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Abstract

In this paper we address a specific computational aspect
of belief revision: The size of the propositional formula
obtained by means of the revision of a formula with a new
one. In particular, we focus on the size of the smallest
formula equivalent to the revised knowledge base. The main
result of this paper is that not all formalizations of belief
revision are equal from this point of view. For some of them
we show that the revised knowledge base can be expressed
with a formula admitting a polynomial-space representation
(we call these results “compactability” results). On the other
hand we are able to prove that for other ones the revised
knowledge base does not always admit a polynomial-space
representation, unless the polynomial hierarchy collapses
at a sufficiently low level (“non-compactability” results).
The time complexity of query answering for the revised
knowledge base has definitely an impact on being able to
represent the result of the revision compactly. Nevertheless
formalisms with the same complexity may have different
compactability properties.

1 Introduction

Belief revision is a well-studied topic in the area of
advanced treatment of information. It has to do with
evolution of the state of a knowledge base: How does
our set of beliefs change when new information arrives?
Several researchers attempted at defining formalizations
of belief revision, answering to the following question.
Suppose we have a set of beliefs, represented by
propositional theory T ; at some point new information
arrives, let’s say propositional formula P . If T and P
are inconsistent, can we still infer something reasonable
from all the knowledge we have? In other words,
what are the logical consequences of theory T when
it is revised by formula P? In symbols, what is the
set of formulae Q such that T ∗ P |= Q? Proposed
formalizations of belief revision can be very different in

spirit, rely on different assumptions and have different
goals [Bor85, Dal88, FHV83, For89, Gin86, Neb91,
Sat88, Web86, Win90].

Other researchers [EG92, Neb91, Win90] focused on
computational properties of belief revision. As an
example, they addressed questions such as: Given
formulae T, P,Q and a suitable semantics for ∗, what
is the time complexity of deciding T ∗P |= Q? In which
cases polynomial algorithms exist?

Both aspects of belief revision (semantic and compu-
tational) are important from the theoretical as well as
the practical point of view.

In this paper we address a new specific computational
aspect of belief revision: The size of the revised theory
T ∗P . An informal description of our work follows. We
insist that T ∗P is represented as a propositional theory,
i.e., we want a propositional theory T ′ such that

{Q | T ′ |= Q} ≡ {Q | T ∗ P |= Q}, (1)

Q being any formula in which only symbols of T or
P occur. We call this property query equivalence, and
we say that a T ′ satisfying the above criterion is query
equivalent to T ∗ P .

The reason why we insist on T ∗ P being a propo-
sitional theory is twofold. From the epistemological
point of view, it seems reasonable that our set of be-
liefs keeps the format of its representation after being
revised. From the computational point of view, it would
be nice to split the task of deciding T ∗P |= Q into two
subtasks:

1. compute T ′ such that (1) holds;

2. decide T ′ |= Q.

There are two positive aspects in doing this: The first
subtask can be done off-line, i.e., not necessarily when
the query Q arrives. Moreover we could use the same
set of algorithms and heuristics both for subtask 2 and
for regular query answering.

A question now naturally arises: What is the size
of such a T ′? If the size of the smallest T ′ is super-
polynomial in the size of T plus the size of P the above
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mentioned approach to query answering is clearly not
practical. The main result of this paper is that not all
formalizations of belief revision are equal from this point
of view. For some of them (e.g., Dalal’s [Dal88]) we
show that T ′ admits a polynomial-space representation
(we call these results “compactability” results). On the
other hand we are able to prove that for other ones (e.g.,
Ginsberg’s [Gin86] and Forbus’ [For89]) T ′ does not
always admit a polynomial-space representation, unless
the polynomial hierarchy collapses at a sufficiently
low level (“non-compactability” results). The time
complexity of answering T ∗P |= Q on-line (T , Q and P
being the input) has definitely an impact on being able
to represent T ′ compactly, although formalisms with
the same complexity may have different compactability
properties.

Winslett addresses this problem in [Win90] for the
specific case in which the size of P is bounded by a
constant, showing several compactability results. We
give a complete analysis, proving that some formalisms
(e.g., Ginsberg’s) are not compactable even in this
restricted case, while other ones (e.g., Forbus’) are
compactable.

