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Abstract

Situation calculus action theories allow full first-order expres-
siveness but, typically, restricted cases are studied such that
projection or progression become decidable or first-order, re-
spectively, and computationally feasible. In this work we fo-
cus on KBs that are specified as generalized databases with
equality constraints, thus able to finitely represent complete
information over possibly infinite number of objects. First,
we show that this form characterizes the class of definitional
KBs and provide a transformation for putting KBs in this
form that we call generalized fluent DB. Then we show that
for action theories over such KBs, the KBs are closed under
progression, and discuss how this view exposes some differ-
ences with existing progression methods compared to DB up-
date. We also look into the temporal projection problem and
show how queries over these theories can be decided based
on an induced transition system and evaluation of local con-
ditions over states. In particular, we look into a wide class
of generalized projection queries that include quantification
over situations and prove that it is decidable under a practical
restriction. The proposed action theories are to date the most
expressive ones for which there are known decidable methods
for computing both progression and generalized projection.

Introduction

The situation calculus is a logical language designed for
reasoning about actions and change (McCarthy and Hayes
1969). A basic action theory (BAT) (Reiter 2001) is a well-
studied type of theory in this language that essentially con-
sists of a first-order knowledge base (KB) that describes the
initial state of a given domain, and a set of first-order axioms
that specify how the properties of the domain change under
the effects of named actions.

There are two important reasoning problems that are stud-
ied in the context of variants of the BATs, namely temporal
projection and temporal progression. The problem of pro-
jection is about predicting whether a condition would hold
or not in the resulting KB if a series of actions were to be
performed in the initial KB. Projection is formed as an en-
tailment question that works on the logical description of the
KB and the axioms that specify how the KB may evolve, and
in fact does not rely on or require altering the initial descrip-
tion of the KB. On the other hand, the problem of progres-
sion is that of updating the KB when some named action

is executed by replacing the initial description with one that
reflects the changes of the action.

If we think of a BAT as a database which also features
some specified operations (or actions) that alter the data,
solving the projection problem corresponds to answering a
query over the state of the database after some of these op-
erations are consecutively performed, while the progression
problem is to provide a concrete representation of the re-
sulting database state. It becomes then clear that these two
problems are closely related. In particular, progression can
be used as a way to solve the projection problem in the fol-
lowing way: first update the database according to the oper-
ations in question and then answer the query.

Nonetheless, this view is only helpful when the KB is a
database. Solving projection and progression becomes very
tricky in the general case when instead of a regular database
we have an unrestricted first-order knowledge base, and un-
restricted first-order specifications for the effects of actions.
In fact, as far as progression is concerned, for the general
case it has been shown that second-order logic may be re-
quired to capture the updated KB (Lin and Reiter 1997;
Vassos and Levesque 2013). This is due to a “hidden”
second-order axiom that is included in all studied action the-
ories that inductively characterizes the set of legal situations.

Similarly, projection is essentially an entailment question
over a (limited) second-order theory. Fortunately though, by
means of regression (Pirri and Reiter 1999) the projection
query can be reduced to one that specifies the weakest pre-
condition with respect to the initial situation, thus reducing
projection to a first-order theorem proving task over the de-
scription of the initial KB. The regression technique works
for any query that refers to a specified sequence of named
actions and is otherwise unrestricted. The decidability (and
feasibility) of projection then relies on the form of the initial
KB and the type of projection queries in question.

However, very few cases have been studied in the litera-
ture such that projection is decidable and practical, namely
(i) the case when the KB is a regular database as we dis-
cussed above (Reiter 1992), (ii) the case when the KB is
an open-world database of a particular form, in which case
a sound and sometimes complete method for projection is
specified (Liu and Levesque 2005), (iii) the case of a modi-
fied version of the situation calculus language built using a
two-variable fragment of first-order logic (Gu and Soutchan-



ski 2007), in which case projection is decidable, and, more
recently, (iv) the case of bounded action theories that require
that in all models and in every situation there is a fixed up-
perbound on the number of positive atomic facts (De Gia-
como, Lespérance, and Patrizi 2012), in which case a gener-
alized version of projection is proven to be decidable.

Notably, the case when the KB has the form of a gen-
eralized database with constraints has not been investi-
gated (Kanellakis, Kuper, and Revesz 1995). This form
of database allows to specify relations with possibly in-
finitely many tuples, using constraints, and captures com-
plete knowledge via the closed-world assumption. A num-
ber of different types of constraints have been studied, e.g.,
equality constraints, showing tractability results for query
answering over such databases for some of the cases.

Similarly, some results identify cases where a first-order
progression can be effectively computed (Vassos and Pa-
trizi 2013), but typically do not investigate what this implies
for projection. For example, in the notable case of theories
with local-effect actions (Vassos, Lakemeyer, and Levesque
2008; Liu and Lakemeyer 2009) it is guaranteed that finitely
many ground atoms may be affected by an action, which can
be effectively identified, and one can progress the KB by for-
getting the truth value for these atoms and using the effect
axioms to set their new value. Nonetheless, as the initial KB
is otherwise unrestricted, this result alone does not provide
a way to solve the projection problem. In fact, it could very
well be the case that solving an entailment question over the
initial KB is undecidable but progression over a local-effect
action is still computable.

In this work we aim at providing a special type of action
theories that admit decidable methods for computing both
progression and projection. We appeal to the use of a form of
generalized database with equality constraints as the initial
KB and show how existing intuitions from database theory
provide solutions for solving projection and progression.

