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Description Logics

Description Logics are logics specifically designed to represent and
reason on structured knowledge:

The domain is composed of objects and is structured into:

� concepts, which correspond to classes, and denote sets of
objects

� roles, which correspond to (binary) relationships, and denote
binary relations on objects

The knowledge is asserted through so-called assertions, i.e., logical
axioms.
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Description language

A description language indicates how to form concepts and roles,
and is characterized by a set of constructs for building complex
concepts and roles starting from atomic ones.
Formal semantics is given in terms of interpretations.

An interpretation I = (∆I , ·I) consists of:

� a nonempty set ∆I , the domain of I
� an interpretation function ·I , which maps

I each individual c to an element cI of ∆I

I each atomic concept A to a subset AI of ∆I

I each atomic role P to a subset PI of ∆I ×∆I

The interpretation function is extended to complex concepts and
roles according to their syntactic structure.
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Description Logics ontology (or knowledge base)

Is a pair O = 〈T ,A〉, where T is a TBox and A is an ABox:

Description Logics TBox

Consists of a set of assertions on concepts and roles:

� Inclusion assertions on concepts: C1 v C2

� Inclusion assertions on roles: R1 v R2

� Property assertions on (atomic) roles: e.g., (functional P)

Description Logics ABox

Consists of a set of membership assertions on individuals:

� for concepts: A(c)

� for roles: P(c1, c2) (we use ci to denote individuals)
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The DL-Lite family

� A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data.

� Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

I The same complexity as relational databases.
I In fact, query answering can be delegated to a relational DB

engine.
I The DLs of the DL-Lite family are essentially the maximally

expressive ontology languages enjoying these nice
computational properties.

� We present DL-LiteA, an expressive member of the DL-Lite
family.

� DL-LiteA provides robust foundations for Ontology-Based
Data Access.
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DL-LiteA ontologies

TBox assertions:

� Class (concept) inclusion assertions: B v C , with:

B −→ A | ∃Q
C −→ B | ¬B

� Property (role) inclusion assertions: Q v R, with:

Q −→ P | P−

R −→ Q | ¬Q

� Functionality assertions: (funct Q)

� Proviso: functional properties cannot be specialized.

ABox assertions: A(c), P(c1, c2), with c1, c2 constants

Note: DL-LiteA distinguishes also between object and data
properties (ignored here).
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Semantics of DL-LiteA
Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d , e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \ AI

conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child PI ⊆ ∆I ×∆I

inverse role P− child− {(o, o′) | (o′, o) ∈ PI}
role negation ¬Q ¬manages (∆I ×∆I) \ QI

conc. incl. B v C Father v ∃child BI ⊆ CI

role incl. Q v R hasFather v child− QI ⊆ RI

funct. asser. (funct Q) (funct succ) ∀d , e, e′.(d , e) ∈ QI ∧ (d , e′) ∈ QI

→ e = e′

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P(c1, c2) child(bob, ann) (cI1 , c
I
2 ) ∈ PI

DL-LiteA (as all DLs of the DL-Lite family) adopts the Unique Name
Assumption (UNA), i.e., different individuals denote different objects.
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Capturing basic ontology constructs in DL-LiteA

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of properties ∃P v A1 ∃P− v A2

Mandatory participation (min card = 1) A1 v ∃P A2 v ∃P−

Functionality of relations (max card = 1) (funct P) (funct P−)

ISA between properties Q1 v Q2

Disjointness between properties Q1 v ¬Q2

Note 1: DL-LiteA cannot capture completeness of a hierarchy.
This would require disjunction (i.e., OR).

Note2: DL-LiteA can be extended to capture also min cardinality
constraints (A v≤ nQ) and max cardinality constraints
(A v≥ nQ) (not considered here for simplicity).
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Example

name: String
age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 
name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v ∃age
∃age− v xsd:integer

(funct age)

∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor
(funct isHeadOf)

(funct isHeadOf−)
...
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Observations on DL-LiteA

� Captures all the basic constructs of UML Class Diagrams
and of the ER Model . . .

� . . . except covering constraints in generalizations.

� Is the logical underpinning of OWL2 QL, one of the OWL 2
Profiles.

� Extends (the DL fragment of) the ontology language RDFS.

� Is completely symmetric w.r.t. direct and inverse properties.

� Does not enjoy the finite model property, i.e., reasoning
and query answering differ depending on whether we consider
or not also infinite models.
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Semantics of a Description Logics knowledge base

The semantics is given by specifying when an interpretation I
satisfies an assertion:

� C1 v C2 is satisfied by I if CI1 ⊆ CI2 .

� R1 v R2 is satisfied by I if RI1 ⊆ RI2 .

� A functional assertion (functional P) is satisfied by I if the
relation PI is a (partial) function.

� A(c) is satisfied by I if cI ∈ AI .

� P(c1, c2) is satisfied by I if (cI1 , c
I
2 ) ∈ PI .
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Models of a Description Logics ontology

Model of a DL knowledge base

An interpretation I is a model of O = 〈T ,A〉 if it satisfies all
assertions in T and all assertions in A.

O is said to be satisfiable if it admits a model.

The fundamental reasoning service from which all other ones can
be easily derived is . . .

Logical implication

O logically implies and assertion α, written O |= α, if α is
satisfied by all models of O.
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TBox reasoning

� Concept Satisfiability: C is satisfiable wrt T , if there is a
model I of T such that CI is not empty, i.e., T 6|= C ≡ ⊥.

� Subsumption: C1 is subsumed by C2 wrt T , if for every
model I of T we have CI1 ⊆ CI2 , i.e., T |= C1 v C2.

� Equivalence: C1 and C2 are equivalent wrt T if for every
model I of T we have CI1 = CI2 , i.e., T |= C1 ≡ C2.

� Disjointness: C1 and C2 are disjoint wrt T if for every model
I of T we have CI1 ∩ CI2 = ∅, i.e., T |= C1 u C2 ≡ ⊥.

Analogous definitions hold for role satisfiability, subsumption,
equivalence, and disjointness.
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Reasoning over a DL ontology

� Ontology Satisfiability: Verify whether an ontology O is
satisfiable, i.e., whether O admits at least one model.

� Concept Instance Checking: Verify whether an individual c
is an instance of a concept C in O, i.e., whether O |= C (c).

� Role Instance Checking: Verify whether a pair (c1, c2) of
individuals is an instance of a role R in O, i.e., whether
O |= R(c1, c2).

