since f is quadratic, the objective function of problem (10) is still quadratic and can be written
as follows

1
2
α′W (QWW + 2τIW) αW − (eW −QWW αk

W
− 2ταk

W)′αW ,

where IW denotes the identity matrix of dimension |W |. Note that problem (10) has the same
structure of subproblem (6), but now, since the objective function is strictly convex, the solution
is unique. Thus the solution of problem (10) requires at most the same effort than the solution
of subproblem (6).

We are ready to define formally the proximal point modification of the SVMlight decomposition
method, that we call PPD Algorithm, as follows.

9.

Proximal Point Decomposition (PPD) Algorithm

Data. A feasible point α0, τ > 0.

Inizialization. Set k = 0.

While (stopping criterion not satisfied)

1. Select the working set W k according to the WSS Rule;

2. Set W = W k. Find the solution α∗W of problem (10).

3. Set αk+1
i =





α∗i if i ∈ W

αk
i otherwise;

4. Set k = k + 1.

end while

Return α∗ = αk

In the next section we prove the asymptotic convergence of Algorithm PPD. In Section 5 we
show that Algorithm PPD satisfies the stopping criterion proposed in [5, 10].

4. Convergence analysis

We first prove some preliminary results that are independent of the WSS Rule used in PPD
Algorithm for defining the working set W k.

Proposition 4.1. Assume that Algorithm PPD does not terminate and let {αk} be the sequence
generated. Then we have

lim
k→∞

‖αk+1 − αk‖ = 0.

Proof. By the instructions of the algorithm, we have for all k

f(αk+1) + τ‖αk+1 − αk‖2 = f(αk+1
W , αk

W
) + τ‖αk+1

W − αk
W ‖2 ≤ f(αk

W , αk
W

) = f(αk), (11)

so that the sequence {f(αk)} is decreasing. Since {αk} belongs to the feasible set, which is com-
pact, then there exists a subsequence {αk}K such that limk→∞,k∈K αk = ᾱ. As f is continuous,
we have that {f(αk)}K converges to f(ᾱ), and this implies that the whole sequence {f(αk)}
converges to f(ᾱ). Then, the convergence of the sequence {f(αk)} to a finite value and (11)
imply that ‖αk+1 − αk‖ → 0.

As an immediate consequence of Proposition above we have the following result.

Lemma 4.2. Assume that Algorithm PPD does not terminate and let {αk} be the sequence
generated. Let {αk}K be a subsequence convergent to a point ᾱ, i.e. there exists an infinite

10.

subset K ⊆ {0, 1, . . .} such that αk → ᾱ for k → ∞, k ∈ K. Then, for any integer p, we have
that

lim
k→∞,k∈K

αk+p = ᾱ.

Proof. Given any integer p, we can write

‖αk+p − αk‖ ≤ ‖αk+p − αk+p−1‖+ ‖αk+p−1 − αk+p−2‖+ . . . + ‖αk+1 − αk‖. (12)

By Proposition 4.1 we have that ‖αk+j+1 − αk+j‖ → 0 for all finite j = 0, 1 From (12) we
get that ‖αk+p−αk‖ → 0 and hence, as αk → ᾱ, we get also that αk+p → ᾱ for k →∞, k ∈ K.

In the proof of convergence of Algorithm PPD we make use of the following result.

Lemma 4.3. Let {αk} be the sequence generated by Algorithm PPD. Assume that (i, j) is a
pair such that:

(i, j) ∈ W k and (i, j) ∈ R(αk+1)× S(αk+1).

Then,
∇f(αk+1)′di,j + 2τ(αk+1 − αk)

′
di,j ≥ 0,

where di,j ∈ Rl is the direction defined as

di,j
i =

1
yi

di,j
j = − 1

yj
di,j

h = 0 for h 6= i, j.

Proof. For simplicity let W = W k. By Proposition 2.4, we know that di,j is a feasible direction
at αk+1. Let di,j

W be the subvector of di,j with elements in W ; since i, j ∈ W we have that di,j

W
= 0.

