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6th European Semantic Web Conference
Heraklion, Greece – May 31, 2009



Organization of the Tutorial

Part 1: Ontology-based Data Integration: Models, Languages, and
Reasoning

Part 2: OWL2 QL

Part 3: Expressive queries and constraints over OWL2 QL
ontologies

Part 4: Tools for Ontology-Based Data Integration
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Part 1

Ontology-based Data Integration:
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Ontologies

Definition

An ontology is a representation scheme that describes a formal
conceptualization of a domain of interest.

The specification of an ontology comprises several levels:

Meta-level: specifies a set of modeling categories.

Intensional level: specifies a set of conceptual elements (instances
of categories) and of rules to describe the conceptual structures of
the domain.

Extensional level: specifies a set of instances of the conceptual
elements described at the intensional level.

In this tutorial we focus on the intensional and extensional levels

D. Lembo,R. Rosati Ontology-based data integration in OWL2QL ESWC’09 – May 31, 2009 (5/89)



Intensional level of an ontology language

(The intensional level of) an Ontology is typically rendered as a
diagram (e.g., Semantic Network, Entity-Relationship schema, UML
Class Diagram).

Example: ontology rendered as UML Class Diagram

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}
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Ontologies and Reasoning

Ontologies are logical theories, and several interpretations may
exist that satisfy them (incomplete information)

m7m7m7m7m7m7
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m3m7m7m7m7m7

m4

m3m3m3m3m3

m2
m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4

m1

=

ontology

Reasoning over ontologies amounts to make logical inference over
them

Intensional reasoning: concept/relationship satisfiability,
concept/relationship subsumption, etc.
Ontology reasoning: ontology satisfiability, instance checking, query
answering.
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Ontology languages vs. query languages

Ontology languages:

Tailored for capturing intensional relationships.

Are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of join, namely
chaining.

Query languages:

Allow for general forms of joins.

May be highly expressive, but computational problems may arise:

Full SQL (or equivalently, first-order logic):...
....in the presence of incomplete information, query answering
becomes undecidable (FOL validity).
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Example of query

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← ∃f, c, d, ad .
worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf ) ∧ name(d,nd) ∧
age(f, af ) ∧ age(d, ad) ∧ af = ad

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.
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Ontologies and data

The best current ontology reasoning systems can deal with a
moderately large instance level. ; 104 individuals (and this is a big
achievement of the last years)!

But data of interests in typical information systems (and in data
integration) are much larger
; 106 − 109 individuals

The best technology to deal with large amounts of data are
relational databases.

Question:

How can we use ontologies together with large amounts of data?
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Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
; inference

We have to deal very large amounts of data.
; relational databases

We want flexibility in querying the data.
; expressive query language

We want to keep the data in the sources, and not move it around.
; map data sources to the ontology (Virtual Data Integration)
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Questions addressed in this tutorial

1 Which is the “right” ontology language?

2 Which is the “right” query language?

3 How can we bridge the semantic mismatch between the ontology
and the data sources?

4 How can tools for ontology-based data access and integration
fully take into account all these issues?
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What are Description Logics?

Description Logics [1] are logics specifically designed to represent and
reason on structured knowledge:

The domain is composed of objects and is structured into:

concepts, which correspond to classes, and denote sets of objects

roles, which correspond to (binary) relationships, and denote binary
relations on objects

The knowledge is asserted through so-called assertions, i.e., logical
axioms.
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Description language

A description language indicates how to form concepts and roles, and is
characterized by a set of constructs for building complex concepts
and roles starting from atomic ones.

Formal semantics is given in terms of interpretations.

An interpretation I = (∆I , ·I) consists of:

a nonempty set ∆I , the domain of I

an interpretation function ·I , which maps

each individual c to an element cI of ∆I

each atomic concept A to a subset AI of ∆I

each atomic role P to a subset P I of ∆I ×∆I

The interpretation function is extended to complex concepts and roles
according to their syntactic structure.
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Concept constructors

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P hasChild P I ⊆ ∆I ×∆I

atomic negation ¬A ¬Doctor ∆I \AI

conjunction C uD Hum uMale CI ∩DI

(unqual.) exist. res. ∃R ∃hasChild { o | ∃o′. (o, o′) ∈ RI }
value restriction ∀R.C ∀hasChild.Male {o | ∀o′. (o, o′) ∈ RI → o′ ∈ CI}
bottom ⊥ ∅

(C, D denote arbitrary concepts and R an arbitrary role)

The above constructs form the basic language AL of the family of AL
languages.
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Structural properties vs. asserted properties

We have seen how to build complex concept and roles expressions,
which allow one to denote classes with a complex structure.

However, in order to represent real world domains, one needs the ability
to assert properties of classes and relationships between them (e.g., as
done in UML class diagrams).

The assertion of properties is done in DLs by means of an ontology (or
knowledge base).
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Description Logics ontology (or knowledge base)

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:

Description Logics TBox

Consists of a set of assertions on concepts and roles:

Inclusion assertions on concepts: C1 v C2

Inclusion assertions on roles: R1 v R2

Property assertions on (atomic) roles:
(transitive P ) (symmetric P )
(functional P ) (reflexive P ) · · ·

Description Logics ABox

Consists of a set of membership assertions on individuals:

for concepts: A(c)

for roles: P (c1, c2) (we use ci to denote individuals)
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Description Logics knowledge base – Example

Note: We use C1 ≡ C2 as an abbreviation for C1 v C2, C2 v C1.

TBox assertions:

Inclusion assertions on concepts:
Father ≡ Human uMale u ∃hasChild

HappyFather v Father u ∀hasChild.HappyPerson
HappyAnc v ∀descendant.HappyFather

Teacher v ¬Doctor u ¬Lawyer

Inclusion assertions on roles:
hasChild v descendant

Property assertions on roles:
(transitive descendant), (reflexive descendant),
(functional hasFather)

ABox membership assertions:

Teacher(mary), hasFather(mary, john), HappyAnc(john)
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Semantics of a Description Logics knowledge base

The semantics is given by specifying when an interpretation I satisfies
an assertion:

C1 v C2 is satisfied by I if CI1 ⊆ CI2 .

R1 v R2 is satisfied by I if RI1 ⊆ RI2 .

A property assertion (prop P ) is satisfied by I if P I is a relation
that has the property prop.

A(c) is satisfied by I if cI ∈ AI .

P (c1, c2) is satisfied by I if (cI1 , cI2 ) ∈ P I .
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Models of a Description Logics ontology

Model of a DL knowledge base

An interpretation I is a model of O = 〈T ,A〉 if it satisfies all assertions
in T and all assertions in A.

O is said to be satisfiable if it admits a model.

The fundamental reasoning service from which all other ones can be
easily derived is . . .

Logical implication

O logically implies and assertion α, written O |= α, if α is satisfied by
all models of O.
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TBox reasoning

Concept Satisfiability: C is satisfiable wrt T , if there is a model
I of T such that CI is not empty, i.e., T 6|= C ≡ ⊥.

Subsumption: C1 is subsumed by C2 wrt T , if for every model I
of T we have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

Equivalence: C1 and C2 are equivalent wrt T if for every model I
of T we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

Disjointness: C1 and C2 are disjoint wrt T if for every model I of
T we have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥.

Analogous definitions hold for role satisfiability, subsumption,
equivalence, and disjointness.
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Reasoning over a DL ontology

Ontology Satisfiability: Verify whether an ontology O is
satisfiable, i.e., whether O admits at least one model.

Concept Instance Checking: Verify whether an individual c is an
instance of a concept C in O, i.e., whether O |= C(c).

Role Instance Checking: Verify whether a pair (c1, c2) of
individuals is an instance of a role R in O, i.e., whether
O |= R(c1, c2).

Query Answering: see later . . .

D. Lembo,R. Rosati Ontology-based data integration in OWL2QL ESWC’09 – May 31, 2009 (23/89)



Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than reasoning
over concept expressions:

Bad news:

without restrictions on the form of TBox assertions, reasoning over
DL ontologies is already ExpTime-hard, even for very simple DLs
(see, e.g., [11]).

Good news:

We can add a lot of expressivity (i.e., essentially all DL constructs
seen so far), while still staying within the ExpTime upper bound.
There are DL reasoners that perform reasonably well in practice for
such DLs (e.g, Racer, Pellet, Fact++, . . . ) [12].
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Relationship between DLs and ontology formalisms

Description Logics are nowadays advocated to provide the
foundations for ontology languages.