A further aspect we address is the representation of
a revised knowledge base using a form of equivalence
characterized by the following requirement

T ′ ≡ T ∗ P (2)

We call this property logical equivalence, and we say that
a T ′ satisfying the above criterion is logically equivalent
to T ∗P . Notice that a T ′ satisfying logical equivalence
(2) satisfies query equivalence (1) as well, but not the
other way around. Basically, query equivalence (1)
gives the possibility of introducing new propositional
letters. This has definitely an impact on compactability:
As an example, Dalal’s formalization admits compact
representations only according to criterion (1).

For what concerns non-compactability results, we use
concepts such as Turing machines with advice and non-
uniform complexity classes, as well as results relating
uniform and non-uniform complexity classes. In fact,
our results not only show unlikeliness of propositional
representations of revised theories, but are valid for any
“reasonable” (in the sense of Section 3.1) data struc-
ture. As for compactability results, we show effective
procedures for obtaining compact representations.

The structure of the paper is as follows: Section 2
contains definitions about theories of belief revision and
non-uniform complexity classes. Section 3 contains
the analysis for the unbounded-size case; we prove
compactability as well as non-compactability results.
Section 4 contains the analysis for the bounded-size
case, while Section 5 contains conclusions and briefly
addresses future research topics.

2 Preliminaries

The alphabet of a propositional formula is the set of all
propositional letters occurring in it. The special letter
⊥ denotes falsity. We use x 6= y as a shorthand for
(x∨ y)∧ (¬x∨¬y), and analogously for x = y. Another
shorthand we use is x→ y for ¬x∨y. An interpretation
of a formula is a truth assignment to the letters of its
alphabet. A theory T is a set of propositional formulae.
Sometimes it also denotes the formula representing the
logical “and” of all its elements. A model M of a formula
P (theory T ) is an interpretation that satisfies P (all
formulae in T ). This is written M |= P (M |= T ).
Interpretations and models of propositional formulae
will be denoted as sets of letters (those which are
mapped into 1). Given a propositional theory T , we
denote with M(T ) the set of its models. The expression
|s| denotes the size of s, in a reasonable (in the sense of
[Joh90]) encoding.

In the paper we frequently use the notion of substitu-
tion of letters in a formula. Where not explicitly stated,
we implicitly assume that all formulae are built over
the alphabet X = {x1, . . . , xn}. The notation P [x/y]
denotes the formula P where every occurrence of the
letter x is replaced by the formula y. This notation is
generalized to ordered sets: P [X ′/Y ] denotes the for-
mula P where all occurrences of letters in X ′ are re-
placed by the corresponding elements in Y , where X ′

is an ordered set of letters (in general, X ′ ⊆ X) and
Y is an ordered set of formulae with the same cardi-
nality. That is, P [X ′/Y ] = P [x′1/y1, · · · , x′k/yk]. For
example, let Q be the formula x1 ∧ (x2 ∨ ¬x3). Let
X ′ = {x1, x3} and Y = {y1,¬y3}. Then, Q[X ′/Y ] is
the formula y1 ∧ (x2 ∨ ¬¬y3).
2.1 Non-uniform complexity classes
As already pointed out, our proofs use the notion of non-
uniform computation. We assume the reader is familiar
with (uniform) classes of the polynomial hierarchy, and
we just briefly introduce non-uniform classes, following
Johnson [Joh90].

Definition 1 An advice-taking Turing machine is a
Turing machine that has associated with it a special
“advice oracle” A, which can be any function (not
necessarily a recursive one). On input s, a special
“advice tape” is automatically loaded with A(|s|) and
from then on the computation proceeds as normal, based
on the two inputs, x and A(|s|).

Note that the advice is only function of the size of the
input, not of the input itself.

Definition 2 An advice-taking Turing machine uses
polynomial advice if its advice oracle A satisfies |A(n)| ≤
p(n) for some fixed polynomial p and all nonnegative in-
tegers n.
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Definition 3 If C is a class of languages defined in
terms of resource-bounded Turing machines, then C/poly
is the class of languages defined by Turing machines with
the same resource bounds but augmented by polynomial
advice.