Recalling that αk+1
W = α∗W and αk+1

W
= αk

W
, it is immediate to verify that the direction di,j

W is a
feasible direction for the subproblem (10) at α∗W . Since (10) is a convex programming problem,
the optimality conditions can be written as:

∇W f(α∗W , αk
W

)′di,j
W + 2τ(α∗W − αk

W)′di,j
W ≥ 0,

where ∇W f denotes the subvector of ∇f with components in W . Recalling again that αk+1
W =

α∗W , αk+1
W

= αk
W

and di,j

W
= 0, we get

∇f(αk+1)′di,j + 2τ(αk+1 − αk)
′
di,j = ∇W f(α∗W , αk

W
)′di,j

W + 2τ(α∗W − αk
W)′di,j

W ≥ 0,

and hence the result.

Now we are ready to prove the asymptotic convergence of Algorithm PPD.

Proposition 4.4. Assume that Algorithm PPD does not terminate, and let {αk} be the sequence
generated by it. Then, every limit point of {αk} is a solution of Problem (1).

Proof. Let ᾱ be any limit point of a subsequence of {αk}, i.e. there exists an infinite subset
K ⊆ {0, 1, . . .} such that αk → ᾱ for k ∈ K, k →∞.

By contradiction, let us assume that ᾱ is not a KKT point for Problem (1). By Proposition
2.2 there exists at least a pair (i, j) ∈ R(ᾱ)× S(ᾱ)such that:

−(∇f(ᾱ))i

yi
> −(∇f(ᾱ))j

yj
. (13)

11.

According to the WSS Rule, at iteration k, the indices i1(k) ∈ I(αk) and j1(k) ∈ J(αk) are
inserted in the working set W k (where I(αk) and J(αk) are defined in (7)).

The proof is divided in two parts.
a) Suppose first that there exists an integer s ≥ 0 such that:

i1(k+m(k)) ∈ R(αk+m(k)+1) and j1(k+m(k)) ∈ S(αk+m(k)+1) for some m(k) ∈ [0, s]. (14)

Since i1(k) and j1(k) belong to the finite set {1, . . . , l}, we can extract a further subset of K,
that we relabel again with K, such that

i1(k + m(k)) = î j1(k + m(k)) = ĵ for all k ∈ K.

Lemma 4.2 implies that αk+m(k) → ᾱ for k → ∞, k ∈ K. Then, recalling that, by definition,
î, ĵ ∈ W k+m(k) for all k ∈ K, we can define a subsequence {αk}K1 such that for all k ∈ K1

- (̂i, ĵ) ∈ W k

- (̂i, ĵ) ∈ R(αk+1)× S(αk+1)

- αk → ᾱ for k →∞, k ∈ K1.

Hence we can apply Lemma 4.3 and write:

∇f(αk+1)′d̂i,̂j + 2τ(αk+1 − αk)
′
d̂i,̂j ≥ 0 for all k ∈ K1.

By Proposition 4.1 we have ‖αk+1 − αk‖ → 0, so that, recalling the continuity of ∇f and the
definition of dî,ĵ in Lemma 4.3, taking limits for k →∞, k ∈ K1, we obtain

∇f(ᾱ)
′
d̂i,̂j =

(∇f(ᾱ))̂
i

ŷ
i

−
(∇f(ᾱ))̂

j

ŷ
j

≥ 0. (15)

On the other hand, the indices i, j satisfying (13) are such that, by Proposition 2.3, i ∈ R(αk)
and j ∈ S(αk) for k ∈ K1 and k sufficiently large. Hence, taking into account the definition of
î, ĵ and the WSS Rule, we can write for k ∈ K1 and k sufficiently large,

−(∇f(αk))̂
i

ŷ
i

≥ −(∇f(αk))i

yi
and −

(∇f(αk))̂
j

ŷ
j

≤ −(∇f(αk))j

yj
.

Taking limits for k →∞, k ∈ K1, we obtain

−(∇f(ᾱ))̂
i

ŷ
i

≥ −(∇f(ᾱ))i

yi
and −

(∇f(ᾱ))̂
j

ŷ
j

≤ −(∇f(ᾱ))j

yj
.