Different versions of the Web Ontology Language (OWL) have
been defined as syntactic variants of certain Description Logics.

DLs are also ideally suited to capture the fundamental features of
conceptual modeling formalims used in information systems design:

Entity-Relationship diagrams, used in database conceptual
modeling
UML Class Diagrams, used in the design phase of software
applications
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DLs vs. OWL

DLs provide the foundations for standard ontology languages.

Different versions of the W3C standard Web Ontology Language
(OWL) have been defined as syntactic variants of certain DLs:

OWL Lite is a variant of the DL SHIF(D), where:

S stands for ALC extended with transitive roles,
H stands for role hierarchies (i.e., role inclusion assertions),
I stands for inverse roles,
F stands for functionality of roles,
(D) stand for data types, which are necessary in any practical
knowledge representation language.

OWL DL is a variant of SHOIN (D), where:

O stands for nominals, which means the possibility of using
individuals in the TBox (i.e., the intensional part of the ontology),
N stands for (unqualified) number restrictions.
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Description Logics vs. OWL2

A new version of OWL, OWL2, is currently being standardized by
the W3C.

The design aim of OWL2 was to address user requirements for
more expressivity of the language, while still preserving decidability
of reasoning.

OWL2 DL is a variant of SROIQ(D), which adds to OWL1 DL
several features:

qualified number restrictions (Q)

regular role hierarchies (R)

better treatment of datatypes

The OWL2 profiles (OWL2 EL, OWL2 QL, and OWL2 RL) are
variant of specific DLs designed to have tractable reasoning.
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DL constructs vs. OWL constructs

OWL construct DL construct Example

ObjectIntersectionOf C1 u · · · u Cn Human uMale

ObjectUnionOf C1 t · · · t Cn Doctor t Lawyer

ObjectComplementOf ¬C ¬Male

ObjectOneOf {a1} t · · · t {an} {john} t {mary}

ObjectAllValuesFrom ∀P .C ∀hasChild.Doctor

ObjectSomeValuesFrom ∃P .C ∃hasChild.Lawyer

ObjectMaxCardinality (≤ n P ) (≤ 1 hasChild)

ObjectMinCardinality (≥ n P ) (≥ 2 hasChild)

· · ·

Note: all constructs come also in the Data... instead of Object...
variant.
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DL axioms vs. OWL axioms

OWL axiom DL syntax Example

SubClassOf C1 v C2 Human v Animal u Biped

EquivalentClasses C1 ≡ C2 Man ≡ Human uMale

DisjointClasses C1 v ¬C2 Man v ¬Female

SameIndividual {a1} ≡ {a2} {presBush} ≡ {G.W.Bush}

DifferentIndividuals {a1} v ¬{a2} {john} v ¬{peter}

SubObjectPropertyOf P1 v P2 hasDaughter v hasChild

EquivalentObjectProperties P1 ≡ P2 hasCost ≡ hasPrice

InverseObjectProperties P1 ≡ P−2 hasChild ≡ hasParent−

TransitiveObjectProperty P+ v P ancestor+ v ancestor

FunctionalObjectProperty (functional P ) (functional hasFather)

· · ·
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Conjunctive queries (CQs)

Which query language to use? we need a decidable query language more
expressive than simple concept (or role) expressions.

A conjunctive query (CQ) is a first-order query of the form

q(~x)← ∃~y.R1(~x, ~y) ∧ · · · ∧Rk(~x, ~y)

where each Ri(~x, ~y) is an atom using (some of) the distinguished
variables ~x, the non-distinguished variables ~y, and possibly constants.

We will also use the simpler Datalog notation:

q(~x)← R1(~x, ~y), . . . , Rk(~x, ~y)

A union of CQs (UCQ) is e set of CQs.

Note:

Correspond to SQL/relational algebra select-project-join (SPJ)
queries – the most frequently asked queries.
They can also be written as SPARQL queries.
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Example of conjunctive query

Professor v Faculty
AssocProf v Professor

Dean v Professor
∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor
(functional isHeadOf)

(functional isHeadOf−)

...

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← ∃f, c, d, ad .
worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf ) ∧ name(d,nd) ∧
age(f, af ) ∧ age(d, ad) ∧ af = ad
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Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x)← ∃~y. conj (~x, ~y) a CQ.

Def.: The answer to q(~x) over I, denoted qI

. . . is the set of tuples ~c of constants of A such that the formula
∃~y. conj (~c, ~y) evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(~x) over O = 〈T ,A〉, denoted
cert(q,O)

. . . are the tuples ~c of constants of A such that ~c ∈ qI , for every
model I of O.

Note: if q is boolean, i.e., q is an existential sentence, we write O |= q

iff q evaluates to true in every model I of O, O 6|= q otherwise.
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Data complexity

Various parameters affect the complexity of query answering over an
ontology.

Depending on which parameters we consider, we get different
complexity measures:

Data complexity: only the size of the ABox (i.e., the data)
matters.
TBox and query are considered fixed.

Schema complexity: only the size of the TBox (i.e., the schema)
matters.
ABox and query are considered fixed.

Combined complexity: no parameter is considered fixed.

In the integration setting, the size of the data largely dominates the
size of the conceptual layer (and of the query).
; Data complexity is the relevant complexity measure.
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Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (2) This is what we
need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?
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Inference in query answering

cert(q, 〈T ,A〉)

Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the
contribution of A from the contribution of q and T .

; Query answering by query rewriting.
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Query rewriting

rewriting
Perfect

(under OWA)
Query

(under CWA)

evaluation

q

T

A cert(q, 〈T ,A〉)

rq,T

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query
rq,T (called the perfect rewriting of q w.r.t. T ).

2 Query evaluation: evaluate rq,T over the ABox A seen as a
complete database (and without considering the TBox T ).
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .
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Language of the rewriting

The expressiveness of the ontology language affects the query
language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL (query answering is
FOL-rewritable)
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
; Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
; Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
; Query evaluation requires (at least) power of Disjunctive
Datalog.
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The DL-Lite family

A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data.

Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

The same complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice computational
properties.

We present DL-LiteR, a member of the DL-Lite family.

DL-LiteR essentially corresponds to OWL2 QL, one of the three
candidates OWL2 Profiles.

Extends (the DL fragment of) the ontology language RDFS.
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DL-LiteA ontologies

TBox assertions:

Concept inclusion assertions: Cl v Cr , with:

Cl −→ A | ∃Q
Cr −→ A | ∃Q | ¬A | ¬∃Q
Q −→ P | P−

Property inclusion assertions: Q v R, with:

R −→ Q | ¬Q

ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Note: DL-LiteR can be straightforwardly adapted to distinguish also
between object and data properties (attributes).
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Semantics of DL-LiteR

Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d, e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \AI

conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child P I ⊆ ∆I ×∆I

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆I ×∆I) \QI

conc. incl. Cl v Cr Father v ∃child ClI ⊆ CrI

role incl. Q v R hasFather v child− QI ⊆ RI

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , cI2 ) ∈ P I

DL-LiteR (as all DLs of the DL-Lite family) adopts the Unique Name
Assumption (UNA), i.e., different individuals denote different objects
(we will come back on this aspect in Part 2 and Part 3).
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Capturing basic ontology constructs in DL-LiteR

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of properties ∃P v A1 ∃P− v A2

Mandatory participation (min card = 1) A1 v ∃P A2 v ∃P
−

ISA between properties Q1 v Q2

Disjointness between properties Q1 v ¬Q2

Note: DL-LiteR cannot capture completeness of a hierarchy. This would
require disjunction (i.e., OR).

Note2: DL-LiteR cannot capture functionality on roles (max card = 1)
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Example

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor

...
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Query answering in DL-LiteR

We study answering of (U)CQs over DL-LiteR ontologies via query
rewriting.

We first consider query answering over satisfiable ontologies, i.e., that
admit at least one model.

Then, we show how to exploit query answering over satisfiable ontologies
to establish ontology satisfiability.

Remark

we call positive inclusions (PIs) assertions of the form

Cl v A | ∃Q
Q1 v Q2

whereas we call negative inclusions (NIs) assertions of the form

Cl v ¬A | ¬∃Q
Q1 v ¬Q2
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Query answering in DL-LiteR (cont’d)

Given a CQ q and a satisfiable ontology O = 〈T ,A〉, we compute
cert(q,O) as follows

1 using T , reformulate q as a union rq,T of CQs.