Any class C/poly is also known as non-uniform C, where
non-uniformity is due to the presence of the advice.
Non-uniform and uniform complexity classes are related
in [KL80, Yap83].

2.2 Revision operators
We now recall the different approaches to revision and
update, classifying them into formula-based and model-
based ones. A more thorough exposition can be found
in [EG92]. We use the following conventions: the
expression card(S) denotes the cardinality of a set S,
and symmetric difference between two sets S1, S2 is
denoted by S1∆S2. If S is a set of sets, ∩S denotes the
set formed intersecting all sets of S, and analogously ∪S
for union; min⊆S denotes the subset of S containing
only the minimal (wrt set inclusion) sets in S. The
boldface name prefixed to each approach will be used
for further reference.

2.2.1 Formula-based approaches
These revisions operate on the formulae syntactically
appearing in the theory T . Let W (T, P ) be the set
of maximal subsets of T which are consistent with the
revising formula P :

W (T, P ) = {T ′ ⊆ T | T ′ ∪ {P} 6|= ⊥,
6 ∃U : T ′ ⊂ U ⊆ T,U ∪ {P} 6|= ⊥}

Ginsberg. In [FHV83] and in [Gin86], the revised
theory is defined as a set of theories: T ∗G P

.=
{T ′ ∪ {P} | T ′ ∈ W (T, P )}. Each theory of this set
has been called “world” by Ginsberg, with no reference
to possible worlds in modal logics. Logical consequence
in the revised theory is defined as logical consequence
in each of the theories, i.e. T ∗G P |= Q iff for all
T ′ ∈ W (T, P ), T ′ ∪ {P} |= Q. If a theory T ′ is
also viewed as the conjunction of its formulae ∧T ′, this
consequence relation corresponds to consequence from
the disjunction of all theories. Hence, we will often write
T ∗G P as (

∨
T ′∈W (T,P )(∧T ′)) ∧ P .

Nebel. The operator ∗N , proposed in [Neb91], is an
extension of Ginsberg’s one, in which the new theories
are built based on a prioritized partition of the formulae
in T .

WIDTIO. Since there may be exponentially many
new theories in T ∗G P , a simpler (but somewhat
drastical) approach is the so-called WIDTIO (When In
Doubt Throw It Out), which is defined as T ∗Wid P

.=
(∩W (T, P )) ∪ {P}.

Note that formula-based approaches are sensitive
to the syntactic form of the theory. That is, the

revision with the same formula P of two logically
equivalent theories T1 and T2, may yield different
results, depending on the syntactic form of T1 and T2.
We illustrate this fact through an example.

Example. Consider T1 = {a, b}, T2 = {a, a → b}
and P = ¬b. Clearly, T1 is equivalent to T2. The only
maximal subset of T1 consistent with P is {a}, while
there are two maximal consistent subsets of T2, that
are {a} and {a→ b}.

Thus, T1 ∗G P = {a,¬b} while T2 ∗G P = {a ∨ (a →
b),¬b} = {¬b}. The WITDIO revision gives the same
results.

2.2.2 Model-based approaches

These revisions obey the principle of irrelevance of
syntax [Dal88]. They operate by selecting the models of
P on the basis of some notion of proximity to the models
of T . We distinguish between pointwise proximity and
global proximity.

Approaches in which proximity between models of P
and models of T is computed pointwise wrt each model
of T were proposed as suitable for knowledge update
[KM91]. Let M be a model of T ; we define µ(M,P )
as the set containing the minimal differences (wrt set
inclusion) between each model of P and the given M ;
more formally, µ(M,P ) .= min⊆{M∆N | N ∈M(P )}.

Winslett. In [Win90], Winslett defines the models
of the updated theory as M(T ∗WinP ) .= {N ∈M(P ) |
∃M ∈ M(T ) : M∆N ∈ µ(M,P )}. Borgida’s operator
∗B is the same as Winslett’s, except in the case when
P is consistent with T , in which case Borgida’s revised
theory is just T ∪ {P}.