Hence, using (15) we can write:

−(∇f(ᾱ))i

yi
≤ −(∇f(ᾱ))̂

i

ŷ
i

≤ −
(∇f(ᾱ))̂

j

ŷ
j

≤ −(∇f(ᾱ))j

yj

and this contradicts (13).

12.

b) Thus, we can assume that condition (14) does not hold, so that, we must have for all k ∈ K
and for all m ≥ 0

i1(k + m) ∈ R(αk+m) and j1(k + m) ∈ S(αk+m)

and
i1(k + m) /∈ R(αk+m+1) or j1(k + m) /∈ S(αk+m+1).

For simplicity and without loss of generality, we consider only the case that i1(k + m) /∈
R(αk+m+1). Then we have

i1(k) ∈ R(αk) and i1(k) /∈ R(αk+1)

i1(k + 1) ∈ R(αk+1) and i1(k + 1) /∈ R(αk+2)
...

...

As i1(k) belongs to {1, . . . , l}, we can extract a subset of K (that we relabel again K) such that
for all k ∈ K we can write

i1(k + h(k)) = i1(k + n(k)) = î, with 0 ≤ h(k) < n(k) ≤ l.

Then, we can define a subset K1 such that, for all ki ∈ K1,

i1(ki) = i1(ki+1) = î, with ki < ki+1 ≤ ki + l,

and αki → ᾱ for ki →∞ and ki ∈ K1. Hence we can write

î ∈ R(αki), and î /∈ R(αki+1) and î ∈ R(αki+1), (16)

that means that index î must have been inserted in the working set and modified by the opti-
mization process between the iterates ki + 1 and ki+1 ≤ ki + l.

Thus, for all ki ∈ K1, an index p(ki), with ki < p(ki) ≤ ki+1 ≤ ki + l, exists such that

î ∈ S(αp(ki)) and î ∈ W p(ki) and î ∈ R(αp(ki)+1).

As p(ki)− ki ≤ l, recalling Lemma 4.2, we can write

lim
ki→∞,ki∈K1

αp(ki) = lim
ki→∞,ki∈K1

αp(ki)+1 = ᾱ. (17)

We prove now that also the index j, defined in (13), must belong to the working set at iteration
p(ki).

To this aim, we first show that

−(∇f(ᾱ))̂
i

ŷ
i

≥ −(∇f(ᾱ))i

yi
. (18)

Indeed if this were not true, namely if

−(∇f(ᾱ))i

yi
> −(∇f(ᾱ))̂

i

ŷ
i

,

13.

by the continuity of the gradient we would have for ki ∈ K1 and ki sufficiently large:

−(∇f(αki))i

yi
> −(∇f(αki))̂

i

ŷ
i

,

that in turns implies that î /∈ I(αki) and hence i1(ki) 6= î for ki ∈ K1 and sufficiently large.
Since (18) holds, using (13) we get

−(∇f(ᾱ))̂
i

ŷ
i

> −(∇f(ᾱ))j

yj
.

By the continuity of the gradient we can write for all ki ∈ K1 sufficiently large and for all m ≥ 0:

−(∇f(αki−m))̂
i

ŷ
i

> −(∇f(αki−m))j

yj
. (19)

On the other hand, by (17) and Proposition 2.3, as j ∈ S(ᾱ), for ki ∈ K1 and ki sufficiently large
we have that j ∈ S(αp(ki)) and j ∈ S(αp(ki)+1). Therefore, since î ∈ S(αp(ki)) and î ∈ W p(ki),
from (19) and taking into account the WSS Rule, we get that also j belongs to the working set
at iteration p(ki), i.e. j ∈ W p(ki). Hence the pair (̂i, j) is such that

(̂i, j) ∈ W p(ki) and (̂i, j) ∈ R(αp(ki)+1)× S(αp(ki)+1),

so that, by Lemma 4.3 we can write

∇f(αp(ki)+1)′d̂i,j + 2τ(αp(ki)+1 − αp(ki))
′
d̂i,j ≥ 0 for all ki ∈ K1. (20)

Then, taking limits in (20), recalling the continuity of ∇f and Proposition 4.1, we obtain

∇f(ᾱ)
′
d̂i,j =

(∇f(ᾱ))̂
i

ŷ
i

− (∇f(ᾱ))j

yj
≥ 0.