� Query Answering: see later . . .
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Complexity of reasoning over DL ontologies

Reasoning over DL ontologies is much more complex than
reasoning over concept expressions:

� Bad news:

I without restrictions on the form of TBox assertions, reasoning
over DL ontologies is already ExpTime-hard, even for very
simple DLs.

� Good news:

I We can add a lot of expressivity (i.e., essentially all DL
constructs seen so far), while still staying within the ExpTime
upper bound.

I There are DL reasoners that perform reasonably well in
practice for such DLs (e.g, Hermit, Pellet, Racer, Fact++, . . . )
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Queries over DL ontologies

� Ontology-based Query Answering: answering queries over
TBox + ABox

� query languages:
conjunctive queries (CQ), unions of CQ (UCQ)

� CQ: expression of the form

q(t1, . . . , tn) ← α1, . . . , αm

(head) (body)

I αi is either a concept atom C (t) or a role atom R(t1, t2)
I every term ti is either a variable or an individual name
I every variable occurring in the head also occurs in the body
I n (number of arguments in the head) is the arity of the CQ

� UCQ: set of CQs of the same arity

� Boolean (U)CQ: CQs without variables in the head

� semantics: certain answers
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Certain answers to a query

Let O = 〈T ,A〉 be an ontology, I an interpretation for O, and
q(~x)← conj(~x , ~y) a CQ.

Def.: The answer to q(~x) over I, denoted qI

. . . is the set of tuples ~c of constants of A such that the
formula ∃~y . conj(~c, ~y) evaluates to true in I.

We are interested in finding those answers that hold in all models
of an ontology.

Def.: The certain answers to q(~x) over O = 〈T ,A〉,
denoted cert(q,O)

. . . are the tuples ~c of constants of A such that ~c ∈ qI , for
every model I of O.

Note: when q is boolean, we write O |= q iff q evaluates to true in
every model I of O, O 6|= q otherwise.
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Example of conjunctive query

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v ∃age
∃age− v Integer

∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

...

name: String
age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 
name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af , nd) ←
worksFor(f , c) ∧ isHeadOf(d , c) ∧ name(f , nf ) ∧ name(d , nd) ∧
age(f , af ) ∧ age(d , ad) ∧ af = ad
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Conjunctive queries and SQL – Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p, n),

age(p, a)

Query: return name, age, and name of dean of all faculty that
have the same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name

FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD

WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND

W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf , af , nd) ← worksFor(f1 , c1), isHeadOf(d1 , c2),
name(f2 , nf ), name(d2 , nd), age(f3 , af ), age(d3 , ad),
f1 = f2 , f1 = f3 , d1 = d2 , d1 = d3 , c1 = c2 , af = ad
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OBQA vs. QA over relational databases (summary)

similarities:

� ABox = database instance

� TBox = integrity constraints over the DB schema (e.g., keys,
foreign keys)

� UCQ is a subclass of relational algebra and SQL
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OBQA vs. QA over relational databases (summary)

differences:

� syntax: DB allows for predicates of arbitrary arity, only
unary and binary predicates allowed by DL

� syntax: different classes of axioms/constraints allowed

� semantics: OWA vs. CWA

I DB assumes data is complete
I DL assumes the ABox (and the TBox too) is an incomplete

specification of the world
I DB has a single model (the DB istance itself)
I KB has multiple models

� semantics: finite vs. infinite interpretation structures

I DB interpreted over a finite model, KB interpreted over
(possibly) infinite models
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Query answering under different assumptions

There are fundamentally different assumptions when addressing
query answering in different settings:

� traditional database assumption

� knowledge representation assumption

Note: for the moment we assume to deal with an ordinary ABox,
which however may be very large and thus is stored in a database.
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Query answering under the database assumption

� Data are completely specified (CWA), and typically large.

� Schema/intensional information used in the design phase.

� At runtime, the data is assumed to satisfy the schema, and
therefore the schema is not used.

� Queries allow for complex navigation paths in the data (cf.
SQL).

; Query answering amounts to query evaluation, which is
computationally easy.
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Query answering under the database assumption (cont’d)

Reasoning

ResultQuery

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering under the database assumption – Example

  
Professor

CollegeworksFor
 

Faculty

For each class/property we have a (complete) table in the
database.
DB: Faculty = { john, mary, paul }

Professor = { john, paul }
College = { collA, collB }
worksFor = { (john,collA), (mary,collB) }

Query: q(x) ← Professor(x),College(c),worksFor(x , c)

Answer: { john }

{
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Query answering under the KR assumption

� an ontology imposes constraints on the data.

� actual data may be incomplete or inconsistent w.r.t. such
constraints.

� the system has to take into account the constraints during
query answering, and overcome incompleteness or
inconsistency.

� implicit answers (besides the ones explicitly stored in the
data) can be retrieved

; Query answering amounts to logical inference, which is
computationally more costly.

Note:

� Size of the data is not considered critical (comparable to the size of
the intensional information).

� Queries are typically simple, i.e., atomic (a class name), and query
answering amounts to instance checking.
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Query answering under the KR assumption (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology
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Query answering under the KR assumption – Example

  
Professor

CollegeworksFor
 

Faculty

The tables in the database may be incompletely specified, or
even missing for some classes/properties.
DB: Professor ⊇ { john, paul }

College ⊇ { collA, collB }
worksFor ⊇ { (john,collA), (mary,collB) }

Query: q(x) ← Faculty(x)

Answer: { john, paul, mary }

{
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Query answering under the KR assumption – Example 2

 
Person

 

hasFather
1..*

Each person has a father, who is a person.

DB: Person ⊇ { john, paul, toni }
hasFather ⊇ { (john,paul), (paul,toni) }

Queries: q1(x , y) ← hasFather(x , y)
q2(x)← hasFather(x , y)
q3(x)← hasFather(x , y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x , y3)← hasFather(x , y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,paul), (paul,toni) }

{

to q2: { john, paul, toni }

{

to q3: { john, paul, toni }

{

to q4: { }

{
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Complexity of OBQA

Various parameters affect the complexity of query answering over
an ontology. We get different complexity measures:

� Data complexity: only the size of the ABox matters.
TBox and query are considered fixed.

� Schema complexity: only the size of the TBox matters.
ABox and query are considered fixed.

� Combined complexity: no parameter is considered fixed.