We then investigate richer forms of projection that may re-
fer to more than one possible evolution of the initial KB, e.g.,
capturing invariants of the form “after execution of « condi-
tion ¢ always holds” and specify a condition that ensures we
can answer such queries by means of an appropriate transi-
tion system that abstracts the infinite tree of situations. This
is similar in spirit to the work in (De Giacomo, Lespérance,
and Patrizi 2012) but extended to account for fluents with
possibly infinite extensions.

To the best of our knowledge these action theories are to
date the most expressive ones with an infinite domain and
possibly infinite extensions for fluents for which there are
known decidable methods for computing both progression
and generalized projection.

Situation calculus basic action theories (BATS)

The situation calculus as presented by Reiter (2001) is a
three-sorted first-order language £ with equality (and some
limited second-order features). The sorts are used to distin-
guish between actions, situations, and objects.

A situation represents a world history as a sequence of
actions. The constant Sy is used to denote the initial situ-
ation where no actions have occurred. Sequences of actions

are built using the function symbol do, such that do(a, s) de-
notes the successor situation resulting from performing ac-
tion a in situation s. Actions need not be executable in all
situations, and the predicate Poss(a, s) states that action a is
executable in situation s. We will typically use a to denote a
variable of sort action and « to denote a term of sort action,
and similarly s and o for situations.
A relational fluent is a predicate whose last argument is
a situation, and thus whose value can change from situation
to situation. We do not consider functional fluents as well
as non-fluent predicates and functions, but we note that they
can be represented as relational fluents with some extra ax-
ioms. We also assume a finite number of fluent and action
symbols, F and A, and an infinite number of constants C.
Often we need to restrict our attention to sentences in £
that refer to a particular situation. For example, the initial
knowledge base (KB) is a finite set of sentences in £ that
do not mention any situation terms except for Sy. For this
purpose, for any situation term o, we define £, to be the
subset of £ that does not mention any other situation terms
except for o, does not mention Poss, and where o is not used
by any quantifier (Lin and Reiter 1997). When a formula
¢(0) isin L, we say that it is uniform in o (Reiter 2001).
Also, we will use £2 to denote the second-order extension
of L that allows predicate variables that take arguments of
sort situation. £2 then denotes the second-order extension of
L, by predicate variables with arguments of sort situation.
We will be dealing with a specific kind of £-theory, the so-
called basic action theory D which has the following form:!

D =D,y U Dgs U Dy UDg UL, where:

1. D, is a set of action precondition axioms (APs), one
for each action function symbol A; € A, of the form
Poss(A;(%), s) = I1;(Z, s), where I1;(Z, s) is in L.

2. Dy is a set of successor state axioms (SSAs), one per
fluent symbol F; € F, of the form F;(Z,do(a,s)) =
®,(Z,a, s), with ®;(Z, a,s) € L. SSAs characterize the
conditions under which F; has a specific value at situation
do(a, s) as a function of situation s and action a.

3. Duny is the set of unique-names axioms for actions:
A;(Z) # Aj (), and A;(Z) = A;i(y) D & =7, for each
pair of distinct action symbols A; and A4; in A.

4. Dy is uniform in Sy and describes the initial situation.

5. X is a set of domain independent foundational axioms
which formally define legal situations and an ordering by
means of symbol C, also using a second-order inductive
axiom in £2.

We will typically restrict our attention to standard inter-
pretations, where equality is identity, and there is a bijection
between the set of constants and the domain of discourse.
This restriction can be captured by a set of axioms &£ con-
sisting of the axioms of equality and the set of sentences
{ci # ¢j|ci,¢; € C,i # j} (Levesque 1998).

Generalized databases and query evaluation

Kanellakis ef al (1995) study the generalization of relational
databases using constraints of various forms that concisely

"For readability we often omit the leading universal quantifiers.



represent a possibly infinite set of tuples. The so-called gen-
eralized databases are first-order interpretations (finitely)
represented as constraints on the tuples that each relation
contains. Such databases are obtained by including in each
relation the (possibly infinite) set of tuples that satisfy the
corresponding constraints. Various classes of constraints are
considered, such as equalities and real polynomial inequali-
ties. Here we focus on equality constraints.

Let us recall some basic definitions from (Kanellakis, Ku-
per, and Revesz 1995) and present them in the context of the
situation calculus language £ we specified, restricted only
to the sub-language of the constants C, equality, variables of
sort object, and the typical logical connectives.

Definition 1. An equality constraint is any literal formula
of the form z6y or zfc, where ¢ € C and 0 is = or #. A
generalized k-tuple over variables x1, . . ., x} is a finite con-
junction ¢p = @1 A --- A g of equality constraints whose
all variables are free and among 1, ..., xx. A generalized
relation of arity k is a finite set R = {41, ..., 1}, of gener-
alized k-tuples over x1, . . ., xx. The formula corresponding
to a generalized relation R is then simply the disjunction
Y1 V.- Vb, We will use ¢ to denote the quantifier-free
formula corresponding to relation R.

Generalized relations represent possibly infinite relations
over the domain of sort objects of L. In detail, let R =
{11, ...,9,} be a generalized relation of arity k, and ¢
the corresponding formula to this relation. Then, R is asso-
ciated with the k-ary relation {¢| &€ C*, £ |= ¢r(0)}

Intuitively, the way generalized relations specify standard
relations is by constraints of the form: “R contains only tu-
ples whose components satisfy either equality constraint 1
or ... or equality constraint ¢”. It is easy to see that since
equality constraints can in fact assign values to all variables
in a tuple, any finite relation can be represented as a general-
ized relation by simply listing all of its finitely many tuples.
On the other hand, it can also be seen that infinite relations
exist that are not captured by generalized relations.