Finally, using (18) we get

−(∇f(ᾱ))i

yi
≤ −(∇f(ᾱ))j

yj
,

which contradicts (13).

5. On the stopping criterion

In algorithm PPD, we still have to define the termination criterion. A natural way is to use
the information on the satisfaction of the necessary and sufficient KKT conditions. Indeed this
was proposed in the original paper [9] on SVMlight. Actually, a termination criterion which
fits better into the SVMlight algorithm has been derived and used in [5, 10] and analysed in
[13]. In order to describe this stopping criterion, we introduce the following functions m(α),
M(α) : F → R:

m(α) =





max
h∈R(α)

− (∇f(α))h

yh
if R(α) 6= ∅

−∞ otherwise

14.

M(α) =





min
h∈S(α)

− (∇f(α))h

yh
if S(α) 6= ∅

+∞ otherwise

where R(α) and S(α) are the index sets defined in (4). By definition of m(α) and M(α), and
recalling Proposition 2.2, it follows that ᾱ is a global minimum of Problem (1) if and only if
m(ᾱ) ≤ M(ᾱ).

Now let us consider a sequence of feasible points {αk} convergent to a solution ᾱ. At any
iteration k, if αk is not a solution, it follows (again from Proposition 2.2) that m(αk) > M(αk).
Hence, the stopping criterion proposed in [5, 10] is

m(αk) ≤ M(αk) + ε, (21)

where ε > 0 is a stopping tolerance.
We note that the quantities m(αk) and M(αk) are evaluated in PPD algorithm (and in SVMlight

algorithm) in order to identify the working set. Hence, the check of (21) does not require any
additional computational effort. However, as observed in [13], the functions m(α) and M(α) are
not continuous. Indeed, even though if αk → ᾱ for k →∞, it may happen that R(αk) 6= R(ᾱ)
or S(αk) 6= S(ᾱ) for k sufficiently large, so that we may not have limk→∞m(αk) = m(ᾱ) or
limk→∞M(αk) = M(ᾱ). Therefore, in general, we may have that the limit point ᾱ is a solution
for Problem (1), while criterion (21) is never satisfied.

In [13] it has been proved that, under assumption (8), SVMlight algorithm generates a sequence
{αk} such that m(αk)−M(αk) → 0 for k →∞. This implies that, for any tolerance ε, SVMlight

algorithm satisfies the stopping criterion (21) in a finite number of iterations. A similar result
can be established for Algorithm PPD as reported in the following proposition.

Proposition 5.1. Let {αk} be the sequence generated by Algorithm PPD. If m(αk)−M(αk) > 0
for all k, then

lim
k→∞

(
m(αk)−M(αk)

)
= 0. (22)

Proof. The proof is by contradiction. We assume that a subsequence {αk}K exists such that

- lim
k→∞,k∈K

αk = ᾱ

- m(αk) ≥ M(αk) + ε for all k ∈ K, with ε > 0.

Thus, from the definition of m, M we have for all k ∈ K

−(∇f(αk))i1(k)

yi1(k)
≥ −(∇f(αk))j1(k)

yj1(k)
+ ε, (23)

where i1(k) ∈ I(αk), j1(k) ∈ J(αk) being I(α) and J(α) the sets defined in (7).
We claim that there exists a subset of K, that we relabel again with K, such that, for all k ∈ K
and for any s > 0, we have

−(∇f(αk+m))i1(k+m)

yi1(k+m)
≥ −(∇f(αk+m))j1(k+m)

yj1(k+m)
+

ε

2
for m ∈ [0, s]. (24)

15.