In the OBDA setting, we assume that the size of the data largely
dominates the size of the conceptual layer (and of the query).

; We consider data complexity as the relevant complexity
measure.
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Some decidability and complexity results

� CARIN [Levy & Rousset, 1996]: decidability of CQ answering
in ALCNR

� decidability of CQ answering in DLR [Calvanese et al., 1998]

� tractability (FO-rewritability) of CQ answering in DL-Lite
[Calvanese et al., 2005;2007]

� complexity of CQ answering in the extended DL-Lite family
[Artale et al., 2009]

� tractability of CQ answering in EL [Lutz, 2007; R., 2007]

� tractability of CQ answering in Horn-SHIQ [Eiter et al.,
2008]

� complexity of CQ answering for expressive non-Horn DLs
[Lutz, 2008]

� SHIQ, SHOIQ [Glimm et al, 2008; Ortiz et al., 2009; Glimm
et al., 2014]

� decidability of CQ answering in OWL 2 still unknown
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Query answering techniques

Query answering in OBQA requires to derive implicit extensional
information using the TBox

One can think of solving OBQA through this simple strategy:

1. first “expand” the ABox computing all the extensional
consequences of the TBox and the ABox

2. then, discard the TBox and evaluate (in the standard
database way) the query on the ABox

Unfortunately, for many DLs this might be too expensive, or even
impossible
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Expanding the ABox

Example in DL-LiteA:

T = {Person v ∃hasFather, ∃hasFather− v Person}
A = {Person(joe)}

Expansion of A:

A1 = A ∪ {hasFather(joe, n1)} due to Person v ∃hasFather
A2 = A1 ∪ {Person(n1)} due to ∃hasFather− v Person
A3 = A2 ∪ {hasFather(a, n2)} due to Person v ∃hasFather
A4 = A3 ∪ {Person(n2)} due to ∃hasFather− v Person
A5 = . . .

In this case, an ABox A′ such that, for every CQ q,
ans(q,A′) = cert(q, 〈T ,A〉), must necessarily be infinite
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The chase and the canonical model

� this expansion of A w.r.t. T is called the chase of 〈T ,A〉
� the chase produces a so-called canonical model of 〈T ,A〉,

i.e., an ABox A′ such that, for every CQ q,
ans(q,A′) = cert(q, 〈T ,A〉)

� the canonical model always exists for DL-LiteA and for all
Horn DLs

� however, for DL-LiteA (and for many other Horn DLs) the
canonical model may be infinite (due to the presence of cyclic
inclusion axioms in the TBox)

� for non-Horn DLs, the canonical model does not exist as
soon as there are “disjunctive” axioms in the TBox

� in DLs, the existence of the canonical model is tightly related
to the tractability of conjunctive query answering (w.r.t. data
complexity)
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To materialize or not to materialize?

� for the above reasons, many approaches to OBQA do not
materialize the canonical model

� instead, they adopt an alternative reasoning strategy based on
query rewriting

� main advantage: data structures are not changed by
OBQA, the approach is completely virtual

� from now on, we will focus on these approaches

� however, interesting approaches take a combined approach
that mix (partial) materialization of the canonical model with
query rewriting

� in this way it is also possible to go beyond FO-rewritable
languages [Lutz et al., 2009;2010;2013]
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Inference in query answering

cert(q, 〈T ,A〉)
Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the
contribution of A from the contribution of q and T .

; Query answering by query rewriting.
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Query rewriting

rewriting
Perfect

(under OWA)
Query

(under CWA)

evaluation

q

T

A cert(q, 〈T ,A〉)

rq,T

Query answering can always be thought as done in two phases:

1. Perfect rewriting: produce from q and the TBox T a new
query rq,T (called the perfect rewriting of q w.r.t. T ).

2. Query evaluation: evaluate rq,T over the ABox A seen as a
complete database (and without considering the TBox T ).
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in

which to express the rewriting rq,T .
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Query rewriting (cont’d)

Reasoning

Rewritten 
Query

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology
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Language of the rewriting

The expressiveness of the ontology language affects the query
language into which we are able to rewrite CQs:

� When we can rewrite into FOL/SQL.
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in AC0).

� When we can rewrite into an NLogSpace-hard language.
; Query evaluation requires (at least) linear recursion.

� When we can rewrite into a PTime-hard language.
; Query evaluation requires full recursion (e.g., Datalog).

� When we can rewrite into a coNP-hard language.
; Query evaluation requires (at least) power of Disjunctive
Datalog.
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Complexity of query answering in DLs
The rewriting problem is related to complexity of query
answering.

Studied extensively for (unions of) CQs and various ontology
languages:

Combined complexity Data complexity

Plain databases NP-complete AC0 (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction.
(2) This is what we need to scale with the data.

Questions

� Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in AC0)?

� If yes, can we leverage relational database technology for
query answering?
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Query rewriting for OBQA

Overview:

� query rewriting for DL-LiteA:

I query rewriting for ontology satisfiability
I query rewriting for query answering
I PerfectRef
I Presto
I Requiem
I Rapid
I incremental query rewriting

� a glimpse beyond DL-LiteA
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Query rewriting for DL-LiteA: Rewriting query atoms

� chase of the ABox = forward chaining
query rewriting = backward chaining

� essentially, most query rewriting techniques iteratively apply a
resolution rule to “expand” the initial query

� e.g., from axiom C v D, i.e., sentence ∀x(¬C (x) ∨ D(x))
and query q(x)← D(x)
through resolution we can derive the new query q(x)← C (x)

� resolution is specialized to the particular class of formulas
involved (TBox axioms, CQ)
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AtomRewrite: Rewriting query atoms in DL-LiteA

AtomRewrite rule: use every positive inclusion axiom as a
predicate rewriting rule (from right to left)
e.g.: AtomRewrite uses axiom C v D to derive C (x) from D(x)

Arguments are not affected by the rewriting (they are only
propagated)

We can rewrite a role using a concept only if the argument
projected out is an existential variable with a single occurrence in
the query

e.g.: in q(x)← R(x , y), S(x , z),D(z)

� we can apply C v ∃R to atom R(x , y) and generate atom
C (x)

� we cannot apply D v ∃S to atom S(x , z)
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AtomRewrite

� for each atom, AtomRewrite can generate at most a linear
number of rewritings (w.r.t. TBox size)

� but: the whole rewriting process generates an UCQ having an
exponential number of CQs w.r.t. the number of atoms of the
initial query
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Rewriting query atoms is not enough