Forbus. This approach [For89] takes into account
cardinality: let kM,P be the minimum cardinality of
sets in µ(M,P ). The models of Forbus’ updated
theory are M(T ∗F P ) .= {N ∈ M(P ) | ∃M ∈
M(T ) : card(M∆N) = kM,P }. Note that by means of
cardinality, Forbus can compare (and discard) models
which are incomparable in Winslett’s approach.

We now recall approaches where proximity between
models of P and models of T is defined consid-
ering globally all models of T . Let δ(T, P ) .=
min⊆

⋃
M∈M(T ) µ(M,P ).

Satoh. In [Sat88], the models of a revised theory are
defined as M(T ∗S P ) .= {N ∈ M(P ) | ∃M ∈ M(T ) :
N∆M ∈ δ(T, P )}.

Dalal. This approach is similar to Forbus’, but
global. Let kT,P be the minimum cardinality of sets in
δ(T, P ); in [Dal88], Dalal defines the models of a revised
theory as M(T ∗D P ) .= {N ∈ M(P ) | ∃M ∈ M(T ) :
card(N∆M) = kT,P }.

Weber. Let Ω .= ∪δ(T, P ), i.e. Ω contains every
letter appearing in at least one minimal difference
between a model of T and a model of P . Following
[EG92], the models of Weber’s revised theory [Web86]
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are defined as M(T ∗Web P ) .= {N ∈ M(P ) | ∃M ∈
M(T ) : N∆M ⊆ Ω}.

To illustrate the differences between different model-
based approaches, consider the following example.

Example. Let T and P be defined as:

T = {a, b, c}
P = (¬a ∧ ¬b ∧ ¬d) ∨ (¬d ∧ ¬b ∧ (a 6= d))

Note that T has only two models, which are:

J1 = {a, b, c, d}
J2 = {a, b, c}

while P has four models:

I1 = {a, b}
I2 = {c}
I3 = {b, d}
I4 = ∅

The set differences between each model of T and each
model of P are:

∆ I1 = {a, b} I2 = {c} I3 = {b, d} I4 = ∅
J1 {c, d} {a, b, d} {a, c} {a, b, c, d}
J2 {c} {a, b} {a, c, d} {a, b, c}

Hence, the minimal differences between J1 and models
of P are µ(J1, P ) = {{c, d}, {a, b, d}, {a, c}}; the
minimal differences between J2 and models of P are
µ(J2, P ) = {{c}, {a, b}}.

The cardinalities of set differences between each
model of T and each model of P are:

I1 = {a, b} I2 = {c} I3 = {b, d} I4 = ∅
J1 2 3 2 4
J2 1 2 3 3

Winslett. The minimal differences in µ(J1, P ) cor-
respond to the models I1, I2, I3 of P , while those in
µ(J2, P ) correspond to the models I1, I2 of P . There-
fore, the models of T ∗Win P are I1, I2, I3. The same
result holds for Borgida’s revision, since T and P are
inconsistent.

Forbus. From the table with cardinalities: the
minimal cardinality of differences between J1 and each
model of P is kJ1,P = 2, corresponding to models I1
and I3; while kJ2,P = 1, corresponding to I1. Therefore,
T ∗F P has models I1 and I3.

We now turn to global proximity approaches, where
also entries in different rows of the above tables are
compared for minimality.

Satoh. The minimal differences between any model
of T and any model of P are δ(T, P ) = {{c}, {a, b}}.

These minimal differences correspond to models I1 and
I2 of P , which therefore are the models of T ∗S P .

Dalal. The minimum cardinality of all set differences
is kT,P = 1, corresponding to I1. As a result, T ∗D P
selects the model I1 only.

Weber. Consider the union of all minimal global
differences, that is Ω = ∪δ(T, P ) = {a, b, c}. In Weber’s
revision, one selects the models of P for which there
exists a model of T whose difference is included in Ω.
Since all models of P have this property, they are all
selected. Thus, the revision coincides with P in this
case.

The complexity of deciding T∗P |= Q (T , P andQ being
the input) was studied in [EG92]: in Dalal’s approach,
the problem is ∆p

2[log n]-complete, while in all other
approaches it is Πp

2-hard (in some cases, Πp
2-complete).