The notion of generalized relation extends naturally to
databases: a generalized database is a finite set of gener-
alized relations (Kanellakis, Kuper, and Revesz 1995). Dif-
ferently from standard settings in databases, however, as we
noted above, generalized databases represent in general in-
finite relations. As a consequence, answers to queries are in
general infinite and they cannot be represented by means of
finite relations as in regular databases. Nonetheless, it turns
out that query answers over generalized databases can be
represented as generalized relations with constraints, thus
providing a closed representation system.

The first trick needed to show this is to observe that we
can characterize the answer to a query by replacing the oc-
currences of relation atoms in the query by the formulas
corresponding to the relations of the generalized database.
Let ©(Z) be a first-order query over the relation symbols
Ri,..., R, and D a generalized database over the same re-
lations. Let ©[R1/¢R,,.-.,Rn/ér,](Z) be the first-order
formula in £ that is the result of replacing every occurrence
of R; in ¢ by ¢g,. This formula, denoted here as ¢’ (%), is
then a finite representation of the answer to query  over D.

The second trick needed is to observe that ' (Z) can be
represented as a a finite set of generalized tuples that char-
acterize the isomorphism types of regular tuples in the an-
swer of the query. Kanellakis et al. (1995) specify a proce-
dure that first builds all the (finitely many) generalized tuples
1) over Z using only the constants mentioned in ¢’(Z), and
then checks which of these are consistent with ¢’(Z). The
set of the ones that are consistent is a generalized relation
that (finitely) represents the answer to ¢ (Z) over D.

Kanellakis et al. (1995) also show that following this
procedure the answer to a first-order query over a general-
ized database (with equality constraints) is computable in
LOGSPACE data complexity. Thus, generalized databases
constitute a notable case of infinite databases for which an
effective procedure exists to answer queries. In the following
sections we exploit this to address two fundamental prob-
lems of action theories in the situation calculus, namely pro-
gression and projection, in the case that the knowledge base
(KB) is a generalized database with equality constraints.

BAT's with generalized fluent databases

Reiter (2001) investigates the case that the initial knowledge
base (KB) is a definitional theory with respect to the fluent
atoms in Sy, in the sense that for each fluent there is a defi-
nitional axiom that characterizes the truth clue for all atoms
in Sy as follows: /\Fief Va; F(%;,S0) = ¢:(%;), where
¢;(Z;) is an unrestricted first-order formula that mentions
no situations. We will call ¢;(&;) the definition for F;.

In the case studied in (Reiter 2001) the underlying lan-
guage L also includes non-fluent predicates that can be men-
tioned in the definitions for fluents. A KB then that in-
cludes definitional axioms also for all non-fluent predicates
is called a closed initial database, while one that includes
such axioms only for fluents is called relatively complete
(Lin and Reiter 1997). A closed initial KB always repre-
sents complete information about fluents, while relatively
complete ones may also capture incomplete information by
means of non-fluent predicates mentioned in the definitions
for fluents and additional axioms about theses predicates in
the KB, e.g., VZ.F (&, So) = P(Z), P(c) V P(d).

As it is typical in the literature, we assume that our lan-
guage L does not include non-fluent predicates. Any “static”
relation can represented using a fluent with a successor state
axiom that copies the initial value to all situations, so that
any complications that arise from dealing with incomplete
information for non-fluent predicates is treated uniformly
in terms of fluents. Under this assumption, closed initial
databases and relatively complete KBs collapse to the same
form. We will refer to these KBs as definitional KBs.

Definitional KBs in £ capture complete information for
fluents under the assumption of the unique-name axioms for
constants and axioms for equality in £. For example the fol-
lowing axiom states that there are exactly two atoms true for
In(x1,xa,Sy), namely In(box, it1, So) and In(box, it, Sp):

VaVy(In(z,y, So) = (z=box AN(y=ity Vy=itz))).

Nonetheless, the definition for a fluent can be any unre-
stricted first-order formula built over the constants in C and



equality, for example it could have the following form that
implies an infinity of ground atoms that are true in Sy:

VaVy(In(x,y, So) = (z#box A(y=it1 Vy=it2))).

Note that this definition can be rewritten as a formula that
corresponds to a generalized relation, by distributing over
the disjunction. More complicated definitions can be formed
also using quantification, for example:

VaVy(In(z,y, So) = (Fz(z£box) A (y=it; Vy=it2))).

Here though, as for the general case as well, the quantifi-
cation over objects in the definition is not very helpful as it
evaluates to true due to the axioms in &, reducing to a for-
mula that can be rewritten again to a generalized relation.

As it turns out, any definitional KB can be rewritten as a
generalized database with equality constraints. This rewrit-
ing is possible because first-order theories of equality admit
quantifier elimination. Next, we present a recursive proce-
dure that allows us to transform a generic first-order formula
¢ in L that is situation-free, into a logically equivalent one
(under the assumption of &) that is quantifier-free. This will
allow us to transform any definitional KB into one specified
in terms of generalized relations, and appeal to the evalua-
tion methods for generalized databases for handling projec-
tion and progression.

The transformation is inspired by that proposed by Libkin
to prove the “natural-active” collapse of first-order formulas
over relational databases (Gridel et al. 2005). We follow the
same ideas but adapt and extend the approach accordingly so
that it works also when a database may have relations with
infinite elements.