2 Evaluate rq,T directly over A managed in secondary storage via a
RDBMS.

Correctness of this procedure shows FOL-rewritability of query
answering in DL-LiteR
; Query answering over DL-LiteR ontologies can be done using
RDMBS technology.
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Query answering in DL-LiteR: Query rewriting

Intuition: Use the PIs as basic rewriting rules

q(x) ← Professor(x)

AssProfessor v Professor
as a logic rule: Professor(z) ← AssProfessor(z)

Basic rewriting step:

when the atom unifies with the head of the rule.

substitute the atom with the body of the rule.

Towards the computation of the perfect rewriting, we add to the input
query above the following query

q(x) ← AssProfessor(x)

We say that the PI AssProfessor v Professor applies to the atom
Professor(x).
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Query answering in DL-LiteR: Query rewriting (cont’d)

Consider now the query

q(x) ← teaches(x, y)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

We add to the reformulation the query

q(x) ← Professor(x)
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Query answering in DL-LiteR: Query rewriting (cont’d)

Conversely, for the query

q(x) ← teaches(x, databases)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

teaches(x, databases) does not unify with teaches(z1, z2), since the
existentially quantified variable z2 in the head of the rule does not
unify with the constant databases.

In this case the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished

q(x, y) ← teaches(x, y)
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Query answering in DL-LiteR: Query rewriting (cont’d)

An analogous behavior with join variables

q(x) ← teaches(x, y),Course(y)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

The PI above does not apply to the atom teaches(x, y).

Conversely, the PI

∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

applies to the atom Course(y).

We add to the perfect rewriting the query

q(x) ← teaches(x, y), teaches(z, y)
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Query answering in DL-LiteR: Query rewriting (cont’d)

We now have the query

q(x) ← teaches(x, y), teaches(z, y)

The PI Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

does not apply to teaches(x, y) nor teaches(z, y), since y is in join.

However, we can transform the above query by unifying the atoms
teaches(x, y), teaches(z1, y). This rewriting step is called reduce, and
produces the following query

q(x) ← teaches(x, y)

We can now apply the PI above, and add to the reformulation the query

q(x) ← Professor(x)
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Answering by rewriting in DL-LiteR: The algorithm

1 Rewrite the CQ q into a UCQs: apply to q in all possible ways the
PIs in the TBox T .

2 This corresponds to exploiting ISAs, role typings, and mandatory
participations to obtain new queries that could contribute to the
answer.

3 Unifying atoms can make applicable rules that could not be applied
otherwise.

4 The UCQs resulting from this process is the perfect rewriting rq,T .

5 rq,T is then encoded into SQL and evaluated over A managed in
secondary storage via a RDBMS, to return the set cert(q,O).

Notice that NIs play no role in the process above: when the ontology
is satisfiable, we can ignore NIs and answer queries as NIs were
not specified in T .
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Query answering in DL-LiteR: Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x, y),Course(y)

Perfect Rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches(z, y)
q(x)← teaches(x, z)
q(x)← Professor(x)

ABox: teaches(John, databases)
Professor(Mary)

It is easy to see that the evaluation of rq,T over A in this case produces
the set {John, Mary}.
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Satisfiability of ontologies with only PIs

Let us now attack the problem of establishing whether an ontology is
satisfiable.

A first notable result says us that PIs alone cannot generate ontology
unsatisfiability.

Theorem

Let O = 〈T ,A〉 be either a DL-LiteR ontology, where T contains only
PIs. Then, O is satisfiable.
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DL-LiteR ontologies

Unsatisfiability in DL-LiteR ontologies can be however caused by NIs

Example: TBox T : Professor v ¬Student
∃teaches v Professor

ABox A: teaches(John, databases)
Student(John)
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Checking satisfiability of DL-LiteR ontologies

Let O = 〈T ,A〉, and TP be the set of PIs in T .

For each NI N between concepts (resp. roles) in T , we ask 〈TP ,A〉 if
there exists some individual (resp. pair of individuals) that contradicts N ,
i.e., we pose over 〈TP ,A〉 a boolean CQ qN such that 〈TP ,A〉 |= qN iff
〈TP ∪ {N},A〉 is unsatisfiable.

To verify if 〈TP ,A〉 |= qN we use the query rewriting algorithm for CQs
over satisfiable DL-LiteR ontologies, i.e., we compute the perfect
rewriting rqN ,TP

, and evaluate it (in fact its SQL encoding) over A seen
as a database.

O is unsatisfiable iff there exists a NI N ∈ T such that the evaluation of
rqN ,TP

over A seen as a database returns true.

Satisfiability of a DL-LiteR ontology is reduced to evaluation of a UCQs over

A. ; Ontology satisfiability in DL-LiteR can be done using RDMBS

technology.
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Example

PIs TP : ∃teaches v Professor

NI N : Professor v ¬Student

Query qN : q()← Student(x),Professor(x)

Perfect Rewriting rq,TP
: q()← Student(x),Professor(x)

q()← Student(x), teaches(x, y)

ABox A: teaches(John, databases)
Student(John)

It is easy to see that rq,TP
evaluates to true over A, and that therefore

O is unsatisfiable.
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Complexity of reasoning in DL-LiteR

Ontology satisfiability and all classical DL reasoning tasks are:

Efficiently tractable in the size of TBox (i.e., PTime).

Very efficiently tractable in the size of the ABox (i.e., LogSpace).

Query answering for CQs and UCQs is:

PTime in the size of TBox.

LogSpace in the size of the ABox.

Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteR?

By adding essentially any other DL construct, e.g., union (t), value
restriction (∀R.C), etc., without some limitations we lose these nice
computational properties (see later).
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Beyond DL-LiteR: results on data complexity

lhs rhs funct.
Prop.
incl.

Data complexity
of query answering

0 DL-LiteR − √
in LogSpace

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√ − NLogSpace-hard
4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√ − PTime-hard
7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P− √ √

PTime-hard
9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

Giving up property inclusions from DL-LiteR allows for having functional roles,
remaining in LogSpace (cf. DL-LiteF ). Prop. incl. and funct. can be also used
together (cf. DL-LiteA), provided that functional properties are not specialized.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT tAF suffices! ; No hope of including covering constraints.
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Data integration

Data integration is the problem of providing unified and transparent
access to a set of autonomous and heterogeneous sources.

From [Bernstein & Haas, CACM Sept. 2008]:

Large enterprises spend a great deal of time and money on information
integration (e.g., 40% of information-technology shops’ budget).

Market for data integration software estimated to grow from $2.5 billion
in 2007 to $3.8 billion in 2012 (+8.7% per year)
[IDC. Worldwide Data Integration and Access Software 2008-2012
Forecast. Doc No. 211636 (Apr. 2008)]

Data integration is a large and growing part of science, engineering, and
biomedical computing.
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Ontology-based data integration:
conceptual layer & data layer

Ontology-based data integration is based on the idea of decoupling information
access from data storage.

ontology-based data integration

sources

q

sources

sources

ontologyontontolooloologygygy

conceptual layer

sousousousourcercercercesrces sousousourcercerces

sousourcessou
data layer

Clients access only the conceptual layer ... while the data layer, hidden to
clients, manages the data.
; Technological concerns (and changes) on the managed data become fully
transparent to the clients.
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Ontology-based data integration: architecture

ontology-based data integration

sources

q

sources

sources

ontology

Based on three main components:

Ontology, used as the conceptual layer to give clients a unified
conceptual “global view” of the data.

Data sources, these are external, independent, heterogeneous, multiple
information systems.