Example:
TBox: T = {C v ∃R, R v S}
query: q(x , y)← R(x , z), S(y , z)

AtomRewrite can only rewrite S(y , z) producing R(y , z). So the
rewritten query q′ is

q′(x , y)← R(x , z), S(y , z)
q′(x , y)← R(x , z),R(y , z)

this UCQ is not a perfect rewriting:

ABox: A = {C (a)}

〈a, a〉 ∈ cert(q, 〈T ,A〉), while q′ has no answers over A

the CQ missed by the rewriting is q(x , x)← C (x)
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PerfectRef in a nutshell

PerfectRef [Calvanese et al., 2005] is an algorithm that takes as
input a DL-LiteA TBox T and a CQ q and returns an UCQ q′

q′ is computed starting from the UCQ Q = {q} and expanding Q
by exhaustively applying, to every CQ in Q, the following two
rewriting steps:

� AtomRewrite

� Reduce

the Reduce step takes as input a CQ q: if q contains two unifiable
atoms with MGU µ, it returns the query µ(q)
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PerfectRef in a nutshell

Example (cont.):

TBox: T = {C v ∃R, R v S}
query: q(x , y)← R(x , z), S(y , z)

1) an AtomRewrite step rewrites S(z , y) using C v ∃R, generating
the CQ

q(x , y)← R(x , z),R(y , z)

2) a Reduce step takes the above query and generates the CQ

q′(x , x)← R(x , z)

3) an AtomRewrite step takes the above query and (through
C v ∃R) generates the previously missing CQ

q′(x , x)← C (x)
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Query answering in DL-LiteA

� We study answering of UCQs over DL-LiteA ontologies via query
rewriting.

� We first consider query answering over satisfiable ontologies, i.e.,
that admit at least one model.

� Then, we show how to exploit query answering over satisfiable
ontologies to establish ontology satisfiability.

Remark
we call positive inclusions (PIs) assertions of the form

B1 v B2

Q1 v Q2

whereas we call negative inclusions (NIs) assertions of the form

B1 v ¬B2

Q1 v ¬Q2
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Query answering over satisfiable DL-LiteA ontologies

Theorem
Let q be a boolean UCQs and T = TPI ∪ TNI ∪ Tfunct be a TBox
s.t.

� TPI is a set of PIs
� TNI is a set of NIs
� Tfunct is a set of functionalities.

For each ABox A such that 〈T ,A〉 is satisfiable, we have that

〈T ,A〉 |= q iff 〈TPI,A〉 |= q.

Proof [intuition]

q is a positive query, i.e., it does not contain atoms with negation
nor inequality. TNI and Tfunct only contribute to infer new negative
consequences, i.e, sentences involving negation.

If q is non-boolean, we have that
cert(q, 〈T ,A〉) = cert(q, 〈TPI,A〉).
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Satisfiability of DL-LiteA ontologies

〈T , ∅〉 is always satisfiable. That is, inconsistency in DL-LiteA may
arise only when ABox assertions contradict the TBox.

〈TPI,A〉, where TPI contains only PIs, is always satisfiable. That
is, inconsistency in DL-LiteA may arise only when ABox assertions
violate functionalities or NIs.

Example: TBox T : Professor v ¬Student
∃teaches v Professor
(funct teaches−)

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

Violations of functionalities and of NIs can be checked separately!
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Satisfiability of DL-LiteA ontologies: Checking functs

Theorem
Let TPI be a TBox with only PIs, and (funct Q) a functionality
assertion. Then, for every ABox A, 〈TPI ∪ {(funct Q)},A〉 sat iff
A 6|= ∃x , y , z.Q(x , y) ∧ Q(x , z) ∧ y 6= z .

Proof [sketch]
〈TPI ∪ {(funct Q)},A〉 is satisfiable iff 〈TPI,A〉 6|= ¬(funct Q). This
holds iff A 6|= ¬(funct Q) (separability property – sophisticated proof).
From separability, the claim easily follows, by noticing that (funct Q)
corresponds to the FOL sentence ∀x , y , z.Q(x , y) ∧ Q(x , z)→ y = z .

For a set of functionalities, we take the union of sentences of the form
above (which corresponds to a boolean FOL query).

Checking satisfiability wrt functionalities therefore amounts to evaluate a

FOL query over the ABox.
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Example

TBox T : Professor v ¬Student
∃teaches v Professor
(funct teaches−)

The query we associate to the functionality is:

q()← teaches(x , y), teaches(x , z), y 6= z

which evaluated over the ABox

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

returns true.
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Satisfiability of DL-LiteA ontologies: Checking NIs

Theorem
Let TPI be a TBox with only PIs, and A1 v ¬A2 a NI. For every
ABox A, 〈TPI ∪ {A1 v ¬A2},A〉 sat iff
〈TPI,A〉 6|= ∃x.A1(x) ∧ A2(x).

Proof [sketch]
〈TPI ∪ {A1 v ¬A2},A〉 is satisfiable iff 〈TPI,A〉 6|= ¬(A1 v ¬A2). The
claim follows easily by noticing that A1 v ¬A2 corresponds to the FOL
sentence ∀x.A1(x)→ ¬A2(x).

The property holds for all kinds of NIs (A v ∃Q, ∃Q1 v ∃Q2, etc.)

For a set of NIs, we take the union of sentences of the form above (which
corresponds to a UCQ).

Checking satisfiability wrt NIs amounts to answering a UCQ over an

ontology with only PIs (this can be reduced to evaluating a UCQ over

the ABox – see later).
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Example

TBox T : Professor v ¬Student
∃teaches v Professor
(funct teaches−)

The query we associate to the NI is:

q()← Student(x),Professor(x)

whose answer over the ontology

∃teaches v Professor
teaches(John, databases)
Student(John)
teaches(Mark, databases)

is true.
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Checking satisfiability of DL-LiteA ontologies

Satisfiability of a DL-LiteA ontology O = 〈T ,A〉 is reduced to
evaluation of a first order query over A, obtained by uniting

(a) the FOL query associated to functionalities in T to

(b) the UCQs produced by a rewriting procedure (depending only
on the PIs in T ) applied to the query associated to NIs in T .

; Ontology satisfiability in DL-LiteA can be done using RDMBS
technology.
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Query answering in DL-LiteA: Query rewriting

To the aim of answering queries, from now on we assume that T
contains only PIs.