Definition 2. Let ¢ be a first-order formula in £ that is
situation-free, and let C' be the finite set of constants oc-
curring in it. Without loss of generality assume that no vari-
able occurs quantified in the scope of different quantifiers
(if needed, the variable can be renamed). For convenience
we use the standard symbols T and L, always interpreted
as true and false, respectively. The transformation T'[¢] is as
follows ([v/v'] stands for the syntactic replacement of the
symbol v by v’):

o T[¢] = ¢, for the case that pis x = y, x = corz = x;

o T[] =Tl

o TV o] =T[p1] VT

o TEyY] = ViecTWly/c] V V,exTWIy/Z] v
T[Tl

where T, is as follows:

°T@=M—Tw=d=%M=L;

o Ty =y =T,[T] =T

e T[] = 1, for ¢ any other atomic formula;

* T[] = 1)

o Ty[1 V aho] = Ty[t1] V Ty [th2].

The interesting case is the last bullet of the definition of
T. Intuitively, T'[¢] is a rewriting of ¢ where the values
that ¢ can assume through the existential quantification are

grouped into: those occurring as constants in ¢ (first dis-
junct); those assigned to the components of & (second dis-
junct); and those not falling into any of these classes (third
disjunct). Since the number of values in the former two
groups is finite, the quantification in these cases can be re-
placed by a finite disjunction. As to the latter disjunct, T, [¢/]
is the result of replacing the atomic sub-formulas of 7'[¢]
where y occurs, with the result of their evaluation (using
T for true and L for false), obtained by assuming y differ-
ent from all the constants and the other free variables of 1.
Since T'[¢] is quantifier-free, under this assumption and the
axioms in &£, any atomic sub-formula containing y, which
is of the form ¢t = t/, with ¢ and ¢’ either variables (one of
which is y) or constant symbols, can be replaced by T or
1, without affecting the semantic of T'[¢)]. Notice that T},
removes all the occurrences of y from T[¢].

The following theorem makes precise in what way the
transformed formula is equivalent to the original one.

Theorem 1. Let ¢ be a first-order formula in L that is
situation-free. For every ¢ € C the following holds:

£ o(0) iff € = Tlel(0)

The proof is done by induction on the structure of ¢ follow-
ing the intuition described above. As a corollary to Theo-
rem 1 we have the following.

Corollary 2. Let ¢(Z) be a first-order situation-free formula
in L. There exists a quantifier-free first-order formula ¢' (%)

such that for every @ € C, £ |= ¢(2) iff € = ¢/ ().
We identify basic action theories over generalized
databases as follows.

Definition 3. A set D, of first-order sentences uniform in .Sg
is a generalized fluent database (GFDB) iff it has the form
Ar,er YTi. F(Zi,S0) = ¢i(Z;), where ¢;(%;) is a formula
that corresponds to a generalized relation over &, i.e., is a
disjunction of conjunctions of equality constraints. A basic
action theory D is a basic action theory over a generalized
fluent database (BAT-GFDB) iff it also includes the set of
axioms & and Dy is a generalized fluent database.

Using the previous result we can transform any definition
formula in a definitional KB to a quantifier-free formula and
then to a DNF, thus putting the KB into the form of a gener-
alized fluent database.

Corollary 3. Let ¢ be a definitional KB. There exists a gen-
eralized fluent database ¢' such that € = ¢ = ¢/

As discussed in the previous section for such KBs there is
also a decidable procedure for evaluating queries. Note also
that equivalence of generalized fluent databases can also be
decided, formed as an appropriate query. With these tools
available we now proceed to show how solutions for pro-
gression and projection can be obtained for BAT-GFDBs.

Progression of BAT-GFDBs

The progression of a basic action theory is the problem of
updating the initial KB so that it reflects the current state of
the world after some actions have been performed, instead
of the initial state of the world. In other words, in order to



do a one-step progression of the BAT D with respect to the
ground action o we need to replace Dy in D by a suitable
set D, of sentences uniform in do(c, Sp) so that the original
theory D and the theory (D — Dy) U D,, are equivalent with
respect to how they describe the situation do(«, Sy) and the
situations in the future of do(c, Sp).

In a seminal paper Lin and Reiter (1997) gave a model-
theoretic definition for the progression D, of Dy wrt «
and D that achieves this goal. Finding such a D, is a dif-
ficult task and it has been shown that second-order logic
may be required in the general case (Lin and Reiter 1997,
Vassos and Levesque 2013). Nonetheless there are many
special cases where a first-order progression can be effec-
tively computed. In fact, for the definitional KBs, and as a re-
sult also for the special case of generalized fluent databases,
there is a very simple way to progress.

Theorem 4. (Lin and Reiter 1997) Let Dy be
Ap,er V75 F(Z,S0) = ¢i(7:), and for all F; € F, let Dy
include an SSA of the form F;(;,do(a, s)) = ®;(2;, a, Sp).
For each F; € F, let ®L(%;,,Sy0) be the sentence
obtained by replacing every occurrence of fluent
atoms F;(0,S0) in ®;(7;,«,S) by ¢;(0). Then,
Do i NperVei-Fi(zi,do(a,s)) = (7, a,5) is a
progression of Dy with respect to o and the theory D.

Observe that this is very similar to the first trick we dis-
cussed when we reviewed the work on generalized databases
and query evaluation (Kanellakis, Kuper, and Revesz 1995),
where we replaced the occurrences of relation atoms in the
query by the formulas corresponding to the relations of the
generalized database. It is interesting to look into how this
method works when Dy is a generalized fluent database, that
will illustrate how the second trick can also be of use.

