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Abstract. Benders decomposition is a well-known procedure for solv-
ing a combinatorial optimization problem by defining it in terms of a
master problem and a subproblem. Its effectiveness relies on the possi-
bility of synthethising Benders cuts (or nogoods) that rule out not only
one, but a large class of trial values for the master problem. In turns, this
depends on the possibility of separating the subproblem into several sub-
problems, i.e., problems exhibiting strong intra-relationships and weak
inter-relationships. The notion of separation is typically given informally,
or relying on syntactical aspects. This paper formally addresses the no-
tion of separability of the subproblem by giving a semantical definition
and exploring it from the computational point of view. Several exam-
ples of separable problems are provided, including some proving that a
semantical notion of separability is much more helpful than a syntactic
one. We show that separability can be formally characterized as equiva-
lence of logical formulae, and prove the undecidability of the problem of
checking separability.

1 Introduction and Motivations

Benders decomposition [1] is a well-known procedure for solving combinato-
rial optimization problems, which relies on the idea of distinguishing primary
from secondary variables, defining a master problem over primary variables, and
defining a subproblem over secondary variables given a trial value for primary
variables. Every unsuccessful attempt to solve the subproblem is recorded as a
Benders cut (or nogood) and added to the master problem, until an optimal
solution is found, or the problem is proven to be unfeasible.

Two important factors that make the above procedure effective are: 1) the
possibility of using different technologies for solving the master and the subprob-
lem, e.g., ILP and CP, respectively, [9, 10], and 2) the possibility of synthethising
Benders cuts that rule out not only one, but a large class of trial values for the
master problem. In this paper we focus on the second factor, and specifically on
the notion of separability of the subproblem, which intuitively means that it can
be formulated using several subproblems exhibiting strong intra-relationships
and weak inter-relationships. As a matter of fact, it has been noted in [9, 8, 4]
that, if the subproblem is separable, then it is possible to design a Benders cut
that excludes several instantiations of the primary variables, or, in other words,
a nogood which is a partial, and not a total, assignment to the primary variables.



Therefore, the ability of recognizing separability of the subproblem is crucial for
the efficiency of a Benders decomposition.

Let us introduce our running example, taken from [9, 8], which refers to a
machine scheduling problem.

Example 1 (Machine Scheduling Problem [9, 8]). Machine Scheduling is the prob-
lem of finding an assignment of a set of jobs to a set of machines in such a way
that 1) constraints on release and 2) due date are satisfied, 3) machines are
single-task, and a cost function is minimized. Using the modelling language of
the opl system [15], one possible model is as follows:

// INPUT DESCRIPTION

{int+} Jobs=...; //The set of jobs to be scheduled

int+ horizon=...; //Max start time point for jobs

int+ n_machines=...; //The number of machines

range Time[1..horizon]; //Range "Time" definition

range Machines[1..n_machines]; //Range "Machines" definition

int+ ReleaseDate[Jobs]=...; //Each job has a release date

int+ DueDate[Jobs]=...; //Each job has a due date

int+ Cost[Jobs,Machines]=...; //Machines incur different costs per job

int+ Duration[Jobs,Machines]=...;//Machines run at different speeds per job

// SEARCH SPACE

var Machines Assignment[Jobs];

var Time StartTime[Jobs];

// OBJECTIVE FUNCTION

minimize

sum (j in Jobs) Cost[j,Assignment[j]]

// CONSTRAINTS

subject to {

forall (j in Jobs) // 1. RESPECT RELEASE DATE

StartTime[j] >= ReleaseDate[j];

forall (j in Jobs) // 2. RESPECT DUE DATE

StartTime[j] + Duration[j,Assignment[j]] <= DueDate[j];

forall (t in Time) // 3. MAX ONE JOB PER MACHINE AT EACH TIME POINT

forall (m in Machines)

sum (j in Jobs)

(Assignment[j] = m &

StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]])

) <= 1;

};

The Benders decomposition suggested in [9] selects Assignment and StartTime

as primary and secondary variables, respectively. Moreover, it defines the master
problem as the minimization problem on no constraints, nd the subproblem as
the decision problem on constraint 1, 2, and 3 (for a given optimal instantiation of
Assignment and ignoring the objective function). A given optimal instantiation
Assignment which is unfeasible for the subproblem is called a Benders cut (or
nogood), and the next iteration of the master problem includes the constraint
Assignment 6= Assignment, until a feasible instantiation is found, or the problem
is proven to be unfeasible.