Given a CQ q and a satisfiable ontology O = 〈T ,A〉, we compute
cert(q,O) as follows

1. using T , reformulate q as a union rq,T of CQs.

2. Evaluate rq,T directly over A managed in secondary storage
via a RDBMS.

Correctness of this procedure shows FO-rewritability of query
answering in DL-LiteA
; Query answering over DL-LiteA ontologies can be done using
RDMBS technology.
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Query answering in DL-LiteA: Query rewriting (cont’d)

Intuition: Use the PIs as basic rewriting rules

q(x) ← Professor(x)

AssProfessor v Professor
as a logic rule: Professor(z) ← AssProfessor(z)

Basic rewriting step (AtomRewrite):
if the atom unifies with the head of the rule (with mgu σ)
replace the atom with the body of the rule (to which σ is applied).

Towards the computation of the perfect rewriting, we add to the
input query above the following query (σ = {z/x})

q(x) ← AssProfessor(x)

We say that the PI AssProfessor v Professor applies to the atom
Professor(x).
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Query answering in DL-LiteA: Query rewriting (cont’d)

Consider now the query

q(x) ← teaches(x , y)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

We add to the reformulation the query (σ = {z1/x , z2/y})

q(x) ← Professor(x)
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Query answering in DL-LiteA: Query rewriting (cont’d)

Conversely, for the query

q(x) ← teaches(x , databases)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

teaches(x , databases) does not unify with teaches(z1, z2), since
the existentially quantified variable z2 in the head of the rule
does not unify with the constant databases.

In this case the PI does not apply to the atom
teaches(x , databases).

The same holds for the following query, where y is distinguished

q(x , y) ← teaches(x , y)
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Query answering in DL-LiteA: Query rewriting (cont’d)

An analogous behavior with join variables

q(x) ← teaches(x , y),Course(y)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

The PI above does not apply to the atom teaches(x , y).

Conversely, the PI

∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

applies to the atom Course(y).

We add to the perfect rewriting the query (σ = {z2/y})

q(x) ← teaches(x , y), teaches(z1, y)
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Query answering in DL-LiteA: Query rewriting (cont’d)

We now have the query

q(x) ← teaches(x , y), teaches(z , y)

The PI Professor v ∃teaches (corresponding to the logic rule
teaches(z1, z2) ← Professor(z1)) does not apply to teaches(x , y)
nor teaches(z , y), since y is a join variable.

However, we can transform the above query by unifying the atoms
teaches(x , y), teaches(z1, y). This rewriting step is called Reduce,
and produces the query q(x) ← teaches(x , y)

We can now apply the PI above (sigma{z1/x , z2/y}), and add to
the reformulation the query q(x) ← Professor(x)
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Answering by rewriting in DL-LiteA: The algorithm

1. Rewrite the CQ q into a UCQs: apply to q in all possible ways
the PIs in the TBox T .

2. This corresponds to exploiting ISAs, role typings, and
mandatory participations to obtain new queries that could
contribute to the answer.

3. Unifying atoms can make applicable rules that could not be
applied otherwise.

4. The UCQs resulting from this process is the perfect
rewriting rq,T .

5. rq,T is then encoded into SQL and evaluated over A
managed in secondary storage via a RDBMS, to return the
set cert(q,O).
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Query answering in DL-LiteA: Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x , y),Course(y)

Perfect Rewriting: q(x)← teaches(x , y),Course(y)
q(x)← teaches(x , y), teaches(z , y)
q(x)← teaches(x , z)
q(x)← Professor(x)

ABox: teaches(John, databases)
Professor(Mary)

It is easy to see that the evaluation of rq,T over A in this case
produces the set {John, Mary}.
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Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:

� Efficiently tractable in the size of TBox (i.e., PTime).

� Very efficiently tractable in the size of the ABox (i.e., AC0).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FO-rewritability).

Query answering for CQs and UCQs is:

� PTime in the size of TBox.

� AC0 in the size of the ABox.

� Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.
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The weak side of the query rewriting approach

� main problem:
the size of the rewriting produced by PerfectRef is
exponential w.r.t. the size of the initial query

� this problem is actually unavoidable: in general, the perfect
rewriting of a CQ over a DL-LiteA TBox may be in the worst
case exponential, if the rewritten query is a UCQ

� the same holds even if we go beyond UCQ and allow for
arbitrary FO queries [Kikot et al., 2011;2012]

� using additional predicates/constants, it is possible to produce
polynomial perfect rewritings of CQs in nonrecursive Datalog
[Gottlob et al., 2012]

� nevertheless, several optimization of PerfectRef have been
proposed, to improve both the execution time of query
rewriting and the size of the rewritten query
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Requiem [Perez Urbina et al., 2006]

� through the Reduce step, PerfectRef solves incompleteness of
previous approaches

� however, the Reduce step is applied in a very naive, exhaustive
way

� in the vast majority of cases, this is not needed

� Requiem is an algorithm that improves this part of the
computation

� in addition, it provides a native treatment of qualified
existential restrictions

� the algorithm has then extended to more expressive DLs (up
to ELHIO)
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Requiem [Perez Urbina et al., 2006]

Main optimizations for DL-LiteA:

� single rewriting step: avoids unification steps separated from
resolution/rewriting step (as in Reduce)

I to do so, it first encodes the TBox into clauses with
functional terms

I then, it uses a specialized resolution rule for such clauses
I this allows for avoiding useless unification (Reduce) steps

I this is more effective mainly in the presence of qualified
existential restrictions (beyond DL-LiteA)

� also performs elimination of redundant CQs (through a CQ
containment check)
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Presto [R. et al., 2010]

Idea 1: divide computation of rewriting in two phases:

phase 1: elimination of existential join variables
purpose: make the Reduce step of PerfectRef totally
useless

phase 2: “unfolding”
corresponds to the application of AtomRewrite to the
query produced by phase 1

Idea 2: use nonrecursive Datalog instead of UCQ, at least for
internal representation of the query
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Elimination of join variables in Presto: Example

TBox: {D v ∃R, D v ∃S , R v S}
query: q(x)← C (x),R(x , z), S(x , z)

Question: can join variable z be eliminated? i.e., does z disappear
in some rewriting of this query?