3 General Case

The purpose of this section is to show an analysis on
the size of formulae T ′ such that either criterion (1)
or (2) holds. We consider revision operators mentioned
in Section 2, and show both compactability and non-
compactability results. There is no assumption on
the size of the incoming formula P ; the bounded-size
case will be addressed in the next section. Notice
that WIDTIO semantics always admits a compact
representation according to both criteria, since it
immediately follows from its definition that the size of
T ∗Wid P is always less than or equal to |T |+ |P |.

3.1 Query equivalence
In this subsection we investigate the size of a proposi-
tional representation of the result of revising a knowl-
edge base T with a new formula P , when the represen-
tation satisfies the query-equivalence criterion (1).

We begin our investigation focusing on Ginsberg’s
operator. Other researchers have already noticed that
the explicit representation of the result of revising a
knowledge base under Ginsberg’s semantics might lead
to some difficulties.

We introduce this problem with an example presented
by Nebel in [Neb94]. Let

T = {x1, . . . , xm, y1, . . . , ym}

P =
m∧

i=1

(xi 6= yi)

Applying Ginsberg’s revision method we have that
W (T, P ) contains 2m distinct theories, each one con-
taining, for each i, exactly one of xi and yi. If we repre-
sent T ∗GP as the disjunction of all theories in W (T, P ),
conjoined with P , the size of this representation is ex-
ponential in |T |+ |P |.
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The problem of the explosion of the size of the revised
knowledge base has also been pointed out by Winslett
in [Win90], where she shows another example:

T = { x1, y1, z1 = (¬x1 ∨ ¬y1),
...

...
...

xi, yi, zi = (zi−1 ∧ (¬xi ∨ ¬yi)),
...

...
...

xm, ym, zm = (zm−1 ∧ (¬xm ∨ ¬ym)) }
P = zm

Again, the cardinality of the set W (T, P ) is exponential
in m. These two examples show that the “obvious”
representation of T ∗G P might have size exponential
in |T | + |P |. However, they do not rule out the
existence of a different representation of polynomial size.
As Winslett notes in [Win90, pg. 34] the exponential
increase in the size is proven if we “assume a completely
naive storage organization, where the theories are
written out as we would write them down on paper”.
Later on she also conjectures that “these bounds hold
even for clever storage schemes”.

We now show that her conjecture on Ginsberg’s
revision is indeed true. This result will later be
generalized to the other revision operators mentioned
above. In order to achieve this result on Ginsberg’s
revision operator (∗G) we first prove a stronger one
based on the following idea:

Let L be the alphabet of T and P ; by doing some
off-line computation, we want to find a data structure
D with the following characteristics:

1. for some fixed polynomial p, the size ofD is bounded
by p(|T |+ |P |);

2. there exists a relation ASK(·, ·), such that given any
clause Q on the alphabet L, ASK(D,Q) is true iff
T ∗G P |= Q;

3. deciding the relation ASK(·, ·) is a problem in coNP,
where the inputs are its arguments.

Intuitively, this means that we are trying to “compile”
T ∗G P in such a way that deciding T ∗G P |= Q
(a Πp

2-complete problem) becomes a problem in coNP.
One way to do that would be to rewrite T ∗G P
into an equivalent propositional formula T ′ of size
polynomial in |T | + |P |, where ASK corresponds to
classical consequence relation, i.e. ASK(T ′, Q) = true
iff T ′ |= Q.

We are able to show that it is very unlikely that such
a data structure D may exist. To do that we resort
on the notion of non-uniform computation. In what
follows a relation R such that deciding R is a problem
in coNP will be called coNP-relation.

Theorem 1 Suppose there exists a polynomial p such
that given any revised knowledge base T ∗G P , there ex-
ists a data structure DT,P and coNP-relation ASK(·, ·)
such that |DT,P | < p(|T | + |P |), and for any clause
Q, T ∗G P |= Q iff ASK(DT,P , Q) is true. Then NP
⊆ coNP/poly.

Proof. Since the proof is rather long, we first give an
outline to improve its readability. The proof consists of
the following steps:

1. Choice of a NP-complete problem π;

2. Showing that for any integer n there exists a pair of
CNF formulae (Tn, Pn) (depending only on n and of
size O(n3)) such that for any instance F of π there
exists a clause QF such that Tn ∗G Pn |= QF iff the
answer to F is “yes”.