This is a “raw” version of the decomposition, which ignores the fact that
the subproblem is separable wrt the machines. As an example, if we have three



machines, we can consider three separate subproblems, one for each of them.
If Assignment = [1,1,2,1,3,2] is optimal for the master problem, and no
serial schedule of jobs 3,6 on the second machine exists, we can safely add the
constraint Assignment[3] <> 2 \/ Assignment[6] <> 2. Constraints of the
latter kind rule out a whole set of assignments (not just one) to the primary
variables, and can be added for each unfeasible subproblem. This ultimately
results in a more efficient decomposition. �

An informal notion of separability is typically used in the literature, but we
claim that the importance of this concept calls for precise definitions and careful
analysis.

Example 2 (Example 1, continued). Since constraint 3 is universally quantified
wrt the machines “forall (m in Machines)”, we can claim its separability
just relying on an intuitive argument. The methodological problem is that this
syntax-based argument is heavily dependent on the way the problem is formu-
lated (cf. also forthcoming Example 6). To see this point, consider the following
statement, equivalent to constraint 3.

//3’. NO TWO JOBS RUNNING ON THE SAME MACHINE AT EACH TIME POINT:

forall(t in Time)

sum (i,j in Jobs: i <> j)

( Assignment[i] = Assignment[j] &

StartTime[i] <= t < (StartTime[i] + Duration[i,Assignment[i]]) &

StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]])

) = 0;

Since constraint 3’ is not universally quantified wrt the machines, it is less clear
that it separates. �

It is everyday experience that different formulations, all of them being intu-
itive, can be done for a problem, sometimes in the hope of having more perfor-
mant models.

Example 3 (Example 1, continued). We can define a dependent array RunsOn
storing for each time point and each job the machine that runs the job (or a
negative number if the job is not running). In fact, in this way we can define the
“single-task machines” constraint (3 or 3’) by means of a global alldifferent
constraint, just stating that running machines are all different at each time
point. The alldifferent constraint often performs very well [14], especially in
connection with “channelling constraints” [16].

range MachinesPlus[-card(Jobs)..n_machines];//negative numbers: irrelevant

var MachinesPlus RunsOn[Time,Jobs];

// DEFINITION OF RunsOn:

forall (t in Time)

forall (j in Jobs){

(StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]])

=> RunsOn[t,j] = Assignment[j])

&

(StartTime[j] > t \/ t >= (StartTime[j] + Duration[j,Assignment[j]])

=> RunsOn[t,j] = -j); // negative numbers are all different

};



// 3’’. AT EACH TIME POINT RUNNING MACHINES ARE ALL DIFFERENT:

forall (t in Time)

alldifferent (all (j in Jobs) RunsOn[t,j]);

Again, constraint 3” is not universally quantified wrt the machines, but it nev-
ertheless separates. �

In this paper we investigate the possibility of automating the process of
checking subproblem separability in the context of Benders decompositions. In
particular, given a problem and applying to it a given Benders decomposition
schema which leads to a constraint satisfaction subproblem [8], our goal is to
state the conditions, if any, that make the subproblem separable. To this end,
we first address the notion of subproblem separability by giving a semantical
definition and then we explore it from the computational point of view, providing
two theorems which show that i) separability can be formally characterized as
equivalence of logical formulae and ii) the problem of checking separability is
undecidable.

The exposition is structured as follows. In Section 2 we recall the definition
of Benders decomposition, in Section 3 a formal definition of separation is given,
while in Section 4 we show semantical and computational characterizations. Fi-
nally, Section 5 draws some conclusions.

2 Preliminaries

Given two arrays of variables p = (p1, . . . , pn) (primary) and s = (s1, . . . , sm)
(secondary) which may take values, respectively, from sets P = C

p
1 × . . . × Cp

n

and S = Cs
1 × . . .× Cs

m, in this paper we consider problems of the form:

PB :



































min{f(p)} objectivefunction (o.f.)
s.t.