Mappings, which semantically link data at the sources with the ontology
(key issue!)
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Ontology-based data integration: the conceptual layer

The ontology is used as the conceptual layer, to give clients a unified
conceptual global view of the data.

ontology-based data integration

sources

q

sources

sources

ontology

Note: in standard information systems, UML Class Diagram or ER is used at
design time, ...
... here we use ontologies at runtime!
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Ontology-based data integration: the sources

Data sources are external, independent, heterogeneous, multiple information
systems.

ontology-based data integration

sources

q

sources

sources

ontology

By now we have industrial solutions for:

Distributed database systems & Distributed query optimization

Tools for source wrapping

Systems for database federation, e.g., IBM Information Integrator
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Ontology-based data integration: the sources

Data sources are external, independent, heterogeneous, multiple information
systems.

ontology-based data integration

sources

q

sources

sources

ontology

Based on these industrial solutions we can:

1 Wrap the sources and see all of them as relational databases.

2 Use federated database tools to see the multiple sources as a single one.

; We can see the sources as a single (remote) relational database.
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Ontology-based data integration: mappings

Mappings semantically link data at the sources with the ontology.

ontology-based data integration

sources

q

sources

sources

ontology

Scientific literature on data integration in databases has shown that ...

... generally we cannot simply map single relations to single elements of the
global view (the ontology) ...

... we need to rely on queries!
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Ontology-based data integration: mappings

Mappings semantically link data at the sources with the ontology.

ontology-based data integration

sources

q

sources

sources

ontology

Several general forms of mappings based on queries have been considered:

GAV: map a query over the source to an element in the global view
– most used form of mappings

LAV: map a relation in the source to a query over the global view
– mathematically elegant, but difficult to use in practice (data in the
sources are not clean enough!)

GLAV: map a query over the sources to a query over the global view
– the most general form of mappings

This is a key issue (more on this later).
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Ontology-based data integration: incomplete information

It is assumed, even in standard data integration, that the information
that the global view has on the data is incomplete!

ontology-based data integration

sources

q

sources

sources

ontology

Important

Ontologies are logical theories ;

they are perfectly suited to deal with
incomplete information!

m7m7m7m7m7m7

m6

m5

m3m7m7m7m7m7

m4

m3m3m3m3

m2
m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4

m1

=

ontology

Query answering amounts to compute certain answers, given the global
view, the mapping and the data at the sources ...

... but query answering may be costly in ontologies (even without
mapping and sources).
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Ontology-based data integration: the DL-Lite solution

ontology-based data integration

sources

q

sources

sources

ontology

We require the data sources to be wrapped and presented as relational
sources. ; “standard technology”

We make use of a data federation tool, such as IBM Information
Integrator, to present the yet to be (semantically) integrated sources as a
single relational database. ; “standard technology”

We make use of the DL-Lite technology presented above for the
conceptual view on the data, to exploit effectiveness of query
answering. ; “new technology”
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Ontology-based data integration: the DL-Lite solution

ontology-based data integration

sources

q

sources

sources

ontology

Are we done? Not yet!

The (federated) source database is external and independent from the
conceptual view (the ontology).

Mappings relate information in the sources to the ontology. ; sort of
virtual ABox

We use GAV (global-as-view) mappings: the result of an (arbitrary) SQL
query on the source database is considered a (partial) extension of a
concept/role.

Moreover, we properly deal with the notorious impedance mismatch
problem!
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Impedance mismatch problem

The impedance mismatch problem

In relational databases, information is represented in forms of
tuples of values.

In ontologies (or more generally object-oriented systems or
conceptual models), information is represented using both objects
and values ...

... with objects playing the main role, ...

... and values a subsidiary role as fillers of object’s attributes.

; How do we reconcile these views?

Solution: We need constructors to create objects of the ontology out
of tuples of values in the database.
Note: from a formal point of view, such constructors can be simply
Skolem functions!
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Impedance mismatch – Example

empCode: Integer

salary: Integer

Employee

 

 

projectName: String

Project

1..*

worksFor

1..*

Actual data is stored in a DB:
D1[SSN:String,PrName:String]

Employees and Projects they work for

D2[Code:String,Salary : Int]
Employee’s Code with salary

D3[Code:String,SSN:String]
Employee’s Code with SSN

. . .

From the domain analysis it turns out that:

An employee should be created from her SSN: pers(SSN)

A project should be created from its Name: proj(PrName)

pers and proj are Skolem functions.

If VRD56B25 is a SSN, then pers(VRD56B25) is an object term denoting a
person.
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Impedance mismatch: the technical solution

Creating object identifiers

Let ΓV be the alphabet of constants (values) appearing in the
sources.

We introduce an alphabet Λ of function symbols, each with an
associated arity, specifying the number of arguments it accepts.

To denote objects, i.e., instances of concepts in the ontology, we
use object terms of the form f(d1, . . . , dn), with f ∈ Λ of arity n,
and each di a value constant in ΓV .

; No confusion between the values stored in the database and the
terms denoting objects.
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Formalization of ontology with mappings to data sources

An ontology with mappings is characterized by a triple
Om = 〈T ,S,M〉 such that:

T is a TBox;

S is a (federated) relational database representing the sources;

M is a set of mapping assertions, each one of the form∗

Φ(~x) ; Ψ(f (~x), ~x)

where

Φ(~x) is an arbitrary SQL query over S, returning attributes ~x

Ψ(f (~x), ~x) is (the body of) a conjunctive query over T without
non-distinguished variables, whose variables, possibly occurring in
terms, i.e., f (~x), are from ~x.

∗Note: this is a form of GAV mapping
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Ontology with mappings – Example

TBox T (UML)

empCode: Integer

salary: Integer

Employee

 

 

projectName: String

Project

1..*

worksFor

1..*

federated schema of the DB S

D1[SSN:String,PrName:String]
Employees and Projects they work for

D2[Code:String,Salary : Int]
Employee’s Code with salary

D3[Code:String,SSN:String]
Employee’s Code with SSN

. . .

MappingM

M1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
workFor(pers(SSN), proj(PrName))

M2: SELECT SSN, Salary

FROM D2, D3

WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)
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Semantics

Def.: Semantics of mappings

We say that I= (∆I , ·I) satisfies Φ(~x) ; Ψ(f(~x), ~x) wrt a database S,
if for every tuple of values ~v in the answer of the SQL query Φ(~x) over
S, and for each ground atom X in Ψ(f(~v), ~v), we have that:

if X has the form A(s), then sI ∈ AI ;
if X has the form P (s1, s2), then (sI1 , sI2 ) ∈ P I .

Def.: Semantics of ontologies with mappings

I is a model of Om = 〈T ,S,M〉 if:

I is a model of T ;

I satisfies M wrt S, i.e., satisfies every assertion in M wrt S.

Def.: The certain answers to q(~x) over Om = 〈T ,S,M〉. . .

. . . denoted cert(q,Om), are the tuples ~c of constants of S such that
~c ∈ qI , for every model I of Om.

D. Lembo,R. Rosati Ontology-based data integration in OWL2QL ESWC’09 – May 31, 2009 (77/89)



DL-LiteR query answering for data integration

Given a (U)CQ q and Om = 〈T ,S,M〉 (assumed satisfiable, i.e., there
exists at least one model for Om), we compute cert(q,Om) as follows:

1 Using T , reformulate CQ q as a union rq,T of CQs.

2 UsingM, unfold rq,T to obtain a union unfold(rq,T ) of CQs.

3 Evaluate unfold(rq,T ) directly over S using RDBMS technology.

Correctness of this algorithm shows FOL-reducibility of query answering.
; Query answering can again be done using RDBMS technology.
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Example – query rewriting

TBox T (UML)

empCode: Integer

salary: Integer

Employee

 

 

projectName: String

Project

1..*

worksFor

1..*

TBox T (DL-LiteR)

Employee v ∃worksFor
∃worksFor v Employee
∃worksFor− v Project

Project v ∃worksFor−

...