Note that since each ®;(Z;, o, Sp) in the SSAs is in gen-
eral unrestricted, e.g., may include quantifiers, D, is not
guaranteed to be in the form of a generalized fluent database
even though Dy is. The point in using a form like the gen-
eralized fluent database is that it allows us to perform query
evaluation using the methods and existing technologies in
constraint databases instead of performing more general the-
orem proving. Therefore, we want progression to preserve
the form of Dy. The method of Theorem 4 does well in pre-
serving the form of a definitional KB but does not preserve
the form in the case of a generalized fluent database.

This is how the second trick becomes useful. The idea is
to consider generalized tuples as the “base” formulas that we
use to express any generalized fluent relation. This is simi-
lar to a regular database where we would update Dy into a
D, such that for every fluent a finite list of tuples is speci-
fied. Corollary 3 then provides a way to transform the result-
ing D, of Theorem 4 into the form of a generalized fluent
database by means of the procedure of Definition 2.

Theorem 5. Let D be a BAT over a generalized fluent
database and o a ground action. Then there exists a first-
order progression D, of Dy wrt o and D that is in the form
of a generalized fluent database.

As a consequence, we can iteratively progress a BAT-GFDB
and express the state corresponding to any ground situation
as a generalized fluent database.

Finally, since every definitional KB can be expressed as
a generalized fluent database, this analysis also illustrates a
subtle detail about the way we understand progression. Both
a progression D,, according to Theorem 4 and a progres-
sion D!, according to Theorem 5 qualify as logically correct
progressions of Dy and are logically equivalent (under the
assumption of £). Nonetheless, Dy is more of a logical spec-
ification of the changes that need to be made due to action «
and D, more of a materialized update of these changes.

Another way to look at it is that the progression procedure
of Theorem 4 is purely syntactic (linear to the size of Dy)
and does not involve any form of evaluation; in a sense, the
fluents are not updated to a new truth value but, rather, the
new truth values are still specified with respect to the initial
situation. As there are to date no implemented systems for
performing progression, this difference is less easy to iden-
tify because as far as the logical specification is concerned
Dy is a well-behaved progression. In practice though, we
would expect that unless a method that goes along the lines
of Theorem 5 is followed, the progressed theory would in
fact look much similar to the original theory D, and queries
over the current state would perform similar to using a re-
gression technique over the original theory D.

Projection over BAT-GFDBs

The (simple) projection problem is the task of predicting
whether a condition holds at a particular time in the future
after a series of ground actions have been executed (Reiter
2001). The following is a straightforward result.

Theorem 6. Let D be a BAT-GFDB, o, . . ., o, a sequence
of ground actions, and ¢(s) a first-order formula uniform

in s. Then determine whether or not the following holds is
decidable: D = ¢(do(an, - - - do(a, Sp))) -

This is not a new result and can be proven by means of re-
gression and the fact that £ is decidable. Our previous anal-
ysis also shows that simple projection queries over a BAT-
GFDB can be decided also by means of iteratively progress-
ing Dy wrt o, ..., a, according to Theorem 5 and then
evaluating the query over the resulting generalized fluent
database following the method described in (Kanellakis, Ku-
per, and Revesz 1995). Depending on the type of queries,
and the frequency that actions occur, either approach may
be preferred under conditions.

We now proceed to show a major result about the decid-
ability of richer projection queries over BAT-GFDBs that
may also quantify over future situations.

Generalized projection

A generalized version of the projection problem is when ¢
is may refer to any number or combination of future situa-
tions. For example, D = Vs(do(a, Sp) C s D 1(s)) states
that after executing action o condition () will hold in all
situations s in the future, essentially saying that it will al-
ways remain true. We will look into a type of such queries
that is similar to Ef defined in (Vassos and Levesque 2013).

We consider the language £, of generalized projection
queries . L, is defined on top of the language L,,, whose
formulas ¢ are as follows: ¢ :=x =c |z =y | F(Z,s) |



F(Z,0) | —¢ | ¢ Ao | 3x.¢, for F a fluent symbol, ¢ a
constant, and ¢ a ground situation term. The formulas ¢ of
L, are defined as: ¢ := ¢ | ¢ | @ A | Is.0ls A o,
where ¢ € L,, is any formula uniform in s or in a ground
situation term o, and whose free variables (if any) are only
of sort situation.

We will also consider a non-trivial class of BAT-GFDBs,
defined below.

Definition 4. Let D be a BAT-GFDB and B a natural
number. A ground situation term o is said to be constant-
bounded by B in D, C-bounded by B for short, iff for ev-
ery fluent F; € F the definition of F; in Dy mentions at
most B distinct constant symbols. D is said to be constant-
bounded by a finite bound B, C-bounded by B for short, iff
every ground situation term of D that is executable is also
C-bounded by B.

Intuitively, this means that any state associated with some
executable situation of D can be fully represented by a gen-
eralized database, mentioning only a bounded number of
constants (possibly different in each state).

For this class of action theories, we prove that entailment
of generalized projection queries is decidable.

Theorem 7. Given a BAT-GFDB D that is C-bounded by
some B and a generalized projection query @ that is a sen-
tence in L, it is decidable to check whether D |= .

The rest of this section is dedicated to prove this result.
We start by introducing auxiliary notions and results.