α(s) constraint 1 (c1)
γ(p) constraint 2 (c2)
β(p, s) constraint 3 (c3)
p ∈ P primary variables domain (p.v.d.)
s ∈ S secondary variables domain (s.v.d.)

(1)

where α, γ and β are suitable representations of constraints in which, respec-
tively, only s variables, only p variables, or both occur. In [9, 4] generalizations
of the above problem in which, e.g., variables from s may occur in the objective
function, are studied. According to [9], such problems can be solved by applying
a “logic-based” Benders Decomposition scheme that gives raise to the following
problems:

MP k :



























min{f(p)} o.f.

s.t.

γ(p) c2
CUTpi(p)
(i = 1, 2, . . . k − 1) Benders cuts
p ∈ P p.v.d.

SP :







α(s) c1
β(p, s) c3
s ∈ S s.v.d.

(2)



Master Problem (MP k) is the problem of finding an assignment to p ∈ P

that minimizes the objective function f(p) while satifying i) γ(p) and ii) the
Benders cuts CUTpi(p) (i = 1, . . . , k − 1) generated at the previous k − 1
iterations. When k = 1, MP 1 contains no cut, and the decomposition is just
a bipartition of the constraints of PB into i) those over variables involved in
the objective function, put into MP 1, and ii) the remaining ones, belonging
to SP .

Subproblem (SP ) is the feasibility problem of checking whether there exists
an assignment s that, along with a given assignment p obtained as solution
of MP k, satisfies the constraints α(s) and β(p, s). If such s exists then (p, s)
is a solution to PB, otherwise, problem MP k+1 is generated by adding to
MP k a Benders cut CUTpk(p).

Referring to Example 1, p is Assignment, s is StartTime, α(s) is constraint 1,
β(p, s) is the conjunction of constraints 2 and 3, and γ(p) is a tautology.

One obvious desirable quality of Benders cuts is soundness, i.e., the guarantee
that the above algorithm finds an optimal solution to PB for each instance. As
an example, the constraint

CUTpk(p)
.
= (p 6= pk), (3)

where pk is the solution to MP k, is sound. The problem with (3) is that an
unacceptably large number of cuts may be added to the Master problem, and
this may reflect in inefficiency (cf. Example 1). In the next sections we look for
conditions which may be helpful for having a significantly lower number of cuts.

3 Separation into subproblems

Before formalizing the notion of separability introduced in Section 1, we need
to clarify the role played by the selection of relevant input data. Referring to
Example 1, every choice of the machine induces a selection of the release and
due dates, costs, and durations. As an example, if Assignment= [1,1,2,1,3,2]

and machine 2 is selected, then we only need the third and the sixth rows of
input arrays ReleaseDate and DueDate. Analogously, we need only some entries
of the Cost and Duration arrays.

In general, given a representation R of the instance, e.g., as a relational
database over the schema R, and an integer q representing the number of sub-
problems, we assume that there is a function σ1 : R× [1, q] → R that selects the
input data relevant for the i-th subproblem (1 ≤ i ≤ q).

Analogously, we need a way to select the variables relevant to the i-th sub-
problem. As an example, for the given Assignment and machine 2, we want to
assign a StartTime just to jobs 3 and 6. In general, we assume that there is a
function σ2 that partitions the variables into q subsets, one for each subproblem.
For the sake of simplicity, we assume that all the variables may take a value from
the same set.

From now on, we represent problems with the following notation

ψ(R) = ∃F : D → C s.t. φ(R, F ), (4)



where R is a representation of the instance over the schema R, F is the required
assignment to the variables, D and C are the domain and the codomain of the
assignment, respectively, and φ(R, F ) is a representation of the constraints. We
prefer the above notation over the notation as in (1) or (2) because it highlights
the input, which is crucial for our purposes. Moreover it is worth reminding that,
if C is finite and φ is a formula in first-order logic, then formulae of the kind (4)
can represent every problem in the complexity class NP [7, 13]. Finally, we note
that there is a direct correspondence between the above notation and state-of-
the-art modelling languages such as opl. As an example, an array of variables
in Example 1 corresponds to the existentially quantified function F in (4).