Consider the query q(x)← worksFor(x, y)

the perfect rewriting is

rq,T = q(x) ← worksFor(x, y)
q(x) ← Employee(x)
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Example – splitting the mapping

To compute unfold(rq,T ), we first split M as follows (always possible, since queries
in the right-hand side of assertions in M are without non-distinguished variables):

M1,1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN))

M1,2: SELECT SSN, PrName

FROM D1

; Project(proj(PrName))

M1,3: SELECT SSN, PrName

FROM D1

; projectName(proj(PrName), PrName)

M1,4: SELECT SSN, PrName

FROM D1

; workFor(pers(SSN), proj(PrName))

M2,1: SELECT SSN, Salary

FROM D2, D3

WHERE D2.Code = D3.Code

; Employee(pers(SSN))

M2,2: SELECT SSN, Salary

FROM D2, D3

WHERE D2.Code = D3.Code

; salary(pers(SSN), Salary)
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Example – unfolding

Then, we unify each atom of the query

rq,T = q(x) ← worksFor(x, y)
q(x) ← Employee(x)

with the right-hand side of the assertion in the split mapping, and substitute
such atom with the left-hand side of the mapping

q(pers(SSN)) ← SELECT SSN, PrName

FROM D1

q(pers(SSN)) ← SELECT SSN, Salary

FROM D2, D3

WHERE D2.CODE = D3.CODE

The construction of object terms can be pushed into the SQL query, by
resorting to SQL functions to manipulate strings (e.g., string concat).
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Example – SQL query over the source database

SELECT concat(concat(’pers (’,SSN),’)’)

FROM D1

UNION

SELECT concat(concat(’pers (’,SSN),’)’)

FROM D2, D3

WHERE D2.Code = D3.Code
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Computational complexity of query answering

Theorem

Query answering in a DL-LiteR ontology with mappings
O = 〈T ,S,M〉 is

1 NP-complete in the size of the query.

2 PTime in the size of the TBox T and the mappingsM.

3 LogSpace in the size of the database S, in fact FOL-rewritable.

Can we move to LAV or GLAV mappings?
Yes, but we have to strongly limit the form of the queries in the
mapping (essentially CQs over both the sources and the ontology), if we
want to stay in LogSpace.
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Overview

1. limitations of OWL

2. OWL2 profiles

3. OWL2 QL
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Limitations of OWL DL

• OWL DL (as well as OWL Lite) has inherently intractable worst-

case complexity...

– both with respect to the size of the TBox (schema complexity) 

� EXPTIME/NEXPTIME-hard

– and with respect to the size of the ABox (instance/data 

complexity) � coNP-hard

• this indicates (at the theoretical level) that reasoning over OWL DL 

ontologies cannot scale up

• what about reasoning in real ontologies using real OWL 

reasoners?
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Limitations of OWL DL reasoners

performance of OWL-DL reasoners:

• “practically good” for the intensional level

– the size of a TBox is not likely to scale up too much

• not very good for the extensional level 

– unable to handle instances (ABoxes) of (very) large size...

• ...especially for answering expressive queries (e.g., conjunctive 

queries)

• very recent efforts to fill this gap in OWL reasoners (e.g., RacerPro)
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Handling very large ABoxes

why are these tools so bad with (very) large ABoxes?

two main reasons:

• current algorithms are mainly derived by algorithms defined for 

purely intensional tasks

– no real optimization for ABox services

• these algorithms work in main memory 

– bottleneck for very large instances

• query answering is not a standard reasoning task in DL

– systems have been optimized for standard tasks (consistency, 

concept subsumption, instance checking)
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Limitations of OWL DL

• how to overcome these limitations if we want to build data-intensive 

Semantic Web applications?

• possible solution: limit the expressive power of the ontology 

language

– the idea is sacrifice part of the expressiveness of the ontology

language to have more efficient ontology tools

• within the OWL2 initiative, this idea has been formalized through the 

so-called OWL2 profiles
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OWL2 profiles

OWL2 profiles = three “tractable fragments” of OWL2 DL:

• OWL2 EL

• OWL2 QL

• OWL2 RL

These languages have been designed with different purposes:

• OWL2 EL is tailored for applications employing ontologies that 

contain very large numbers of classes and/or properties

• OWL2 QL is tailored for applications that use very large volumes of 

instance data, and where query answering is the most important 

reasoning task 

• OWL2 RL is tailored for applications that “require scalable reasoning 

without sacrificing too much expressive power”
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OWL2 QL

• officially, OWL2 QL stands for... OWL2 QL  ;-)

• informally, OWL2 QL can be read as “Query-oriented OWL2 fragment”

• “OWL2 QL is designed so that data (assertions) that are stored in a 

standard relational database system can be queried through an 

ontology via a simple rewriting mechanism, i.e., by rewriting the query 

into an SQL query that is then answered by the RDBMS system, 

without any changes to the data” [OWL2 Profiles, W3C Working Draft]

• OWL2 QL can be seen as a “maximal fragment” of OWL2 DL

having the above property (when the query language is union of

conjunctive queries)

• as we have seen in part 1, this property corresponds to first-order 

(FOL) rewritability of unions of conjunctive queries

• FOL rewritability � SQL rewritability
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OWL2 QL

query Q’

(SQL)
Query 

expander
DBMS

ABox

query Q

(UCQ)

TBox

answers to Q’



Ontology-based data integration in OWL2 QL OWL2 QL - 10

Syntax of OWL2 QL

class expressions are of two kinds: subclass and superclass expressions

subclassExpression � superclassExpression

• subclass expressions = DL-Lite concept expressions:

– class name (atomic concept, including owl:Thing)    A

– unqualified existential quantification �R

• superclass expressions:

– subclass expression    A or �R

– negation of a subclass expression   ¬A or ¬�R

– conjunction of subclass expressions   C � D

– qualified existential quantification �R.C

property expressions (same as in DL-Lite and OWL/OWL2):

– property name R

– inverse of a property name  R-
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OWL2 QL Axioms

• subclass axioms (SubClassOf) 

• class expression equivalence (EquivalentClasses) 

• class expression disjointness (DisjointClasses) 

• inverse object properties (InverseObjectProperties) 

• property inclusion (SubObjectPropertyOf and SubDataPropertyOf) 

• property equivalence (EquivalentObjectProperties and 
EquivalentDataProperties) 

• property domain (ObjectPropertyDomain and DataPropertyDomain) 

• property range (ObjectPropertyRange and DataPropertyRange) 

• disjoint properties (DisjointObjectProperties and DisjointDataProperties) 

• symmetric properties (SymmetricObjectProperty) 

• reflexive properties (ReflexiveObjectProperty) 

• irreflexive properties (IrreflexiveObjectProperty) 

• asymmetric properties (AsymmetricObjectProperty) 

• assertions (DifferentIndividuals, ClassAssertion, 
ObjectPropertyAssertion, and DataPropertyAssertion) 
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OWL2 QL vs. DL-LiteR : Syntax

essentially, OWL2 QL corresponds to DL-LiteR

only significant addition to the TBox language:

• qualified existential quantification in superclass expressions: 

B� �R.C

– e.g.: all students are enrolled in a math course:

student� �EnrolledInCourse.Math

this is not a “real” language extension: 

• qualified existential quantification can be actually simulated 

(encoded) in DL-LiteR through the use of auxiliary properties
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OWL2 QL vs. DL-LiteR : Syntax

essentially, OWL2 QL corresponds to DL-LiteR

other small additions to the TBox language:

• distinction between objects and values and use of xsd datatypes

– classes vs. datatypes 

(datatypes are a subset of xsd: (XML Schema) types)

– object properties vs. data properties

• conjunction in superclass expressions (syntactic sugar)

• property axioms (reflexive, irreflexive, asymmetric)

• owl:Thing
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OWL2 QL vs. DL-LiteR: Semantics

semantics:

• is the same as DL-LiteR...

• …except for one aspect: Unique Name Assumption (UNA)

• UNA = different individuals denote different domain elements

• UNA is adopted in DL-Lite

• UNA is not adopted in OWL/OWL2 and thus neither in OWL2 QL

• however, this semantic difference does not affect any of the main 

reasoning tasks (i.e., reasoning in OWL2 QL is independent of the 

UNA)

• (at the end of part 3 we will come back to this aspect)
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OWL2 QL TBox: Example

TBox of the UML diagram of part 1:

SubClassOf(Professor Faculty)

SubClassOf(Dean Professor)

SubClassOf(AssocProfessor Professor)

DisjointClasses(Dean AssocProfessor)

ObjectPropertyDomain(isHeadOf Dean)

ObjectPropertyRange(isHeadOf College)

SubObjectPropertyOf(isHeadOf worksFor)

InverseObjectProperties(isHeadOf hasHead)

SubClassOf(Dean ObjectSomeValuesFrom(isHeadOf owl:Thing))

SubClassOf(College ObjectSomeValuesFrom(hasHead owl:Thing))

ObjectPropertyDomain(worksFor Faculty)

ObjectPropertyRange(worksFor College)

InverseObjectProperties(worksFor hasMember)

SubClassOf(Faculty ObjectSomeValuesFrom(worksFor owl:Thing))

SubClassOf(College ObjectSomeValuesFrom(hasMember owl:Thing))
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OWL2 QL TBox: Example (contd.)