Definition 5. A (labelled) transition system over general-
ized fluent databases (for an action theory D), GFDB-TS (for
D) for short, is a tuple T' = (Q, qo, —, L), where:

e () is the GFDB-TS’s (nonempty) set of nodes?;

qo € @ is the GFDB-TS’s initial node;

e —» C () X Act x @ is the GFDB-TS’s transition rela-
tion, for Act the set of all ground action terms of D; we
interchange the notations (¢, «,¢') € — and ¢ — ¢/;

L is the GFDB-TS’s labelling function, associating each
node ¢ with a generalized fluent database L(q).

We associate each ground situation term o =

do([ov, . .., ], So) with the node ¢, s.t. gg — --- ==
qo, if it exists.

Notice that in Definition 5, the L(q) labeling of a generic
node ¢ is a GFDB and so is uniform in Sy as required by the
corresponding definition. While this is necessary for techni-
cal reasons, such GFDBs are not to be intended as defining
or referring to the “original” initial situation. Instead, they
should be intuitively understood as defining the state of the
situation obtained by executing, from Sy, the ground actions
labeling a path from g to g, while also moving the “S, point
of reference” to be the current situation.

Besides the standard semantics of £,, over action theories,
we define a semantics over GFDB-TSs that will be useful
later to prove our results.

2We use node instead of state to avoid confusion with the states
associated with situations in action theories.

Definition 6. Given a GFDB-TS T', an £, formula ¢, and a
node q of T', we define when T satisfies  at node q, written
T, q = ¢, as follows:

o forp=0¢€L,,T,qF p,iff
- ¢ is uniform in s, i.e., of the form ¢(s), and £, L(q) =
¢(Sp), i.e., treated as a local query over node g; or
— ¢ is uniform in o, ¢, exists, and T, q, = ¢[o/s], i.e.,
reduced to the previous case as a a unique base case;
e the semantics of the connectives —, A is as standard;
o T q=3s.0 CsAp, foro =do(jay,...,ay],So), if for
some o’ =do([ay,...,an,...,an],So)s.t.m >n,itis
the case that g, is defined and T', ¢, = ¢[s/0”];

When ¢ is a sentence, T is said to satisfy o, written T |= ¢
iff T, g0 = .

Notice again the use of Sy as a placeholder for any situa-
tion associated with gq.

Every BAT-GFDB D implicitly induces an infinite
GFDB-TS that is essentially the situation tree annotated with
actions as arc labels, and generalized fluent databases as de-
scriptions of the states associated with situations (by Theo-
rem 5 every state of a BAT-GFDB can be faithfully repre-
sented in this way).

Definition 7. The induced GFDB-TS of a BAT-GFDB D is
the GFDB-TS Tp = (Q, qo, —, L) (over D), s.t.:

e () is the set of all D’s ground situation terms;
* qo = So;

e 029 ¢ itt ¢ = do(A(d), q);
e L(q) is a generalized database such that:
- if ¢ = gp then L(q) = Dy;
— if ¢ # qo and there exists ¢’ s.t. ¢ 4@ q, then L(q")
is the progression of L(q) w.r.t. A(¢) and D, where the
situation term do(A(¢), q) is replaced by Sp.

The first result we have shows that, as far as generalized
projection queries are concerned, the induced GFDB-TS can
be used as an alternative representation of D.

Lemma 1. Let D be a BAT-GFDB and T'p the correspond-
ing induced GFDB-TS. Then, for any generalized projection
query @ that is a sentence in L, we have that

DEifTp ¢

Proof By induction on the structure of ¢. Notice that the
semantics of Definition 6 considers all the (infinitely many)
ground situation terms of D, i.e., all nodes of Tp. O

Thus, one can check whether D = ¢ using Tp. Obvi-
ously, this does not imply decidability straightforwardly. In-
deed, as both the situation terms and the state space of T’p
are in general infinite, one cannot, e.g., simply follow a re-
cursive procedure based on the inductive definition of satis-
faction (such a procedure would not terminate).

We next show how to circumvent this probllem when
dealing with a BAT-GFDB that is C-bounded by a bound
B. To this end, we show how to construct, starting from D
and ¢, a finite GFDB-TS T D, that is indistinguishable from
TD, by @Y.



Fix a finite set H C C of constants, such that CpUC, C H
and |H| > B-|F|+|Cp UC,|+ N4, where: Cp and C,, are
the set of constants respectively occurring in D and ¢, and
N 4 is the largest number of parameters in the action types
of D.

The construction of TDN, is shown in Algorithm 1. We use
Progr(Dy, A(C)), to refer to the result of progressing an ini-
tial theory Dy w.r.t. a ground action A(¢), which we assume
to be a GFDB (see Theorem 5). The symbol =¢ represents
logical equivalence between theories, under €.

Algorithm 1 (Constructs Tp )

1: procedure BUILDT(D, )

2 = {QO}

3 —> =

4: L( ) : Do,

5: Front :={q};

6: while Front # () do

7 for all ¢ € Front do

8 Front := Front \ {q};
9

for all A(h)st. A e A h e Hand & L(q) |=
Poss(A(h), Sp) do

10: P := Progr(L(q), A(h))ldo(So, A(h))/Sol:
11: if -3¢’ € Q s.t. P =¢ L(q') then
12: Q = QU for ¢’ afresh node;
13: L(¢) = P;

14: Front := Front U{q'};

15: else

16: let¢ € Qbest L(¢") =¢ P;
17: end if .