Definition 1 (Subproblems). Given a problem ψ of the form (4), an integer
q ≥ 1 and two functions σ1 : R × [1, q] → R and σ2 : [1, q] → 2D such that
{D1, . . . , Dq} (Di = σ2(i)) is a partition of D, the following q problems are
defined as the subproblems of ψ wrt σ1 and σ2:

ψi(R) = ∃Ri, Fi : Di → C s.t. Ri = σ1(R, i) ∧ φ(Ri, Fi), (i = 1, . . . , q).

Definition 1 can be used to obtain the subproblems in a syntactical way, by
means of a symbolic manipulation of the problem. To see intuitively how the
subproblems are obtained, we resort again to our running example.

Example 4 (Example 1, continued). Given an instance of the problem with q
machines, and a value for Assignment, we consider the (sub)problem defined
as the conjunction of constraints 1, 2, and 3, and no objective function. As
mentioned before, σ1 takes a machine i and the input, e.g., arrays ReleaseDate,
DueDate, Cost, and Duration, and gives new arrays ReleaseDate i, DueDate i,
Cost i, and Duration i. σ1 can be represented by means of simple constraints,
the following being an example for i = 1:

//INPUT:

{int+} Jobs=...; int+ horizon=...; int+ n_machines=...;

range Machines [1..n_machines];

int+ ReleaseDate[Jobs]=...; int+ DueDate[Jobs]=...;

int+ Cost[Jobs,Machines]=...; int+ Duration[Jobs, Machines]=...;

//JOBS ASSIGNMENT:

Open Machines Assignment[Jobs];

//CONSTANTS DEFINITION:

int+ maxTime = max(j in Jobs)(DueDate[j]);

int+ maxCost = max(j in Jobs, m in Machines)(Cost[j,m]);

int+ maxDuration = max(j in Jobs, m in Machines)(Duration[j,m]);

//OUPUT:

{int+} Jobs_1={j | j in Jobs: Assignment[j]=1};

var Machines n_machines_1 in 1..1; // n_machines_1 = 1

var int+ horizon_1 in horizon..horizon; // horizon_1 = horizon

var int+ ReleaseDate_1[Jobs_1] in 0..horizon;

var int+ DueDate_1[Jobs_1] in 0..maxTime;

var int+ Cost_1[Jobs_1,[1..1]] in 0..maxCost;

var int+ Duration_1[Jobs_1,[1..1]] in 0..maxDuration;

//CONSTRAINTS:

solve{



forall(j in Jobs_1){

ReleaseDate_1[j] = ReleaseDate[j];

DueDate_1[j] = DueDate[j];

Cost_1[j,1] = Cost[j,1];

Duration_1[j,1] = Duration[j,1];

}

};

Note that, coherently with Definition 1 where the Ri are existentially quantified,
all items of the form xxx 1, e.g. DueDate 1 and horizon 1, are variables that
must be assigned, Jobs 1 being a syntactical exception, due to implementation
reasons, that can be yet conceptually regarded as a variable.

The other function σ2 takes a machine i and the variables, i.e., array StartTime,
and gives a new array of variables StartTime i. The representation of σ2 is also
simple, and is omitted for brevity.

Each subproblem can be simply represented by defining all constraints on
the new symbols, e.g., by writing DueDate 1 instead of DueDate for the first
subproblem. It is worth noting that this can be done for all versions of the
machine scheduling problem, i.e., for Examples 1, 2, and 3. �

Given an instance R of a problem of the form (4), we denote as SOL(ψ(R))
the set of solutions to ψ(R), i.e., of the set of functions which satisfy the con-
straints. The following definition tells us how to integrate the solutions of the
subproblems.

Definition 2 (Composition of solutions). Given a problem ψ(R) and its
q subproblems ψi(R) as in Definition 1, we define the composition (⋊⋉) of the
solutions SOL(ψi(R)) of the subproblems as follows:

⋊⋉
q
i=1 SOL(ψi(R))

.
= {F : D → C s.t. ∀i = 1, . . . , q F |Di

∈ SOL(ψi(R))},

where F |Di
denotes the selection of the assignments of F to the variables in Di.