TBox of the UML diagram of part 1:

SubClassOf(Faculty ObjectSomeValuesFrom(isAdvisedBy owl:Thing))

InverseObjectProperties(isAdvisedBy advises)

SubClassOf(Professor ObjectSomeValuesFrom(advises owl:Thing))

ObjectPropertyDomain(isAdvisedBy Faculty)

ObjectPropertyRange(isAdvisedBy Professor)

DataPropertyDomain(age Faculty)

DataPropertyRange(age xsd:int)

DataPropertyDomain(facultyName Faculty)

DataPropertyRange(facultyName xsd:string)

DataPropertyDomain(collegeName College)

DataPropertyRange(collegeName xsd:string)
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OWL2 QL vs. RDFS

• OWL2 QL essentially captures RDFS:

– RDFS classes = classes

– RDFS properties = properties

– rdfs:subClassOf = class inclusion

– rdfs:subPropertyOf = property inclusion

– rdfs:domain = property domain

– rdfs:range = property range

• but: OWL2 QL does not allow for meta-modeling (first-order 
language)

• DL-Lite extends RDFS:

– “exact” role domain and range 

– concept and role disjointness 

– datatypes

– ...
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Overview

1. Expressive queries

– motivation

– EQL

– EQL-Lite

– EQL-Lite query answering in OWL2 QL

2. Constraints over OWL2 QL ontologies

– the notion of CBox

– denial and epistemic constraints

3. Equality in OWL2 QL

– functional roles

– equality assertions

– semantic issue: Unique Name Assumption 



1. Expressive queries 

over DL and OWL2 QL ontologies
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Motivation

• Good techniques for doing instance checking are known

– But DLs are poor query languages [Lenzerini-Schaerf-AAAI’91]

– Also, for most DLs, coNP-hard in data complexity

• Techniques for answering CQs and UCQs are known

– High complexity for expressive DLs  

– In LOGSPACE (same as SQL in DBs) for DL-Lite/OWL2 QL 

• What about going beyond UCQs?

– FOL/SQL queries over KB are undecidable

But, often users expect to have SQL-like query capabilities!!!
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Example

• TBox:

� edge- � Node

� edge � Node

RedN � Node

BlueN � Node

RedN � �BlueN

Node � RedN � BlueN

• ABox:

edge(a,b), edge(b,c),

edge(c,a), edge(c,d),

edge(a,c), edge(d,a)

RedN(b), BlueN(d)

a

c b

d
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q(x) :- � y, z. edge(x,y) � edge(y,z) � edge(z,x)

q(x) :- � y, z, w. edge(x,y) � edge(y,z) � edge(z,w)

Queries

x y z w

q(x,y,z) :- edge(x,y) � edge(y,z) � edge(z,x)

x y

z

x y

z

q(x) :- � y, z. edge(x,y) � edge(y,z) � edge(z,x) � (BlueN(y) � RedN(z))

x y

z
x y

z
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q(x,y) :- edge(x,y) � � z. (edge (z,x) � edge(z,y))

q(x) :- � y. BlueN(y) � �edge(x,y)

Queries

q(x,y) :- edge(x,y) � �� z. (edge (z,x) � edge(z,y)) 

x y

z

q() :- � x,y. (edge (x,y) � edge(y,x))

y x

x y

z
…

x y

… …

zz
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An experiment on relational databases

birthdatename

1942paul
1940john

1943george
nullrichard

Person

SQL query:

q(x):- � b.(Person(x,b) � b = 1940) �
� b.(Person(x,b) � b ≠ 1940)

Answer:
{john,paul,george}

What about richard? Since the DBMS doesn’t know his birthdate,

the DBMS can’t establish whether it is equal to 1940 or different

from 1940, hence the DBMS skips it!
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Epistemic Query Language (EQL)

• Let KB be a DL KB, intepreted over 

– a fixed domain ∆, and
– standard names

• EQL = FOL + epistemic operator (minimal knowledge) over KB

ϕ ::= A(t) 	 P(t1,…,tn) 	 t1 = t2 	 �ϕ 	
ϕ1 �ϕ2 	 � x.ϕ 	 Kϕ

A : concept name in KB
P : role/relation name in KB
t : constant in KB or variable

Cf:

• Levesque’s “Foundations of a Functional Approach to KR” [AIJ’84]

• Reiter’s “What should a DB know?” [JLP’92]

• Levesque & Lakemeyer’s “The Logic of KBs” [Book, 2001]

• Epistemic operator in DLs [Donini-Lenzerini-Nardi-Schaerf-Nutt-KR’92]
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EQL: semantics

• Let KB a KB and ϕ a EQL formula

• Epistemic interpretation E,w

– E is the set of all models of KB

– w is one such model

• ϕ true in E,w, written E,w � ϕ

E,w � Α(c) iff    c � Aw

E,w � P(c1,…,cn) iff   (c1,…,cn) � Pw

E,w � c1=c2 iff    c1=c2
E,w � �ϕ iff    E,w � ϕ
E,w � ϕ1 � ϕ2 iff    E,w � ϕ1  and E,w � ϕ2

E,w � � x.ϕ (x) iff    E,w � ϕ(c) for some c

E,w � Kϕ iff E,v � ϕ  for all v � E
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EQL: objective and subjective formulas

• Objective formulas

– no occurrence of K

– talk about what is true in the world
– example:� x, y. edge(x,y)

– E,w � ϕ reduces to w � ϕ

• Subjective formulas

– all atoms under the scope of K

– talk about what is known by the KB
– example:� x, y. K edge(x,y)

– E,w � ϕ reduces to E � ϕ

• Non-objective and non-subjective formulas

– talk about what is true in world in relation to what is known by
the KB

– example:� x, y. edge(x,y) � K edge(x,y)
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EQL: knowledge & logical implication

Fundamental property of EQL: minimal knowledge

KB � ϕ iff KB � Kϕ

KB � ϕ iff KB ��Kϕ

In other words:

– Kϕ can be read as ϕ is logically implied
– �Kϕ can be read as ϕ is not logically implied 

i.e.: �ϕ is satisfiable

Example:

Kedge(a,b) � Kedge(b,c) � Kedge(c,d)

can be read:

• edges (a,b), (b,c), (c,d) are known

• edges (a,b), (b,c), (c,d)  are logically implied

/
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EQL: queries

• EQL query:

q(x1,…,xn) :- ϕ(x1,…,xn)

• Answer:

ans(q, KB) = { (c1,…,cn) 	 KB � ϕ(c1,…,cn),   ci�∆ }
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EQL - CQs without existential variables

Example:

q(x,y,z) :- edge(x,y) � edge(y,z) � edge(z,x)

is equivalent to (since KB � ϕ    iff KB � Kϕ )

q(x,y,z) :- K(edge(x,y) � edge(y,z) � edge(z,x))

is equivalent to (since K distributes over ANDs)

q(x,y,z) :- Kedge(x,y) � Kedge(y,z) � Kedge(z,x)
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EQL-Lite(Q)

• Restriction on EQL, parametric wrt an objective query language Q

• EQL-Lite(Q) queries have the form (with α in Q)

ϕ ::= Kα 	 t1 = t2 	 �ϕ 	
ϕ1  �ϕ2 	 � x.ϕ

and are domain independent (cf. relational algebra)
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Example

• TBox:

� edge- � Node

� edge � Node

RedN � Node

BlueN � Node

RedN � �BlueN

Node � RedN � BlueN

• ABox:

edge(a,b)

edge(b,c)

edge(c,a)

edge(c,a)

edge(a,c)

edge(d,a)

RedN(b)

BlueN(d)

a

c b

d
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Example

• Query:

q(x) :- ���� y, z. edge(x,y) � RedN(y) �
edge(y,z) � BlueN(z) �

edge(z,x)

• Answer: {a}
a

c b

d

x y

z
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Example

• Query:

q(x) :- ���� y, z. K edge(x,y) � K RedN(y) �
K edge(y,z) � K BlueB(z) �

K edge(z,x)

• Answer: {} a

c b

d

x y

z
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Example

• TBox:

� edgeR- � Node

� edgeR � Node

� edgeB- � Node

� edgeB � Node

NodeRB � � edgeR

NodeRB � � edgeB

• ABox:

edgeB(a,a)

NodeRB(a)

a

NodeRB

edgeB

edgeR
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Queries

• Query:

q1(x) :- � y, z, w. edgeB(x,y) �

edgeR(x,z) � edgeR(y,z)

Answer: {a}

• Query:

q2(x,y,z) :- edgeB(x,y) �
edgeR(x,z) � edgeR(y,z)

Answer: {}

• Query:

q3(x) :- � y, z, w. K edgeB(x,y) �
K edgeR(x,z) � K edgeR(y,z)

Answer: {}

a

NodeRB

edgeB

edgeR
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EQL-Lite(Q): main result

• A Q query α is ΚΒ-range restricted iff ans(α,ΚΒ) is finite. 