From (23), since both i1(k) and j1(k) belong to a finite set, we can individuate a subset of K,
relabelled again with K, and two indices i ∈ R(αk) and j ∈ S(αk) such that for all k ∈ K

−(∇f(αk))i

yi
≥ −(∇f(αk))j

yj
+ ε. (25)

Recalling Lemma 4.2, the continuity of the gradient, and (25), we can write for k ∈ K

−(∇f(αk−p))i

yi
≥ −(∇f(αk−p))j

yj
+

ε

2
∀p ≥ 0. (26)

Suppose first that i /∈ R(αk−1): then, as i ∈ R(αk), we must have that i ∈ W k−1. Actually
also j ∈ W k−1. Indeed, if j /∈ S(αk−1), as j ∈ S(αk), it follows that it has been included in the
working set at iteration k − 1; otherwise j ∈ S(αk−1), so that (26) and the WSS Rule imply
that it must have been selected too. Hence we can apply Lemma 4.3 and write:

∇f(αk)′di,j + 2τ(αk − αk−1)
′
di,j ≥ 0 for all k ∈ K.

Recalling Proposition 4.1, the continuity of ∇f , and the definition of di,j in Lemma 4.3, we can
write for k ∈ K sufficiently large

∇f(αk)
′
di,j =

(∇f(αk))i

yi
− (∇f(αk))j

yj
≥ −2τ(αk − αk−1)

′
di,j ≥ − ε

2
,

and this contradicts (25), so that we must have i ∈ R(αk−1). Assume now that j /∈ S(αk−1),
then, repeating similar reasonings, we obtain again a contradiction.
Hence, by induction, we can conclude that for k ∈ K and for any p ≥ 1

i, j ∈ R(αk−p)× S(αk−p) and (i, j) /∈ W k−p.

By the WSS Rule, this implies that we must have

−(∇f(αk−p))i1(k−p)

yi1(k−p)
≥ −(∇f(αk−p))i

yi
and − (∇f(αk−p))j1(k−p)

yj1(k−p)
≤ −(∇f(αk−p))j

yj
.

Then, recalling (26), it follows that (24) holds.

Now we are ready to prove (22). The proof is similar to the one of Proposition 4.4 and is divided
in two parts.

a) Suppose first that there exists an integer s ≥ 0 such that for all k ∈ K:

i1(k+m(k)) ∈ R(αk+m(k)+1) and j1(k+m(k)) ∈ S(αk+m(k)+1) for some m(k) ∈ [0, s]. (27)

Since i1(k) and j1(k) belong to a finite set, we can extract a further subset relabelled again K
such that

i1(k + m(k)) = î j1(k + m(k)) = ĵ for all k ∈ K.

Lemma 4.1 implies that αk+m(k) → ᾱ for k →∞, k ∈ K. Then, recalling that (̂i, ĵ) ∈ W k+m(k)

we can define a subsequence {αk}K1 such that for all k ∈ K1

- î ∈ I(αk), ĵ ∈ J(αk)

16.

- (̂i, ĵ) ∈ W k

- (̂i, ĵ) ∈ R(αk+1)× S(αk+1)

- αk → ᾱ for k →∞, k ∈ K1.

Now we can apply Lemma 4.3 and write:

∇f(αk+1)′d̂i,̂j + 2τ(αk+1 − αk)
′
d̂i,̂j ≥ 0 for all k ∈ K1. (28)

Recalling Proposition 4.1 and the continuity of ∇f , taking the limit for k ∈ K1 we get:

∇f(ᾱ)
′
d̂i,̂j =

(∇f(ᾱ))̂
i

ŷ
i

−
(∇f(ᾱ))̂

j

ŷ
j

≥ 0. (29)

On the other hand, from (24) we have for k ∈ K1:

−(∇f(αk))̂
i

ŷ
i

≥ −
(∇f(αk))̂

j

ŷ
j

+
ε

2
, (30)

from which, taking limits, we get

−(∇f(ᾱ))̂
i

ŷ
i

> −
(∇f(ᾱ))̂

j

ŷ
j

(31)

and this contradicts (29).

b) Thus, we can assume that condition (27) does not hold, so that, we must have for all k ∈ K
and for all m ≥ 0

i1(k + m) ∈ R(αk+m) and j1(k + m) ∈ S(αk+m)

and
i1(k + m) /∈ R(αk+m+1) and/or j1(k + m) /∈ S(αk+m+1).

Without loss of generality, we consider only the case that i1(k + m) /∈ R(αk+m+1).
Then we have

i1(k) ∈ R(αk) and i1(k) /∈ R(αk+1)

i1(k + 1) ∈ R(αk+1) and i1(k + 1) /∈ R(αk+2)
...