Now we need a way to relate a problem to its subproblems, which is se-
mantical, i.e., based on the respective solutions. The following definition tells us
that a problem is separated by (σ1, σ2) if its solutions can be obtained just by
composing the solutions of its subproblems.

Definition 3 (Separation). Given a problem of the form (4) and its q sub-
problems ψi(R) as in Definition 1, ψ is (σ1, σ2)-separated into the q problems
ψ1, . . . , ψq iff

∀ R ∈ R ⋊⋉
q
i=1 SOL(ψi(R)) = SOL(ψ(R)).

Referring again to the subproblem in the three versions of Examples 1, 2 and
3, it is possible to see that it is (σ1, σ2)-separated into q problems according to
Definition 3, where q is the number of machines.

Of course, not all problems are separable, as shown by the next example.

Example 5. We add to the constraints of Example 1 a further constraint which
avoids more than 2 machines running at the same time, useful, e.g., to reduce
noise or energy consumption.



forall (t in Time) // 4. MAX TWO JOBS RUNNING AT EACH TIME POINT

sum (j in Jobs)(

StartTime[j] <= t < (StartTime[j] + Duration[j,Assignment[j]]

) <= 2;

The latter constraint is added to the subproblem, and the Master problem is
unchanged. With functions σ1 and σ2 defined as in Example 4, it is possible to
see that the current version of the subproblem is not (σ1, σ2)-separated. We do
that by 1) exhibiting an instance, 2) solving separately the subproblems obtained
applying Definition 1, 3) composing their solutions according to Definition 2, and
4) showing that a solution which does not satisfy the original problem arises.

The instance is as follows:

Jobs = {1,2,3,4,5,6}; n_machines = 3; horizon = 15;

ReleaseDate[Jobs] = [1,10,2,4,9,8];

DueDate[Jobs] = [4,18,10,14,14,18];

Cost[Jobs,Machines] =[ // m1 m2 m3

[ 2 , 3 , 6 ], //j1

[ 7 , 8 , 11], //j2

[ 6 , 5 , 7 ], //j3

[ 10, 12, 12], //j4

[ 7 , 7 , 6 ], //j5

[ 12, 5 , 6 ], //j6

];

Duration[Jobs,Machines] =[ // m1 m2 m3

[ 3 , 2 , 4 ], //j1

[ 6 , 4 , 5 ], //j2

[ 7 , 7 , 6 ], //j3

[ 5 , 8 , 7 ], //j4

[ 3 , 5 , 4 ], //j5

[ 5 , 6 , 5 ], //j6

];

We assume that solving the Master Problem led to the assignment Assignment
= [1,1,2,1,3,2]. Now, applying σ1 as in Example 4 to select the relevant data
for jobs assigned to, e.g., machine 2, we obtain the following data set:

n_jobs_2 = 2; n_machines_2 = 1; horizon_2 = 15;

ReleaseDate_2[Jobs_2] = [2,8];

DueDate_2[Jobs_2] = [10,18];

Cost_2[Jobs_2,[2..2]] = [ // m2

[ 5 ], //j3

[ 5 ] //j6

];

Duration_2[Jobs_2,[2..2]] = [ // m2

[ 7 ], //j3

[ 6 ] //j6

];

which represents the input to the 2nd separated subproblem. The input to the
other subproblems can be obtained in the same way.

A solution to the three subproblems is as follows:



// Machine 1, jobs 1, 2, 4

StartTime_1 = [1,10,4];

// Machine 2, jobs 3, 6

StartTime_2 = [2,9];

// Machine 3, job 5

StartTime_3 = [9];

which does not satisfy the fourth constraint. As an example, in time points 10,
11 and 12, all three machines are running. �

One may argue whether the semantical criterion for checking problem separation
as defined by Definition 3 is really necessary or not, and in particular whether
simpler criteria based on syntactic aspects are equally effective. As an example,
we could build the primal constraint graph [6] of the subproblems –as defined
previously– of Example 1, i.e., a graph with a node for each variable and an edge
between any pair of variables syntactically occurring in the same constraint. A
weaker notion of separability could be based on the fact that the graph we obtain
has one component for each machine. Anyway, as shown by the next example, a
problem with redundant constraints arises.