The algorithm looks for (a specialized notion of) most general
subsumees (MGS) of the concept expressions ∃R, ∃S in the
TBox

In our example, D is an MGS of ∃R, ∃S (notice: axiom R v S is
actually necessary in order to conclude this)

The algorithm rewrites all the atoms where z occurs using the
MGS (and unification), producing a new query q(x)← C (x),D(x)

This corresponds to a sequence of AtomRewrite and Reduce steps
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Rapid [Chortaras et al., 2011]

� similar to Presto

� divides computation in two steps:

1. shrinking phase
same purpose as Presto: eliminate existential join variables

2. unfolding phase
again, corresponds to application of AtomRewrite

� additional optimization: generation of core rewritings

I no subsumed CQs in the final UCQ
I no redundant atoms in CQs
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Incremental query rewriting [Venetis et al., 2012]

� exploits the property that the rewritings of a query atom are
(mostly) independent on the other atoms of the query

� e.g., if Q is a (already computed) perfect rewriting of query
q ← body , the rewriting of query q ← body , α can be
obtained by rewriting atom α only and then combining such a
rewriting with Q

� it can also compute query rewritings from scratch, by rewriting
single query atoms and then combining the rewritings

� the performance is competitive with the previous algorithms
even when computing rewritings from scratch
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Other FO-rewritable ontology languages

Can we go beyond DL-LiteA?

Within DL:
By adding essentially any other DL construct, e.g., union (t),
value restriction (∀R.C ), etc., without some limitations we lose
these nice computational properties [Calvanese et al., 2006;Artale
et al., 2009]

Outside DL:
The following languages have been considered:

� n-ary extensions of DL (DLR-Lite)

� constraint languages for relational schemas:

I tuple-generating dependencies and equality-generating
dependencies (i.e., embedded database dependencies)

I a.k.a. Datalog+/−, existential rules
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Tuple-generating dependencies (TGDs)

� TGD = sentence of the form

∀x1, . . . , xk (α1 ∧ . . . ∧ αn → ∃y1, . . . , yh (β1 ∧ . . . ∧ βm))

where

I every αi is an atom whose terms are constants and variables
from {x1, . . . , xk}

I every βi is an atom whose terms are constants and variables
from {x1, . . . , xk y1, . . . , yh}

� TGDs generalize Horn-DLs

� in general, reasoning under TGDs is undecidable

� recent, notable amount of research on identifying
decidable/tractable/FO-rewritable subclasses of TGDs
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FO-rewritable classes of TGDs

� linear TGDs [Cal̀ı et al., 2003; Cal̀ı et al., 2009]

� multi-linear TGDs [Cal̀ı et al., 2009]

� sticky TGDs, sticky-join TGDs [Cal̀ı et al., 2010]

� domain-restricted TGDs [Baget et al., 2011]

� AGRD TGDs [Baget et al., 2011]

� weakly recursive TGDs [Civili et al., 2012]
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Query rewriting techniques outside DLs

� linear TGDs [Cal̀ı et al., 2003]

� DLR-Lite [Calvanese et al., 2007]

� sticky TGDs, sticky-join TGDs [Gottlob et al., 2011]

� more general algorithm for TGDs [König et al., 2012]

� ...
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FO-rewritability and the Unique Name Assumption

Remark: like DL-LiteA, all these languages adopt the Unique
Name Assumption

In the absence of UNA, FO-rewritability of CQs is lost as soon
as the ontology language allows for deriving equalities
between constants (individuals)

E.g., role functionality axioms in DL-LiteA may impose equalities
between constants (functionality of role R and the presence of
R(a, b) and R(a, c) in the ABox imply b = c)

In these cases, it would be necessary to encode the equality
predicate in the perfect rewriting of queries, which is not possible
using FO queries (since equality is a transitive property).
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Outline

Ontology-based Query Answering

The query rewriting approach

Query rewriting for OBQA

Ontology-based Data Access

Query rewriting for OBDA

Conclusions
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Data integration

Data integration is the problem of providing unified and
transparent access to a set of autonomous and heterogeneous
sources.

� Large enterprises spend a great deal of time and money on
information integration (e.g., 40% of information-technology shops’
budget).

� Large and increasing market for data integration software

� Data integration is a large and growing part of science, engineering,
and biomedical computing
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Ontology-based data access: conceptual & data layer

Ontology-based data access is based on the idea of decoupling
information access from data storage.

ontology-based data integration

sources

q

sources
sources

ontology

conceptual layer

data layer

Clients access only the conceptual layer ... while the data layer,
hidden to clients, manages the data.

; Technological concerns (and changes) on the managed data
become fully transparent to the clients.
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Ontology-based data access: architecture

ontology-based data integration

sources

q

sources
sources

ontology

Based on three main components:

� Ontology, used as the conceptual layer to give clients a unified
conceptual “global view” of the data.

� Data sources, these are external, independent, heterogeneous,
multiple information systems.

� Mappings, which semantically link data at the sources with the
ontology (key issue!)

Riccardo Rosati – Query answering and rewriting in OBDA 84/118



Ontology-based data access: the conceptual layer

The ontology is used as the conceptual layer, to give clients a
unified conceptual global view of the data.

ontology-based data integration

sources

q

sources
sources

ontology

Note: in standard information systems, UML Class Diagram or ER
is used at design time, ...
... here we use ontologies at runtime!
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Ontology-based data access: the sources

Data sources are external, independent, heterogeneous, multiple
information systems.

ontology-based data integration

sources

q

sources
sources

ontology

By now we have industrial solutions for:

� Distributed database systems & Distributed query optimization

� Tools for source wrapping

� Systems for database federation
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Ontology-based data access: the sources

Data sources are external, independent, heterogeneous, multiple
information systems.

ontology-based data integration

sources

q

sources
sources

ontology

Based on these industrial solutions we can:

1. Wrap the sources and see all of them as relational databases.

2. Use federated database tools to see the multiple sources as a single
one.

; We can see the sources as a single (remote) relational database.
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Ontology-based data access: mappings

Mappings semantically link data at the sources with the ontology.

ontology-based data integration

sources

q

sources
sources

ontology

Scientific literature on data integration in databases has shown that ...

... generally we cannot simply map single relations to single elements of
the global view (the ontology) ...

... we need to rely on queries!
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Ontology-based data access: mappings

ontology-based data integration

sources

q

sources
sources

ontology

Several general forms of mappings based on queries have been
considered:

� GAV: map a query over the source to an element in the global view
– most used form of mappings

� LAV: map a relation in the source to a query over the global view
– mathematically elegant, but difficult to use in practice (data in
the sources are not clean enough!)