18: —:=—=U(q,A(h),q);

19: end for

20: end for

21:  end while
22:  return (Q, qo, —, L);
23: end procedure

The procedure inductively builds a GD-TS for the the-
ory D, by applying, at every step, all the executable ac-
tions obtained from the action types of D and the con-
stants in H. Applying an action A(i_i) consists in progress-
ing (line 10) the labelling DB of the current node ¢ (initially
qo) W.L.t. A(i_i) provided it is executable according to the la-
beling L(q) (line 9), and replacing, in the obtained progres-
sion, the situation term do(A(h), So) by So. If the obtained
progression P is not logically equivalent (under &) to any
GFDB labeling some node of (the current) (), then a fresh
node ¢’ is added to ), with labeling L(q) = P (lines 11-14);
if instead some node ¢’ exists with L(q’) logically equivalent
to P, then ¢’ is simply retrieved from @ (line 16), and no new
node is added. In either case, a transition from ¢ to ¢’ under
the executed action is added to — (line 14). Every time a
fresh node is added to @), it is stored in the set F'ront, which
represents the nodes of () that needs to be expanded. Ini-
tially, F'ront contains only gg. The algorithm returns when
Front is empty.

Lemma 2. Algorithm 1 terminates on any C-bounded BAT-
GFDB D and generalized projection query .

Proof Direct consequence of the following facts: H is fi-
nite, thus so is the set of ground action terms; checking
whether £, L(q) = Poss(A(h),Sp) is decidable as L(q)
is a GFDB, for which entailment is decidable; checking
whether P =¢ L(q) is decidable, P and L(q) being GFDBs;
for a given (finite) set of fluents F and a finite set H of con-
stants, there exist only finitely many equivalence classes of
logically equivalent (under £) GFDBs that can be defined
using only constants from H. In particular, the last observa-
tion guarantees that only finitely many distinct nodes can be
generated, and thus that F'ront is eventually empty. UJ

The following result, together with Lemma 1, proves that

one can use the finite-state Tpcp, instead of the infinite T,
to check whether D = .

Lemma 3. For any BAT-GFDB D C-bounded by some
bound B and generalized projection query @ that is a sen-
tence in L, we have that:

Tp E@iffTp, .

Proof We make use of the following definition. Given two
GFDBs Dy and Dj, and a set C' C C of constants, we say
that Dy and Dy, are C'-indistinguishable, written Dy ~¢ D),
if there exists a bijection v : Cp U C' — Cps U C that is
the identity on C, s.t. for the theory D{ obtained from Dy
by renaming all of its constants ¢ as y(c), it is the case that
Dy =¢ Dj. Intuitively D ~¢c D’ means that D and D’
are logically equivalent up to renaming of the constants not
mentioned in C. . A .

Let TD = (Q7QO7—>7L)7 TD,Lp = (QaQO7;>7L)’ and
Cp,, = Cp UC,. We next prove that: (*) for any ¢ € () and
q € @s.t. L(q) =cp,, L(4). Tp,q | ¢iff Tp .4 = ¢
Since L(qo) ~cp., L(Go) (as, by Algorithm 1, L(gy) =

f/(cjo)), this implies that Tp, g9 = ¢ iff TDW, do FE ¢, ie.,
TD ): "2 iff TD,@ ): ®.

The proof of (*) is by induction on the structure of .
Consider first the case of ¢ = ¢ € L,,. If ¢ is uniform
in s, it is sufficient to prove that £, L(q) | ¢ iff £, L(§) |E
@(So). This comes as a consequence of the fact that L(q) and
L(§) are logically equivalent up to renaming of constants
not mentioned in ¢, therefore the models of L(q) and L(§)
have exactly the same relational structure but some (finitely
many) objects, not referred by any constant in ¢, renamed.
Thus, such models are not distinguishable by ¢.

If ¢ is uniform in o, we observe that all of the constants
occurring in o, i.e., in some of its action terms, are in Cp ,
thus also in the set of constants H used in Algorithm 1.
Therefore, all action terms occurring in o are considered
in the construction of T'p ,. Now, it can be proven that:
(**) whenever L(q) ~c,,, L(§), for any action term A(h)
st.he Cp, . there exists ¢ s.t. (g, A(ﬁ)7 q') € — iff there
exists ¢’ s.t. (¢, A(h),q') € = and L(¢') =cp., L(§). This
is a consequence of the facts that: L(q) = Poss(A(R)) iff



L(§) & Poss(A(h),Sy) (the proof is similar to the case
of ¢ uniform in s), and that querying L(q) and L(g), which
are Cp ,-indistingushable, with a formula whose constants
are in C'p , (as is the case of the right-hand side of SSAs
in D), produces Cp ,-indistinguishable results. Therefore,
by iterative applications of (**), starting from go and §o
and using the actions in ¢ = do([aq,...,an],S0), we
have that there exists ¢, € @ iff there exists ¢, € Q
s.t. L(Gy) ~Cp., L(qo). Then, since [o/s] is uniform in s,
by the inductive hypothesis, we have that Tp, ¢, = ¢[o/s]
iff T'p,, 4o = ¢lo/s].

The case of boolean connectives is straightforward.