Example 6 (Example 1, continued). Let the following constraint be added to the
machine scheduling problem specification:

/* 4. If machines are less than jobs, then at least two jobs start

at different time points. (card() returns the cardinality of a set)*/

n_machines < card(Jobs) =>

sum(i,j in Jobs:i<>j)(StartTime[i]<>StartTime[j])>=2;

Note that constraint 3 logically implies constraint 4, hence any solution satis-
fying 1-3 also satisfies 4. Note also that constraint 4 involves all the secondary
variables, hence its primal constraint graph is a complete graph with card(Jobs)
nodes, one for any StartTime component, representing the fact that all the sec-
ondary variables are somehow mutually constrained. As a consequence, a syntac-
tic definition based on the constraint graph would fail to recognize separability,
while Definition 3 does not. �

Definition 3 is clarified also by the following example.

Example 7 (Protein Folding). [11] This problem specification models a simplified
version of an important problem in computational biology which consists in
finding the spatial conformation of a protein (i.e., a sequence of amino-acids)
with minimal energy.

The simplifications with respect to the real problem are twofold: firstly, the
20-letter alphabet of amino-acids is reduced to a two-letter alphabet, namely
H and P. H represents hydrophobic amino-acids, whereas P represents polar or
hydrophilic amino-acids. Secondly, the conformation of the protein is limited to
a bi-dimensional discrete space. Nonetheless, these limitations have been proven
to be very useful for attacking the whole protein conformation prediction pro-
tein, which is known to be NP-complete [5] and very hard to solve in practice.

In this formulation, given the sequence (of length n) of amino-acids of the
protein (the so called primary structure of the protein), i.e., a sequence of length



n with elements in {H,P}, we aim to find a connected shape of this sequence
on a bi-dimensional grid (whose points have coordinates in the integral range
[−(n−1), (n−1)], the sequence starting at (0, 0)), which is not overlapping, and
maximizes the number of “contacts”, i.e., the number of non-sequential pairs of
H amino-acids for which the Euclidean distance of the positions is 1 (the overall
energy of the protein is defined as the opposite of the number of contacts).

Protein Folding can be modeled as a planning problem, whose input is a rep-
resentation of the protein and the output is a sequence of moves that maximizes
the number of contacts by folding it.

More specifically, a protein is described by a sequence s ∈ {0, 1}n (1 and
0 representing, respectively, H and P), that can be arranged on the grid by
means of four moves: up, down, left, right, each of which sets the position of
an amino-acid wrt its predecessor. The first element is always placed in the
center of the grid and the sequence cannot cross itself. Figure 1 shows a 1-
contacts configuration for a sequence s =< 1, 0, 1, 0, 0, 1 > of length 6, obtained
by applying, in the reported order, the moves u r r u l.
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Fig. 1. An instance of the Protein folding problem

More formally, given:

– an array s ∈ {0, 1}n, representing the protein;
– a set Tmove = [1, n− 1] ∈ N;
– a set Tpos = [1, n] ∈ N;
– a set B = [−n+ 1, n− 1] ∈ Z;
– a set M = {u =< 0, 1 >,d =< 0,−1 >, l =< −1, 0 >, r =< 1, 0 >} ∈ Z

2;
– the set of variables V = {m1, . . . ,mn−1, x1, . . . , xn, y1, . . . , yn},mi ∈M, ∀i ∈
Tmove and < xi, yi >∈ B2, ∀i ∈ Tpos;

and defined:



– moves = (m1, . . . ,mn−1) ∈ Mn−1, the array representing the sequence of
moves;

– pos = (< x1, y1 >, . . . , < xn, yn >) ∈ (B2)n, the array whose i-th compo-
nent represents the position of the i-th amino-acid;

– the function
Hits(pos, s) =

∑

t,t′∈Tmove s.t.

t′>t+1 ∧ postpos
t′

=1

st · st′

that counts the number of contacts for a particular pos;

the Protein Folding Problem can be stated as follows:

PF :



















max{Hits(pos, s)} o.f.
s.t.

pos1 =< 0, 0 > start condition
∀t ∈ Tmove movet = post+1 − post channelling constraints

∀(t, t′) ∈ T 2
pos | t > t′ post 6= post′ no crossing constraints

In such form, it can be decomposed as in (2) by considering pos as the array of
primary variables and moves that of secondary, obtaining the Master Problems
MP k

PF and the Subproblem SPPF :

MP k
PF :



























max{Hits(pos, s)} o.f.

s.t.
pos1 =< 0, 0 > start condition

∀(t, t′) ∈ T 2
pos | t > t′ post 6= post′ no crossing constraints

CUTposi(pos)
(i = 1, . . . k − 1) Benders cuts

SPPF :
{

∀t ∈ Tmove movet = post+1 − post channelling constraints

The Subproblem is to find a sequence of moves such that the given positions
obtained by solving the Master Problem are feasible.
Now, apply Definition 3:

– define σ2 as the function selecting, for each i = 1, . . . , n − 1, the set of
secondary variables {mi};

– define σ1 as the function selecting, for each i = 1, . . . , n − 1, the pair
(posi, posi+1) from pos.

Such functions define the n− 1 problems

SP i
PF :

{

movei = posi+1 − posi , i = 1, . . . , n− 1

of checking whether there exists a move such that the (i + 1)-th amino-acid is
in a position reachable from that of the i-th.
To see that SPPF is (σ1, σ2)-separated, observe that the generic array moves

is a solution to SPPF for a given assignment pos iff

moves = (pos2 − pos1, . . . , posn − posn−1)



and that each of its components is a solution to SP i
PF , (i = 1, . . . , n). Conversely,

given (n− 1) solutions movesi to SP i
PF , (i = 1, . . . , n), the array

moves = (moves1, . . . ,movesn)

is a solution to SPPF , as assignment posi+1 of SP i
PF is, by construction, the

same as posi of problem SP i+1
PF forall i = 1, . . . , n− 1. �

4 Characterization of separation

Definition 3 gives a semantical notion of separation of a problem in subproblems.
A practical difficulty is that it is not obvious how to use it for proving separation,
since we would have to consider all possible instances, solve the problem and the
candidate subproblems, and check that their solutions coincide.

The following theorem shows that in principle it is not necessary to do that,
and reduces the problem of checking separation to the problem of equivalence of
two logical formulae.

Theorem 1. Given a problem ψ(R), an integer q, two functions σ1, σ2, and q
problems ψ1, . . . , ψq as in Definition 3, ψ is (σ1, σ2)-separated into ψ1, . . . , ψq iff
the following formula is a tautology

ψ ≡

q
∧

i=1

ψi. (5)

Proof. (Only if part.) By hypothesis, the following q problems (σ1,σ2)-separate
ψ:

ψi(R) = ∃Ri, Fi : σ2(D, i) → C s.t. Ri = σ1(R, i) ∧ φ(Ri, Fi), (i = 1, . . . , q).
(6)

Now, given an instance R ∈ R, if F is a solution to ψ(R) then any restriction
F |Di

to Di = σ2(D, i) is a solution to ψi(R) for each i = 1, . . . , q. In fact, since
separation holds, it holds that

SOL(ψ(R)) = {F : D → C s.t. ∀i = 1, . . . , q F |Di
∈ SOL(ψi(R))}.

Hence, for any instance R, if F solves ψ(R) then it solves the q problems ψi(R)
or, equivalently, F is a solution to the problem

q
∧

i=1

ψi(R)

and then

∀R SOL(ψ(R)) ⊆ SOL(

q
∧

i=1

ψi(R)).

In order to prove that (5) is a tautology, we must show that also the inverse
containtment holds. To this end, consider a solution G : D → C to the problem



∧q

i=1 ψi(R) for a generic instance R. By definition, G solves all of the ψi(R)
problems and, recalling the form (6) of ψi, it is straightforward that G|σ2(D,i)

solves ψi(R). In other words, G is such that

∀i = 1, 2, . . . , q G|σ2(D,i) ∈ SOL(ψi(R)).