...

As i1(k) belongs to {1, . . . , l}, we can extract a subset of K (that we relabel K) such that for
all k ∈ K we can write

i1(k + h(k)) = i1(k + n(k)) = î, with 0 ≤ h(k) < n(k) ≤ l.

Then, we can define a subset K1 such that, for all ki ∈ K1,

i1(ki) = i1(ki+1) = î, with ki < ki+1 ≤ ki + l,

and αki → ᾱ for ki →∞ and ki ∈ K1. Hence we can write

î ∈ R(αki), and î /∈ R(αki+1) and î ∈ R(αki+1), (32)

17.

that means that index î must have been inserted in the working set and modified by the opti-
mization process between the iterates ki + 1 and ki+1 ≤ ki + l.

As regards j1(ki), since it belongs to a finite set, we can extract a further subsequence, that
we relabel again K1, such that j1(ki) = ĵ for all ki ∈ K1. Since for all ki ∈ K1, a k ∈ K exists
such that ki − k ≤ l, we get from (24) that for all ki ∈ K1

−(∇f(αki))̂
i

ŷ
i

≥ −
(∇f(αki))̂

j

ŷ
j

+
ε

2
, (33)

which is analogous to (30), so that taking limits we get (31). The continuity of the gradient
allows us to state also that for all m ≥ 0

−(∇f(αki+m))̂
i

ŷ
i

> −
(∇f(αki+m))̂

j

ŷ
j

. (34)

Now consider the integer p(ki) such that ki < p(ki) ≤ ki+1 ≤ ki + l, and for which

î ∈ S(αp(ki)) î ∈ W p(ki) î ∈ R(αp(ki)+1) . . . î ∈ R(αki+1). (35)

The existence of p(ki) follows from (32).
Assume first that

ĵ ∈ S(αp(ki)) ĵ ∈ S(αp(ki)+1). (36)

Since î ∈ S(αp(ki)) and ĵ ∈ S(αp(ki)), and î ∈ W p(ki), then the WWS Rule with (34) imply that
also the index ĵ must be in the working set at iteration p(ki); moreover, from (35) and (36), we
have that (̂i, ĵ) ∈ R(αp(ki)+1)× S(αp(ki)+1).
Suppose that (36) does not hold; hence, recalling that ĵ ∈ S(αki+1), consider the integer q(ki)
such that p(ki) ≤ q(ki) < ki+1 ≤ ki + l, and for which

ĵ ∈ R(αq(ki)) ĵ ∈ W q(ki) ĵ ∈ S(αq(ki)+1) . . . ĵ ∈ S(αki+1). (37)

If p(ki) = q(ki) then, from (35) and (37) we have î, ĵ ∈ W q(ki) and (̂i, ĵ) ∈ R(αq(ki)+1) ×
S(αq(ki)+1).
If p(ki) < q(ki) then î ∈ R(αq(ki), so that, as ĵ ∈ R(αq(ki)) and ĵ ∈ W q(ki), from the WSS
Rule and (34) we get that î ∈ W q(ki); moreover, from (35) and (37) we have that (̂i, ĵ) ∈
R(αq(ki)+1)× S(αq(ki)+1).
Summarizing we can define a subsequence {αk}K2 → ᾱ such that for all k ∈ K2 the pair (̂i, ĵ)
is such that

(̂i, ĵ) ∈ W k and (̂i, ĵ) ∈ R(αk+1)× S(αk+1),

so that, using (33) and proceeding as in part a), we get the contradiction.

6. Conclusion and remarks

The main contribution of this paper is the definition of a decomposition method for SVM problem
(1), whose convergence can be guaranteed without any further assumption on the Hessian matrix
Q.