� GLAV: map a query over the sources to a query over the global view
– the most general form of mappings
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Ontology-based data access: incomplete information

It is assumed, even in standard data integration, that the
information that the global view has on the data is incomplete!

ontology-based data integration

sources

q

sources
sources

ontology

Important

Ontologies are logical theories ;

they are perfectly suited to deal with
incomplete information!

m7
m6

m5
m3

m4
m2

m1

=

ontology

� Query answering amounts to compute certain answers, given the
global view, the mapping and the data at the sources ...

� ... but query answering may be costly in ontologies (even without
mapping and sources).
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Query answering in OBDA

We have to face the difficulties of both DB and KB assumptions:

� The actual data is stored in external information sources (i.e.,
databases), and thus its size is typically very large.

� The ontology introduces incompleteness of information, and
we have to do logical inference, rather than query evaluation.

� We want to take into account at runtime the constraints
expressed in the ontology.

� We want to answer complex database-like queries.

� We may have to deal with multiple information sources, and
thus face also the problems that are typical of data
integration.
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Ontology-based data access: the DL-Lite solution

ontology-based data integration

sources

q

sources
sources

ontology

� We require the data sources to be wrapped and presented as
relational sources. ; “standard technology”

� We make use of a data federation tool to present the yet to be
(semantically) integrated sources as a single relational database. ;

“standard technology”

� We make use of the DL-Lite technology presented above for the
conceptual view on the data, to exploit effectiveness of query
answering. ; “new technology”
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Ontology-based data access: the DL-Lite solution

ontology-based data integration

sources

q

sources
sources

ontology

Are we done? Not yet!

� The (federated) source database is external and independent from
the conceptual view (the ontology).

� Mappings relate information in the sources to the ontology. ;

define in fact a virtual ABox

We use GAV (global-as-view) mappings: the result of an (arbitrary)
SQL query on the source database is considered a (partial)
extension of a concept/role.

� Moreover, we properly deal with the notorious impedance
mismatch problem!
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Impedance mismatch problem

The impedance mismatch problem

� In relational databases, information is represented in forms
of tuples of values.

� In ontologies (or more generally object-oriented systems or
conceptual models), information is represented using both
objects and values ...

I ... with objects playing the main role, ...
I ... and values a subsidiary role as fillers of object’s attributes.

; How do we reconcile these views?

Solution: We need constructors to create objects of the ontology
out of tuples of values in the database.
Note: from a formal point of view, such constructors can be simply
Skolem functions!
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Impedance mismatch – Example

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

Actual data is stored in a DB:
D1[SSN: String,PrName: String]

Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s Code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

From the domain analysis it turns out that:

� An employee should be created from her SSN: pers(SSN)

� A project should be created from its Name: proj(PrName)

pers and proj are Skolem functions.

If VRD56B25 is a SSN, then pers(VRD56B25) is an object term
denoting a person.
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Impedance mismatch: the technical solution

Creating object identifiers

� Let ΓV be the alphabet of constants (values) appearing in the
sources.

� We introduce an alphabet Λ of function symbols, each with
an associated arity, specifying the number of arguments it
accepts.

� To denote objects, i.e., instances of concepts in the ontology,
we use object terms of the form f(d1, . . . , dn), with f ∈ Λ of
arity n, and each di a value constant in ΓV .

; No confusion between the values stored in the database and the
terms denoting objects.
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Formalization of OBDA

An OBDA specification is characterized by a triple
Om = 〈T ,S,M〉 such that:

� T is a TBox;

� S is a (federated) relational database schema representing the
sources, possibly with integrity constraints;

� M is a set of (GAV-style) mapping assertions, each one of
the form∗

Φ(~x) ; Ψ(f (~x), ~x)

where

I Φ(~x) is an arbitrary SQL query over S, returning attributes ~x
I Ψ(f (~x), ~x) is (the body of) a conjunctive query over T

without non-distinguished variables, whose variables,
possibly occurring in terms, i.e., f (~x), are from ~x .
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Formalization of OBDA

An OBDA system is a pair 〈Om,D〉 where

� Om is an OBDA specification Om = 〈T ,S,M〉

� D is a legal instance of schema S
(i.e., D satisfies the integrity constraints in S)
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OBDA specification – Example
TBox T (UML)

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

federated schema of the DB S
D1[SSN: String,PrName: String]

Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s Code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

Mapping M
M1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
workFor(pers(SSN), proj(PrName))

M2: SELECT SSN, Salary

FROM D2, D3
WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)
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Semantics

Def.: Semantics of mappings

We say that I= (∆I , ·I) satisfies Φ(~x) ; Ψ(f (~x), ~x) wrt a database S,
if for every tuple of values ~v in the answer of the SQL query Φ(~x) over S,
and for each ground atom X in Ψ(f (~v), ~v), we have that:

� if X has the form A(s), then sI ∈ AI ;

� if X has the form P(s1, s2), then (sI1 , s
I
2 ) ∈ PI .

Def.: Semantics of OBDA

I is a model of an OBDA system 〈Om,D〉 with Om = 〈T ,S,M〉 if:

� I is a model of T ;

� I satisfies M w.r.t. D, i.e., satisfies every assertion in M wrt D.
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Semantics

Def.: The certain answers to q(~x) over 〈Om,D〉. . .

. . . denoted cert(q,Om,D), are the tuples ~t of object terms and
constants from D such that ~t ∈ qI , for every model I of
〈Om,D〉.
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DL-LiteA query answering for data access

We do not consider inconsistent OBDA systems (it is possible to
check consistency of OBDA system)

Given a (U)CQ q, Om = 〈T ,S,M〉, and D (assumed satisfiable,
i.e., there exists at least one model for 〈Om,D〉), we compute
cert(q,Om,D) as follows:

1. Using T , reformulate CQ q as a union rq,T of CQs.

2. Using M, unfold rq,T to obtain a union unfold(rq,T ) of CQs.

3. Evaluate unfold(rq,T ) directly over D using RDBMS
technology.

Correctness of this algorithm shows FOL-reducibility of query
answering.

; Query answering can again be done using RDBMS
technology.
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Example – query rewriting

TBox T (UML)

empCode: Integer
salary: Integer

Employee

 

 
projectName: String

Project
1..*

worksFor
1..*

TBox T (DL-LiteA)
Employee v ∃worksFor
∃worksFor v Employee
∃worksFor− v Project

Project v ∃worksFor−

...