But, due to separability, it yields G ∈ SOL(ψ(R)) and hence

∀R SOL(ψ(R)) ⊇ SOL(

q
∧

i=1

ψi(R)).

(If part.) Assuming (5) is a tautology, F : D → C is a solution to ψ(R), for
any R, if and only if F solves the problem

∧q

i=1 ψi(R) or, equivalently, the q
problems ψi(R) (i = 1, . . . , q). Consequently, any solution F to ψ(R) is such
that ∀i = 1, . . . , q F |Di

∈ SOL(ψi(R)) and viceversa. Hence, for any R,

SOL(ψ(R)) = {F : D → C s.t. ∀i = 1, . . . , q F |Di
∈ SOL(ψi(R))}.

�

Theorem 1 calls for an equivalence check among logical formulae. This task
is undecidable even for first-order formulae [2], and actually this lower bound
applies also to this case, as shown by the next theorem.

Theorem 2. Given a problem ψ(R), an integer q, two functions σ1, σ2, and q
problems ψ1, . . . , ψq as in Definition 3, it is not decidable to check whether ψ is
(σ1, σ2)-separated or not.

Proof. (sketch) Consider a problem ψ(R) of the form:

∃F : D → C s.t. (∀m ∈M η(R, F,m)) ∧ (ξ(R) → ∃m ∈M π(R, F,m)),
(7)

where M is a finite domain such that q = |M | and ξ(R) is a first-order formula
which represents a “filter” on input data. Assume that the problem

∃F : D → C s.t. ∀m ∈M η(R, F,m), (8)

is (σ1, σ2)-separated, and that the problem

∃F : D → C s.t. ∃m ∈M π(R, F,m),

is not (σ1, σ2)-separated. As an example for the former problem just take the
third constraint from Example 1. As an example of the latter problem, just take
the fourth constraint from Example 5.

Of course the problem

∃F : D → C s.t. ∀m ∈M η(R, F,m) ∧ ∃m ∈M π(R, F,m)

is not (σ1, σ2)-separated, essentially being a conjunction of constraints, the for-
mer being (σ1, σ2)-separated and the latter being not (σ1, σ2)-separated.



Now note the role played by formula ξ(R) in problem (7). If ξ(R) is iden-
tically false, then problem (7) coincides with problem (8), and it is (σ1, σ2)-
separated. If ξ(R) is not identically false, then we can find an instance showing
that problem (7) is not (σ1, σ2)-separated. Summing up, problem (7) is (σ1, σ2)-
separated iff first-order formula ξ(R) is identically false, which is not decidable
[2]. �

The undecidability of the problem of checking separation puts severe restric-
tions on the possibility of mechanizing the process of finding, or at least validat-
ing, Benders decompositions. Nevertheless, it has been shown in [3] that current
Automated Theorem Provers technology can be effectively used for checking
properties, such as existence of symmetries or dependence among arrays of vari-
ables, similar to separation. It is the purpose of future research to investigate on
the applicability of the methodology of [3] to the separation problem.

5 Conclusions

In this paper we have analyzed the notion of separation of problems. This is a
concept interesting per se, and finds an immediate application in the context
of Benders decompositions. In fact, it is well known that such decompositions
are effective only if the subproblem is formulated using several subproblems
exhibithing strong intra-relationships and weak inter-relationships.

In the literature, informal notions of separation of subproblems are typically
used, but in this paper we have shown that it is not easy at all to come up with a
clear syntactical definition of separability. Examples 1-4 show that formulations
of a problem which look similar from the syntactical point of view may or may not
be separable. A precise, semantical definition of separation has been provided,
which has been characterized both from the logical and from the computational
points of view.

In particular, we have shown that separation can be reduced to checking
equivalence of second-order logic formulae, and that the problem of checking
whether a given selection of input data corresponds to a separation or not is not
decidable.

We are currently working on finding other computational results, e.g., special
cases of Theorem 1 which call for first-order, instead of second-order, equivalence.
Moreover, since the notion of separation into subproblems seems to be related to
the concept of database integration, especially in the context of different infor-
mation sources, cf. e.g., [12], we plan to extend our definitions in the traditional
database context.
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