3. Showing that if for each pair (T, P ) there exists a D
with the properties required in the statement of the
theorem, then NP is contained in coNP/poly.

Step 1: A complete problem (wrt many-one transfor-
mations) for the class NP is 3-sat. Let F be a 3CNF
formula with |F | = n. We observe that the number of
propositional letters contained in F is at most equal to
n. We choose an “oversized” set X = {x1, . . . , xn} as
the set of letters, even if F uses only a proper subset of
it. In such a way we have |F | = card(X).

Step 2: We show that for any integer n, there exists a
formula Pn and a set of atomic facts Tn, both depending
only on n, of polynomial size wrt n, such that given any
set of 3CNF clauses F , there exists a query QF such
that F is satisfiable if and only if Tn ∗G Pn |= QF .

Let L be the alphabet X ∪ C ∪ D ∪ {r}, where
C is a set of new atoms one-to-one with possi-
ble three-literals clauses of X, i.e., C = {ci |
γi is a three-literals clause of X}, D is a set of new
atoms one-to-one with atoms in C and r is a new dis-
tinct atom.

We define Tn and Pn on the alphabet L according to
the following rules:

Tn = C ∪D ∪X ∪ {r} (3)

Pn =
[
(
∧
{¬xi | xi ∈ X}∧¬r)∨

∧
(ci → γi)

]∧
∧

(ci 6= di)
(4)

Given a generic 3CNF formula F , we define QF as
follows:

QF =
∧

({ci | γi ∈ F} ∪ {di | γi 6∈ F}) → r (5)

Given an interpretation η of the atoms of C, we can
associate to it a theory Wη:

Wη = {ci | ci ∈ η} ∪ {di | ci 6∈ η}
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Note that no ci or di can be added consistently to
this set, otherwise, the set Wη ∪ {ci} would contain
both ci and di, whereas Pn imposes that ci 6= di.
Furthermore, the theory Wη ∪Pn is consistent, because
the interpretation η′, that extends η to L by making
true all atoms di such that η 6|= ci and false all the
other atoms in L makes both Wη and Pn true.

Given a generic 3CNF formula F , in order to find
maximal subsets of Tn that, when joined with Pn,
do not satisfy QF we must focus on those satisfying∧

({ci | γi ∈ F} ∪ {di | γi 6∈ F}). Hence, all worlds not
satisfying QF must include Wη. Thus, it could be that
W1 6|= QF only if Wη ⊆W1.

Suppose F unsatisfiable. We show that Wη ∈
W (Tn, Pn) and Wη ∪Pn 6|= QF . For each interpretation
φ of the atoms of X, there exists a γi ∈ F such that
φ 6|= γi. Let ψ = η ∪ φ be an interpretation on L:
we have that ψ 6|= ∧

(ci → γi). As a consequence,
Wη ∪ Pn |= (∧{¬xi | xi ∈ X}) ∧ ¬r ∧ ∧

(ci 6= di) and,
therefore, Wη ∈ W (Tn, Pn). In fact, adding to it any
other element of Tn would make it inconsistent with Pn.
Since Wη ∪ Pn 6|= QF , then Tn ∗G Pn 6|= QF .

On the converse, suppose F satisfiable. We show
that all theories in W (Tn, Pn) imply QF . Note that
all theories not including Wη imply QF , hence we
concentrate on those containing Wη. These theories are
obviously uniquely characterized by their intersection
with X ∪ {r}. For any interpretation φ of the atoms in
X, let Wφ be defined as follows:

Wφ = Wη ∪ {xi | xi ∈ φ} ∪ {r}

If φ does not satisfy F then Wφ is inconsistent with
Pn, and therefore, Wφ 6∈W (Tn, Pn). On the other side,
if φ satisfies F , the interpretation ψ = η ∪ φ ∪ {r} of L
satisfies Wφ, Pn and QF . Since there exists at least
one interpretation φ satisfying F , the corresponding
Wφ ∈W (Tn, Pn), and therefore Wη 6∈ W (Tn, Pn). As a
consequence, for all elements Wφ of W (Tn, Pn) we have
that Wφ ∪ Pn |= QF .