Consider the query q(x)← worksFor(x , y)

the perfect rewriting is

rq,T = q(x) ← worksFor(x , y)
q(x) ← Employee(x)
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Example – splitting the mapping

To compute unfold(rq,T ), we first split M as follows (always possible, since
queries in the right-hand side of assertions in M are without non-distinguished
variables):

M1,1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN))

M1,2: SELECT SSN, PrName

FROM D1

; Project(proj(PrName))

M1,3: SELECT SSN, PrName

FROM D1

; projectName(proj(PrName), PrName)

M1,4: SELECT SSN, PrName

FROM D1

; workFor(pers(SSN), proj(PrName))

M2,1: SELECT SSN, Salary

FROM D2, D3
WHERE D2.Code = D3.Code

; Employee(pers(SSN))

M2,2: SELECT SSN, Salary

FROM D2, D3
WHERE D2.Code = D3.Code

; salary(pers(SSN), Salary)
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Example – unfolding

Then, we unify each atom of the query

rq,T = q(x) ← worksFor(x , y)
q(x) ← Employee(x)

with the right-hand side of the assertion in the split mapping, and
substitute such atom with the left-hand side of the mapping

q(pers(SSN)) ← SELECT SSN, PrName

FROM D1
q(pers(SSN)) ← SELECT SSN, Salary

FROM D2, D3
WHERE D2.Code = D3.Code

The construction of object terms can be pushed into the SQL query, by
resorting to SQL functions to manipulate strings (e.g., string concat).
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Example – SQL query over the source database

SELECT concat(concat(’pers (’,SSN),’)’)

FROM D1
UNION

SELECT concat(concat(’pers (’,SSN),’)’)

FROM D2, D3
WHERE D2.Code = D3.Code
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Computational complexity of query answering

Theorem
Query answering in a DL-LiteA ontology with mappings
O = 〈T ,S,M〉 is

1. NP-complete in the size of the query.

2. PTime in the size of the TBox T and the mappings M.

3. AC0 in the size of the database S, in fact FO-rewritable.

Can we move to LAV or GLAV mappings?
No, if we want to have DL-LiteA TBoxes and stay in AC0!

Alternatively, we can have LAV or GLAV mappings, but we have to
renounce to use role functionalities in the TBox and limit the
form of the queries in the mapping (essentially CQs over both
the sources and the ontology), if we want to stay in AC0.
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Current OBDA systems

� Mastro [De Giacomo et al., 2012] implements the above query
answering technique

� Ontop [Rodriguez-Muro et al, 2013] implements a different
technique

main difference: saturation of mapping to reduce query
rewriting over the TBox

� Optique (under development) (EU project)

Remark: we are only considering systems able to deal with the
above rich mapping language, without materialization of the ABox

Riccardo Rosati – Query answering and rewriting in OBDA 109/118



The weak side of query rewriting in OBDA

� as discussed above, the rewriting of a query q w.r.t. TBox
may be exponential w.r.t. the size (number of atoms) of q

� in addition, the perfect rewriting of a CQ in OBDA has a
second exponential blowup which is due to the mapping

� example: consider an empty TBox and a mapping of the form

T1(x , y) ; R(x , y)
T2(x , y) ; R(x , y)

then the perfect rewriting of query
q(x1)← R(x1, x2), . . . ,R(xn, x1) consists of the UCQ⋃

j1,...,jn∈{1,2}

q(x1)← Tj1(x1, x2), . . . ,Tjn(xn, x1)

containing 2n CQs.
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The weak side of query rewriting in OBDA

� in practice, the bottleneck due to the mapping may be worse
than the one caused by the TBox

� e.g., if every predicate is associated with 10 mappings
assertions, then the mapping query rewriting of a query with
10 atoms produces a UCQ with 1010 CQs

� one possible way out is to merge mappings, generating only
one mapping for every ontology predicate

� e.g., in the previous example, the mapping would be
transformed as follows: T1(x , y) UNION T2(x , y) ; R(x , y)

� this complicates the structure of the final SQL expression
(additional nesting level of subqueries)

� DBMSs do not seem able to effectively deal with such more
complex query structures [Calvanese et al., 2012; Di Pinto et
al., 2013]
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The weak side of query rewriting in OBDA

optimizations to mitigate this problem have been proposed
recently, e.g.:

� use the form of the mapping and the database integrity
constraints to prune the rewritten query and/or reduce the
number of queries generated by the unfolding [Di Pinto et al,
2013]

� perform a merge (factorization) operation on mappings over
the same ontology predicate, when the structure of the SQL
queries involved is sufficiently simple and follows a common
pattern [Rodriguez-Muro et al., 2013]
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Some open problems in OBQA

� further optimization of OBQA query rewriting in DL-LiteA
and FO-rewritable languages

� query languages beyond UCQ:
I FO-queries

I under classical semantics, this in general implies that
FO-rewritability (or even decidability) is lost

I alternative semantics have been proposed, e.g., epistemic
semantics

I other classes of queries (SPARQL queries, RPQ and
extensions)
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Some open problems in OBQA

� FO-rewritability of languages is a nice theoretical tool... but it
would be important to go beyond DL-LiteA and FO-rewritable
languages while keeping query answering “practical”

� a lot of current work on this – some directions:

I studying FO-rewritability of single TBoxes

I ... and of single queries too

I approximating more expressive TBoxes to FO-rewritable
languages

I approximating query answers over more expressive TBoxes

I move to Datalog-rewritable languages and Datalog data
management systems

I ...
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Some open problems in OBDA

� current query rewriting algorithms for OBDA strictly sepatate
TBox processing and mapping processing

I further optimizations might be obtained by a more holistic
approach that considers the whole OBDA specification

� efficiency of OBDA query answering in OBDA heavily depends
on the underlying data management system and the data
structures

� however, current techniques are essentially independent of
such aspects

I further optimizations might be obtained by taking into account
these characteristics of the data layer
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Conclusions

� a lot of research on OBQA for DL-Lite

I several practical techniques
I “good” optimizations

� query answering and rewriting in OBDA is less developed

I more optimizations needed

� theoretical and practical limits of “FO-rewritability approach”
still not known

� query rewriting in OBQA and (especially) in OBDA still very
challenging

� a lot of potential applications of OBDA in the real world

� OPTIQUE European Project, www.optique-project.eu
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