For the case of ¢ = Fs.0 C s A ¢/, a generaliza-
tion of (**) above can be proved, which states that: (¥**)
whenever L(q) =~c,, L(§), for any action term A(c)
s.t. ¢ € C, there exists ¢’ s.t. (¢, A(C),q") € — iff there

exists ¢’ s.t. (4, A(R),¢) € = and L(¢") ~cp, L(G),
for h obtained by an appropriate renaming of the constants
in ¢, according to a bijection consistent with some of the
bijections witnessing L(q) ~cp ., L(§), and that is the
identity on Cp,,. The cardinality constraint guarantees H
to contain enough values to obtain h as above. In turn,
(***) implies that, for o = do([a1,...,ax],So), a node
g4or € Q exists, with ¢/ = do([aq,...,an,...,am],So)
(m > mn), iff there exists a node 4,» € @, with
o = do([o,...,an,...,ap],50), st L(ge) ~cp,
L(G,»). Moreover, by the induction hypothesis, we have
that T, ¢o = p[s/o’] iff Tp ,, Go» = ¢[s/c”], which con-
cludes the proof. 0

To complete the proof of Theorem 7, it remains to show
that checking whether TD#, = ¢ is decidable. Notice that
this is not a trivial consequence of the node-finiteness of
TDW, in that the semantics of generalized projection queries
over GFDB-TS requires, in general, to consider all exe-
cutable situation terms of D, which can be infinitely many.

Lemma 4. Given a C-bounded BAT-GFDB D and a gener-
alized projection query  that is a sentence in L, checking

whether T D, = @ is decidable.

Proof To perform the check, we use the following recur-
sive procedure (the case of boolean connectives —, A and V,
omitted for brevity, is as standard):

1: procedure CHECKT(q, ©)

2: ifp=¢ € L, and ¢ is uniform in s then
3 return TD’W, qE= e

4:  end if

5. if o =¢ € L,, and ¢ is uniform in o then
6: if g, does not exist in () then

7 return false;

8

: else .
9: return CHECKT (¢, ¢[0/5]);
10: end if
11:  endif
12:  if p = 3s.do([aq, ..., an], So) E s A ¢ then

Apn+1 Qm—1

13:  forall paths gy —5 -+ =% grp1 —5 - =5 g

. Qn 41 Om—1
s.t. in the suffix ¢, 1 — -+ — ¢, no node occurs

more than once do

14: if CHECKT (¢, [s/0’]) == true, for o/ =
dO([Ozl, ‘e ,Oém_l], So) then

15: return true;

16: end if

17: end for

18: return false;

19:  endif

20: end procedure

_ Procedure CheckT(qO, ) terminates, and returns true iff
Tp,, = ¢. Termination is a consequence of the recursive
structure of the procedure, the fact that TD#,, q = @ is de-
cidable in the base case, i.e., ¢ € L, and uniform in s, as
L(q) is a generalized fluent database, and checking whether
L(q) = ¢(So) is decidable, and that the paths to consider
are only finitely many. Soundness is straightforward, as the
procedure essentially explores a finite subset of the situa-
tion terms (represented as paths) needed to check whether
TDM, = ¢, in the most general case (quantification over s).
As to completeness, the case of interest is when a quan-
tified situation occurs (line 12). In this case, observe that,
due to the finiteness of (), the paths considered at line 13
visit all possible nodes ¢, that can be reached by consid-
ering all ground situation terms ¢’ s.t. ¢ C o’. Moreover,
it can be shown that for any two situation terms ¢’ and o’
St gor = qou, it is the case that T, qor = p[s/o"] iff
Tp., 4o = @[s/0"]. Therefore, by considering only the
(finely many) paths of line 13, one covers indeed all the
cases obtained by considering all possible ground situation
terms that are successors of o = do([aq, ..., an],So), as
the semantics of Definition 6 requires. O

Lemmas 1, 2, 3 and 4 prove, together, Theorem 7.

Conclusions and future work

In this paper we looked into situation calculus action the-
ories over generalized fluent databases with equality con-
straints, making a connection between work in the situation
calculus and work in constraint query languages. In particu-
lar we contributed with the following:

e We showed that generalized fluent databases with equality
constraints characterize the class of definitional KBs with-
out non-fluent predicates (Reiter 2001), and introduced a
transformation that can be used to bring any definitional
KB into the form of a generalized fluent database.

e We showed that generalized fluent databases are well-
behaved in the sense that their form is preserved under
progression and that compared to the existing approach to
progressing a definitional KB, the proposed progression
method is closer to the notion of database update and can
help bringing the computational benefits that are intended
for such an operation.

e We showed that simple projection queries over BAT-
GFDBs are decidable and can be answered by means of
evaluation of generalized databases and an induced tran-
sition systems.



e We extended the notion of boundedness (De Giacomo,
Lespérance, and Patrizi 2012) to represent infinitely many
facts with exceptions and showed that generalized projec-
tion for a wide class of sentences is decidable.

To the best of our knowledge BAT-GFDBs with bounded
unknowns are to date the most expressive situation calculus
action theories with an infinite domain and possibly infinite
extensions for fluents, for which computing progression and
generalized projection is decidable.

For future work we want to consider other constraints, and
look into controlled ways to express incomplete information
similar to the extensions of proper KBs in (Liu, Lakemeyer,
and Levesque 2004) and (De Giacomo, Lespérance, and
Levesque 2011). We believe that the second approach, which
looks into a form of named nulls, and, similarly, previous
work on bounded unknowns (Vassos and Patrizi 2013), can
be used to include a practical form of incomplete informa-
tion in the generalized fluent databases and the action theo-
ries over them.

Finally, we intend to investigate how our results can be
used to build a practical implementation for a variant of the
Golog family of high-level agent programming languages
(Levesque et al. 1997; De Giacomo et al. 2009).
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