Step 3: Let us assume that there exists a polynomial
p with the properties claimed in the statement of
Theorem 1. Then, for each revised knowledge base
Tn ∗D Pn there exists a data structure Dn, with
|Dn| < p(|Tn| + |Pn|), and a coNP-relation ASK(·, ·)
such that given any query Q, T ∗G P |= Q iff
ASK(D,Q) is true. We could define an advice-taking
Turing machine, solving unsatisfiability of propositional
formulae in nondeterministic polynomial time, in this
way: Given a generic propositional formula F , with
|F | = n, the machine loads the advice Dn, computes
QF , and then decides whether ASK(Dn, QF ) is false in
nondeterministic polynomial time (since ASK(·, ·) is a

coNP-relation, this machine exists by definition). Since
|Tn| + |Pn| = O(n3), the advice Dn has size O(p(n3)),
hence we would have shown that unsatisfiability of
propositional formulae is in non-uniform NP. Since
unsatisfiability of propositional formulae is a coNP-
complete problem, this implies coNP ⊆ NP/poly. The
results of Yap [Yap83] imply that coNP ⊆ NP/poly if
and only if NP ⊆ coNP/poly, hence the claim follows.

The above theorem shows the unfeasibility, under
certain conditions, of making explicit the effect of the
revision such that the new version is more effective in
answering queries. Notice that no bound is imposed
on the time spent in the compilation process. An
immediate consequence of this result is the following
corollary:

Corollary 2 Let T and P be CNF formulae. Unless
NP ⊆ coNP/poly, there is no polynomial p and formula
T ′ satisfying criterion (1), where |T ‘| ≤ p(|T | + |P |),
when the revision operator is ∗G.

In fact, if such a T ′ exists, then there exists a coNP-
relation (namely, logical consequence) such that, given
a clause Q, T ∗G P |= Q can be decided by checking
T ′ |= Q. In particular, the corollary implies that there
is no formula T ′ satisfying criterion (2), whose size is
polynomial in |T |+ |P |. Since Nebel’s revision operator
is a generalization of Ginsberg’s one, Corollary 2 also
holds for ∗N .

The above corollary completes our analysis of Gins-
berg’s revision operator. We now come to consider the
model-based revision operators. Even though their se-
mantics is very different from Ginsberg’s one, we obtain
a similar result for most of them:

Theorem 3 Suppose there exists a polynomial p such
that given any revised knowledge base T ∗ P , where ∗
is one of {∗B , ∗S , ∗Win}, there exists a data structure
DT,P and coNP-relation ASK(·, ·) such that |DT,P | <
p(|T | + |P |), and for any clause Q, T ∗ P |= Q iff
ASK(DT,P , Q) is true. Then NP ⊆ coNP/poly.

Proof. Eiter and Gottlob’s result [EG92, Lemma 6.1]
implies that T ∗G P |= Q iff T ∗B P |= Q iff T ∗S P |= Q
iff T ∗Win P |= Q when T is a set of literals and all the
letters in Q also appear in T . Note that these conditions
hold for the T defined in (3) and QF as defined in (5).

Using a proof similar to the one of Theorem 1, we can
show that the same result also holds for Forbus’ revision
operator.

Theorem 4 Suppose there exists a polynomial p such
that given any revised knowledge base T ∗F P , there ex-
ists a data structure DT,P and coNP-relation ASK(·, ·)
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such that |DT,P | < p(|T | + |P |), and for any clause Q,
T ∗F P |= Q iff ASK(DT,P , Q) is true. Then NP ⊆
coNP/poly.

Proof (sketch). The proof is similar to Ginsberg’s one,
but we have now to consider closeness between models.