• An EQL-Lite(Q) query is ΚΒ-range restricted iff all α appearing in 

it are ΚΒ-range restricted.

• Thm: if ans(α,ΚΒ) is finite, then it contains only individuals 

occurring in KB.

• Thm: Let KB be a KB expressed in the DL �
 and let C be the data 

complexity of answering queries in Q over KBs in �, then, 

answering a KB-range restricted EQL-Lite(Q) is in LOGSPACEC

w.r.t. data complexity.
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EQL-Lite on UCQs in ���
���
���
���
 KB

• Q � UCQs

• KB � ��� (or variants)

• Answering UCQs is coNP-complete w.r.t. data complexity for ���

• Answering EQL-Lite queries is LOGSPACEcoNP
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EQL-Lite on UCQs in �����
�����
�����
�����
 KB

• Q � UCQs

• KB � �����

• Answering UCQs in ����� KBs is coNP-complete w.r.t. data 

complexity 

• Answering EQL-Lite queries is LOGSPACEcoNP
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EQL-Lite on UCQs  in ��
��
��
��
 KB

• Q � UCQs

• KB � �� (in fact any member of the �� family)

• Answering UCQs in �� KBs is PTIME-complete w.r.t. data 

complexity

• Answering EQL-Lite queries is PTIME-complete 
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EQL-Lite on UCQs in DL-Lite/OWL2QL KB

• Q � UCQs

• KB � DL-Lite (in fact any member of the DL-lite family)

• Answering UCQs in every DL-Lite is in LOGSPACE w.r.t. data 
complexity, actually UCQs are FOL rewritable

• Answering EQL-Lite(UCQ) queries in every DL-Lite (and thus in 
OWL2QL) is in LOGSPACE w.r.t. data complexity:

– actually, EQL-Lite(UCQ) queries are FOL reducible (and 
thus rewritable in SQL):

• external EQL-Lite query = SQL query, with one SQL 
subquery for every UCQ q within the scope of a K operator

• subquery for Kq = SQL query corresponding to the FOL 
rewriting of q with respect to the DL-Lite/OWL2 QL TBox
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UCQ vs. EQL-Lite(UCQ)

• what can we express in EQL-Lite(UCQ) that is not expressible in 

UCQ?

• negation (difference):

– e.g.: return all non-working students:

– q(x) :- K Student(x) ∧ ¬K (∃z. WorksFor(x,y))

• universal quantification:

– e.g.: return all happy fathers, (happy father = father having all 

happy children)

– q(x) :- ∃y. K Father(x,y) ∧ ¬K (∃z. Father(x,z), unhappy(z))

• inequality, comparison operators, ...
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Summary

• EQL-Lite can be seen as a semantically well characterized 

approximation of FOL queries

• EQL-Lite is based on a controlled use of the epistemic (minimal 

knowledge) operator 

• Jumping from Q to EQL-Lite(Q) is (almost) for free

• EQL-Lite on UCQs over DL-Lite/OWL2 QL is FOL-rewritable (SQL!)

• EQL-Lite is very interesting also for modeling constraints over 

ontologies

• SparSQL = our concrete syntax for EQL-Lite(UCQ)

– external query written in SQL

– UCQs within K operators written in SPARQL (unions of basic 

graph patterns) 



2. Constraints over OWL2 QL 

ontologies



Ontology-based data integration in OWL2 QL Queries and constraints - 29

The Constraint Box (CBox)

• general idea: add a Constraint Box (CBox) to a DL knowledge 

base

• KB = (K, CB) where 

– K is a DL knowledge base 

– CB is a CBox

• the CBox contains intensional knowledge, like the TBox...

• ...but: both syntax and semantics of the CBox are “different”

from the TBox

• idea proposed in different forms in the past

– Reiter 1990

– Motik et al., 2007
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Constraints and queries

our view of a CBox: 

• a CBox is a set of constraints, where

constraint = negation of a query

• a constraints can be written as: query →→→→ false  (or: query →→→→ ⊥⊥⊥⊥ )

• given KB=(K,CB) where K DL knowledge base and CB is a CBox:

– an interpretation satisfies a constraint if the corresponding query 

is not satisfied (empty answer)

– the models of KB are the models of K that satisfy all constraints 

in CB 
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Denial and epistemic constraints

• first-order semantics:

– if query = UCQ, we speak of a denial constraint

• epistemic semantics:

– if query = EQL-Lite(UCQ) we speak of EQL-Lite constraints 

(or epistemic constraints)

• epistemic constraints follow the notion of integrity constraint for 

a knowledge base proposed in [Reiter 1990]
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Denial constraints

Examples:

consider an ontology with: 

– concept student

– roles Teaches, EnrolledInCourse, Father

(1) no student can be enrolled both in course c1 and course c2:

(�x. student(x) ∧ EnrolledInCourse(x,c1) ∧ EnrolledInCourse(x,c2)) → ⊥⊥⊥⊥

(2) no student can be enrolled in a course taught by her/his father:

(�x. student(x) ∧ EnrolledInCourse(x,y) ∧ Father(x,z) ∧ Teaches(z,y)) → ⊥⊥⊥⊥

notice: denial constraints must be satisfied by all domain elements 

(both named and unnamed individuals)
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Epistemic constraints

Examples:

(1) every student must be enrolled either in course c1 or in course c2:

(�x. K student(x) ∧

¬K(EnrolledInCourse(x,c1) ∨ EnrolledInCourse(x,c2)) ) → ⊥⊥⊥⊥

(2) every student that is not enrolled neither in course c1 nor in course c2

must be enrolled in course c3:

(�x. K student(x) ∧

¬K(EnrolledInCourse(x,c1) ∨ EnrolledInCourse(x,c2)) ∧

¬K EnrolledInCourse(x,c3) ) → ⊥⊥⊥⊥

notice: the above epistemic constraints must be satisfied by known 

(named) individuals only
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Reasoning in the presence of a CBox

in every DL:

• reasoning over a KB with CBox KB=(K,CB) can be reduced to 

query answering over K

• a preliminary step is needed which checks consistency of K with 

respect to the CBox:

– for every constraint C in the CBox, verify that the corresponding 

query Q(C) has an empty answer over K

– if K does not pass this test, then the overall KB is inconsistent

– otherwise, we can discard CB and proceed by reasoning over K

� adding this kind of CBox is “almost for free” in DL systems  

supporting (expressive) query answering
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Reasoning under CBox in OWL2 QL

• adding a CBox to DL-Lite/OWL2 QL ontologies does not increase 

the worst-case complexity of reasoning

– query answering (as well as all the other reasoning tasks) is still 

first-order (FOL) rewritable:

• UCQs are FOL-rewritable

• EQL-Lite(UCQ) queries are FOL rewritable

• most importantly, if in KB=(K,CB) K (and in particular its ABox) is 

static, the presence of the CBox CB in KB can be processed off-line 

(not at query evaluation time)



3. Equalities in DL-Lite/OWL2 QL
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Forms of equalities in DL-Lite

Can we speak about equality in DL-Lite?

• TBox: functional roles:

– functional(R) with R basic role

– this is a form of implication involving the equality predicate

– equivalent to the FOL sentence ∀∀∀∀x (R(x,y) ∧∧∧∧ R(x,z) → y=z)

• ABox: no equality assertion allowed in DL-Lite

– we cannot state that two names denote the same object

• e.g., we cannot state that a and b denote the same object 

(which is expressed in OWL by (a owl:sameAs b))

– why?