The core of the convergence analysis stays in the fact that, thanks to the presence of the
proximal point modification, we can assure that the distance between successive iterates goes to

18.

zero. We note that in the case of dimension of the working set fixed to q = 2, that corresponds to
SMO Algorithm, this property holds without the need of the proximal point term modification,
as shown in [12]. However, we stress that the property stated in Proposition 4.1 does not
depend on the fact that the objective function is quadratic and convex, so it remains true in the
case of generic continuous function f(α). By slight changes of the proof, also the compactness
of the feasible set can be relaxed, thus allowing that some bounds take the value ±∞. Of
course, without the compactness hypothesis on F , some other assumption is needed to ensure
the existence of limit points. Thus the decomposition approach proposed here can be applied
also to problems of the type

min f(α)
s.t. b

′
α = c

l ≤ α ≤ u,

where f(α) is a (possibly nonconvex) smooth function, b, l, u ∈ Rl, c ∈ R and −∞ ≤ l < u ≤ ∞.
Obviously, in the nonconvex case, it is possible to guarantee convergence only to stationary
points, i.e. points satisfying the first order necessary KKT conditions.

The algorithm model proposed here requires at each iteration the computation of the exact
solution of the quadratic programming subproblem (10). In the case of q = 2, the analytical
solution of the subproblem is known, so that the introduction of the proximal point modification
is neither theoretically nor practically motivated. When q is greater than two, the solution
of the subproblem is not available in closed form, and hence, an iterative method must be
used. We expect that, in general, the presence of the proximal point term may improve the
rate of convergence of the iterative method, since it may makes the Hessian matrix of the
subproblem better conditioned. Future work will be devoted to the definition of convergent
decomposition methods based on inexact minimization of the subproblems. This will require
the study of efficient minimization techniques for quadratic programming and the definition of
suitable truncating criteria for ensuring convergence properties.

Acknowledgment

We wish to thank Chih-Jen Lin for his suggestions that lead to improve the paper.

7. Appendix

Propositions 2.2, 2.4 have been proved in [14]. We report here the proofs for sake of completeness.

Proof of Proposition 2.2. First we assume that the feasible point α∗ is a solution of Problem
(1). If one of the sets R(α∗), S(α∗) is empty, then the assertion of the proposition is obviously
true. If both the sets R(α∗) and S(α∗) are not empty, Proposition 2.1 implies the existence of a
multiplier λ∗ such that the pair (α∗, λ∗) satisfies conditions (3) which can be written as follows:

max
i∈L+(α∗)∪U−(α∗)

{
−(∇f(α∗))i

yi

}
≤ λ∗ ≤ min

i∈L−(α∗)∪U+(α∗)

{
−(∇f(α∗))i

yi

}

λ∗ = −(∇f(α∗))i

yi
∀ i /∈ L(α∗) ∪ U(α∗).

Then recalling the definition of the sets R(α∗) and S(α∗), we can write:

max
h∈R(α∗)

−(∇f(α∗))h

yh
≤ min

h∈S(α∗)
−(∇f(α∗))h

yh
,

19.

which implies that there exists no pair of indices i and j, with i ∈ R(α∗) and j ∈ S(α∗), satisfying
(5).
Now we assume that there exists no pair of indices i and j, with i ∈ R(α∗) and j ∈ S(α∗)
satisfying (5). First we consider the case that one of the sets R(α∗), S(α∗) is empty. Suppose,
without loss of generality, that R(α∗) = ∅. Hence {i : 0 < α∗i < C} = ∅ and S(α∗) =
L−(α∗) ∪ U+(α∗) = {1, . . . , l}. Therefore conditions (3) are satisfied by choosing any λ∗ such
that

λ∗ ≤ min
1≤i≤l

−(∇f(α∗))i

yi
.

In case that both the sets R(α∗) and S(α∗) are not empty, we have that

max
h∈R(α∗)

−(∇f(α∗))h

yh
≤ min

h∈S(α∗)
−(∇f(α∗))h

yh
.