• because the semantics of DL-Lite is based on the Unique 

Name Assumption
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Unique Name Assumption (UNA)

Unique Name Assumption (UNA): 

– different individuals denote different objects

• in every model of the knowledge base, a and b denote different 

domain elements

• so the equality assertion (a owl:sameAs b) is always inconsistent 

with respect to the UNA

• thus, under the UNA, equality assertions are useless
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OWL2 QL and the UNA

• OWL2 (as well as OWL) does not adopt the UNA

• as an OWL2 profile, also OWL2 QL does not adopt the UNA

• but: OWL2 QL is actually “insensitive” to the Unique Name 

Assumption

• reasoning in OWL2 QL under UNA is the same as reasoning in 

OWL2 QL without UNA

• why? because OWL2 QL does not allow for expressing any form of 

equality in the knowledge base



Ontology-based data integration in OWL2 QL Queries and constraints - 40

Functional roles and OWL2QL

functional roles are not allowed in OWL2 QL

• why?

• because adding functional roles to OWL2 QL makes UCQs non-first-

order-rewritable

• i.e.: jump in the worst-case complexity of query answering

• and this query answering scheme is not feasible anymore:

query Q’

(SQL)
Query 

expander
DBMS

ABox

query Q

(UCQ)

TBox

answers to Q’
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DL-LiteA

• there are actually two members of DL-Lite which allow for 

expressing functional roles: 

– DL-LiteF

– DL-LiteA (which is a superset of DL-LiteF)

• essentially, DL-LiteA is an extension OWL2 QL with functional roles
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Functional roles cannot be specialized

• how does DL-LiteA overcome the computational problem due to 

functional roles?

• by imposing a syntactic restriction on the use of functional roles in 

role hierarchies:

– in DL-LiteA , functional roles cannot be specialized

– i.e., if R is declared functional, then no role R’ can be declared 
as a specialization of R (i.e., R’ � R is not allowed)

– under this restriction, UCQs are still first-order rewritable
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Functional roles cannot be specialized

if we adopt the same restriction, can we add functional roles to

OWL2 QL?

• the above restriction “works” only in the presence of the UNA

• without the UNA, even under this restriction, the presence of 

functional roles makes UCQs non-first-order rewritable anymore

• so it is impossible to add functional roles in OWL2 QL and retain 

FOL rewritability of UCQs without adopting the UNA 
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Beyond the Unique Name Assumption

what if we allow for owl:sameAs assertions in the ABox?

• again, we lose FOL rewritability of query answering

• but: we can think of techniques for handling equalities in an 
approximate (incomplete) way

• or, we can think of pre-processing the ABox, “materializing” (or 
“propagating”) all equalities

• however: the above pre-processing is likely to be unrealistic in 
ontology-based data integration 

• we should:

1. retrieve (off-line) all instance data from all sources

2. pre-process instances (propagating equalities) 

3. at query evaluation time, we can discard equalities

• step 1 may be impossible and/or computationally too expensive

• moreover, in dynamic scenarios, at step 3 instances may be different 
than those retrieved at step 1!!
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Summary

• we cannot actually add the above forms of equality to OWL2 QL 

without losing the nice computational properties of query answering

• no real surprise: the equality predicate is recursive and non-

expressible in FOL

• we can think of approximate (incomplete) ways for handling equality, 

without getting out of the FOL rewritability class
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Summary

• is “first-order rewritability” a real limit that cannot be surpassed by 

data-intensive ontologies? 

• real issue (open research problem)

• our opinion: 

– FOL rewritability = reuse of relational database technology for 

query processing

– more expressive ontologies/queries necessarily require support 

for (at least linear) recursion

– currently, there is no avaliable technology for recursive queries 

that is comparable to SQL technology

– that’s why FOL rewritability is so crucial for us (and for DL-Lite)...

– e.g., in a real “billion-triples” application with a very large number 

of instances and owl:sameAs assertions, an exact treatment of 

equality is something we currently cannot afford
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The QuOnto Reasoner

QuOnto is a tool for representing and reasoning over ontologies of the
DL-Lite family.

The basic functionalities it offers are:

Ontology representation
Ontology satisfiability check
Intensional reasoning services: concept/property subsumption and
disjunction, concept/property satisfiability
Query Answering of UCQs

Includes also support for:

Identification path constraints
Denial constraints
Epistemic queries (EQL-Lite on UCQs)
Epistemic constraints (EQL-Lite constraints)

Reasoning services are highly optimized

Can be used with internal and external DBMS (include drivers for Oracle,
DB2, IBM Information Integrator, SQL Server, MySQL, etc.)

Implemented in Java – API are available for selected projects upon request
D. Lembo,R. Rosati Ontology-based data integration in OWL2QL ESWC’09 – May 31, 2009 (4/14)



QuOnto wrapped versions

http://www.dis.uniroma1.it/~quonto/

Several wrapped versions publicly available at:
http://www.dis.uniroma1.it/~quonto/ (or just google
“quonto”)

ROWLkit: first implementation of the OWL2 QL Profile

QToolKit: simple graphical interface for using QuOnto to reason
over DL-Lite ontologies

DIG Server wrapper + OBDA Protégé plugin: for Ontology-based
Data Access and Integration through DL-Lite ontologies
by Mariano Rodriguez Muro, Univ. Bolzano
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ROWLkit

ROWLKit is a system with a simple GUI to reason over ontologies written in
OWL2 QL. At its core it uses QuOnto services enriched with additional
features to deal with OWL2 QL ontologies

It takes as input OWL2 QL ontologies through OWL API

ROWLKit main services are:

Ontology satisfiability check
Intensional reasoning services: concept/property subsumption and
disjunction, concept/property satisfiability
Query Answering of UCQs – expressed in SPARQL

ROWLKit is written in JAVA and embeds the H2 JAVA relational DBMS for the
storage (in main memory) of ABoxes and their querying (support to storage in
mass memory is also provided)
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QToolKit

QToolKit is a simple graphical interface for representing and reasoning over
DL-Lite ontologies relying on the QuOnto reasoner

It takes as input DL-Lite ontologies specified in the standard OWL
functional-style syntax, suitably restricted for DL-Lite

QToolKit allows for using all QuOnto reasoning capabilities. In particular, it
allows for answering UCQs (expressed in Datalog or SPARQL) and epistemic
queries (EQL-Lite on UCQs) (expressed in SparSQL) over DL-LiteA ontologies
possibly equipped with identification path constraints, denial and epistemic
constraints

QToolKit stores the ABox in an internal database (no connection to external
DBs).
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DIG Server wrapper + OBDA Protégé plugin

QuOnto offers a DIG 1.1 interface through which it is possible to exploit the
mapping capabilities provided by the QuOnto technology and specify
mappings between DL-LiteA ontologies and data managed by external systems
(e.g., Oracle, DB2, IBM Information Integrator, etc.)

An open source plugin for Protégé that extends the ontology editor with
facilities to design Mappings towards those external DBMS is available

The plugin can be used as a client for QuOnto DIG interface and allows for
specifying and querying DL-LiteA ontologies with mappings

Currently available for Protégé 3.3, a version of the plugin for Protégé 4 will be
distributed soon
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The Case Study

We will show how to access

an actual large database of the University of Rome “La Sapienza”,
storing information on professors, students, exams, course
assignments, etc. of the school of engineering, referring to the
years 1990–1999.. . .

. . . through the university domain ontology provided by the Lehigh
University BenchMark (LUBM)
(http://swat.cse.lehigh.edu/projects/lubm/).
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The LUBM Ontology

In fact LUBM consists of a university domain ontology expressed in OWL,
customizable and repeatable synthetic data, a set of test queries, and
several performance metrics.

In this case study we make use only of (an adapted version of) the
ontology. Such ontology can be almost completely specified in
DL-Lite/OWL2 QL and suitably connected through mappings to the
SAPIENZA’s database.

Furthermore, to better model the domain of interest of “La Sapienza”, we
enriched the ontology with (few) additional concepts and roles (e.g., to
model exams passed by students).
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The SAPIENZA’s database

About 250.000 tuples stored in 29 tables in the DBMS MySQL.
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Example of Mapping Assertion

SELECT professor.CODE AS PROFCODE, university.CODE AS UNIVCODE

FROM professor university

Professor(prof($PROFCODE)) worksFor(prof($PROFCODE) univ($UNIVCODE))

FROM professor, university

WHERE university.DESCRIPTION = 'Sapienza'

Professor(prof($PROFCODE)), worksFor(prof($PROFCODE),univ($UNIVCODE))
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