Therefore we can define a multiplier λ∗ such that

max
h∈R(α∗)

−(∇f(α∗))h

yh
≤ λ∗ ≤ min

h∈S(α∗)
−(∇f(α∗))h

yh
, (38)

so that the first and second sets of inequalities of (3) are satisfied. Then the definition of the
sets R(α∗), S(α∗) and the choice of the multiplier λ∗ (satisfying (38)) imply that

max
{i: 0<αi<C}

−(∇f(α∗))i

yi
≤ λ∗ ≤ min

{i: 0<αi<C}
−(∇f(α∗))i

yi
,

so that the set of equalities of (3) is verified. 2

Proof of Proposition 2.3. The proof is by contradiction. Assume that an integer j̄ exists, such
that j̄ ∈ R(ᾱ) and j̄ /∈ R(αk) for each k ≥ k̄. We can assume without loss of generality that
yj̄ > 0 so that, by definition of R(ᾱ), we get ᾱj̄ < C. By assumption j̄ /∈ R(αk), that implies
that αk

j̄
= C for k ≥ k̄. Since αk → ᾱ for k → ∞, this implies ᾱj̄ = C which leads to a

contradiction. 2

Proof of Proposition 2.4. We show that the defined direction d is such that

y
′
d = 0 and di ≥ 0 ∀i ∈ L(α̂) and dj ≤ 0 ∀j ∈ U(α̂).

Indeed, the definition of d yields that y′d = yidi + yjdj = 0. Moreover, we have i ∈ R(α̂), so
that, if i ∈ L(α), then, by (4), we must have i ∈ L+(α̂), and hence di = 1/yi > 0. Analogously,
since j ∈ S(α̂), if j ∈ U(α̂) then j ∈ U+(α̂) and hence dj = −1/yj < 0. The same conclusion
can be drawn for the other two cases. 2

References

[1] A. Auslender, Asymptotic properties of the fenchel dual functional and applications to
decomposition problems, J. Optim. Theory Appl., 73 (1992), pp. 427–449.

[2] D. Bertsekas and P. Tseng, Partial proximal minimization algorithm for convex pro-
gramming, SIAM J. Optimization, 4 (1994), pp. 551–572.

20.

[3] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation, Prentice-Hall
International Editions, Englewood Cliffs, NJ, 1989.

[4] C.-C. Chang and C.-W. Hsu and C.-J. Lin The anlysis of decomposition methods for
support vector machines , IEEE Transactions on Neural Networks, 11 (2000), pp. 1003–1008.

[5] C.-C. Chang and C.-J. Lin LIBSVM: a library for support vector machines, 2001. Soft-
ware available at http;//www.csie.ntu.edu.tw/ cjlin/libsvm.

[6] C. Cortes and V. Vapnik, Support-Vector network, Machine Learning, 20 (1995),
pp. 273–297.

[7] L. Grippo and M. Sciandrone, Globally convergent block-coordinate techniques for un-
constrained optimization, Optimization Methods and Software, 10 (1999), pp. 587–637.

[8] , On the convergence of the block nonlinear Gauss-Seidel method under convex con-
straints, Operations Research Letters, 26 (2000), pp. 127–136.

[9] T. Joachims, Making large scale SVM learning practical, in Advances in Kernel Meth-
ods - Support Vector Learning, C. B. B Schölkopf and A. Smola, eds., MA: MIT Press,
Cambridge, 1998.

[10] S. Keerthi and E. Gilbert, Convergence of a generalized SMO algorithm for SVM,
Machine Learning, 46 (2002), pp. 351–360.

[11] C.-J. Lin, On the convergence of the decomposition method for Support Vector Machines,
IEEE Transactions on Neural Networks, 12 (2001), pp. 1288–1298.

[12] , Asymptotic convergence of an SMO algorithm without any assumptions, IEEE Trans-
actions on Neural Networks, 13 (2002), pp. 248–250.

[13] , A formal analysis of stopping criteria of decomposition methods for support vector
machines, IEEE Transactions on Neural Networks, 13 (2002), pp. 1045–1052.

[14] S. Lucidi, L. Palagi, and M. Sciandrone, Convergent decomposition techniques for
linearly constrained optimization, Tech. Rep. 16-02, Department of Computer and System
Sciences, University of Rome “La Sapienza”, Rome, Italy, 2002.

[15] J. C. Platt, Fast training of Support Vector Machines using sequential minimal optimiza-
tion, in Advances in Kernel Methods - Support Vector Learning, C. B. B Schölkopf and
A. Smola, eds., MA: MIT Press, Cambridge, 1998.

[16] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