Let C be anm×(n+2) boolean matrix, wherem is the
number of the possible 3CNF clauses on the alphabet
X. Let

Un =
m∧

j=1

n+2∧

i=2

(cji = cj1)

This formula forces all rows of the matrix C to be
equal. Let Tn and Pn be defined as follows:

Tn = {Un} ∪X ∪ {r}

Pn = Un ∧
[ m∧

j=1

(cj1 → γj) ∨ (∧{¬xi | xi ∈ X} ∧ ¬r)
]

Given a generic 3CNF formula E, we define:

QE =

n+2∨
i=1

{cj
i | γj 6∈ E} ∨

n+2∨
i=1

{¬cj
i | γj ∈ E} ∨

∨
X ∨ r

We show that Tn ∗F Pn |= QE if and only if E is
satisfiable. Note that any interpretation, but ME =⋃n+2

i=1 {cji | γj ∈ E}, satisfies QE . Thus, we only need
to show that ME |= Tn ∗F Pn if and only if E is
unsatisfiable.

First of all, note that Tn has a model for each set
of 3CNF clauses. We denote IE =

⋃n+2
i=1 {cji | γj ∈

E} ∪X ∪ {r} that model.
Observe that the distance between ME and IE is

exactly n + 1, while any other J ∈ M(Pn), with a
different valuation of atoms in C, is at least n + 2 far
from IE . Hence, the models of P that are closest to IE
must have the same valuation of atoms in C.

Suppose E unsatisfiable. The closest model of IE is
now ME , since there is no other model of Pn with the
same valuation of C. Hence ME |= Tn ∗F Pn.

On the converse, suppose E satisfiable. Let φ be
the interpretation of the atoms in X satisfying E. The
model JE =

⋃n+2
i=1 {cji | γj ∈ E} ∪ {xi | xi ∈ φ} ∪ {r} is

now in M(Pn), and it is at most n letters far from IE .
Hence, ME is not a model of Tn ∗F Pn.

The above results of incompactability of belief revi-
sion into a propositional formula are conditioned on NP
not being included in coNP/poly. Using the results of
Yap in [Yap83, pg. 292 and Theorem 2] it follows that
if NP ⊆ coNP/poly then Πp

3 = Σp
3 = PH, i.e. the poly-

nomial hierarchy collapses at the third level. Such an
event is considered very unlikely by most researchers in
structural complexity.

We now turn our attention to operators that admit
a compact representation under the query-equivalence
criterion (1). In particular, we show that a knowledge
base revised using Dalal’s or Weber’s operators can be
expressed in a compact way, if we go for criterion (1),
i.e. the initial language is extended.

Let X be the alphabet of the initial knowledge
base and the revising formula, and Y be another
set of (distinct) letters, one-to-one with X. Let
EXACTLY (m,X, Y,W ) denote a formula containing
letters of X and Y , and possibly other letters W ,
which is true iff the Hamming distance between the
values assigned to X and Y is exactly m. Such
a formula can be constructed in several ways. For
example, first compute the number of true exclusive-
or between each xi and yi. The binary representation
of this number can be computed with a suitable adding
circuit, that requires O(n2) half-adders. This circuit
can be expressed as a formula using O(n2) new letters.
Secondly, write the formula that equals the bits of
this number with those of the binary representation
of m. The revised theory T ∗D P can be expressed
as T [X/Y ] ∧ P ∧ EXACTLY (k,X, Y,W ), where k is
the minimum distance between the models of P and T ,
denoted as kT,P in the definition of Dalal’s revision.

Theorem 5 Let k be the minimal distance between the
models of P and T , every model of T [X/Y ] ∧ P ∧
EXACTLY (k,X, Y,W ) is a model of T ∗D P , and
conversely for every model M of T ∗D P there is an
extension M ′ of M to Y such that M ′ is a model of
T [X/Y ] ∧ P ∧ EXACTLY (k,X, Y,W ).

Proof. If. Let M be a model of T [X/Y ] ∧ P ∧
EXACTLY (k,X, Y,W ). Then M ∩ X satisfies P ,
and since it satisfies EXACTLY (k,X, Y,W ) it has a
distance k from M ∩ Y , and M ∩ Y satisfies T [X/Y ].
Since k is by definition the minimal distance between a
model of T and a model of P , M ∩X is also a model of
T ∗D P .

Only If. Let M be a model of T ∗D P . This
model satisfies P . Let MT (X) be a model of T
having distance k from M . Define M ′ as M ∪MT (Y ),
where MT (Y ) is a model interpreting each yi as the
corresponding xi in MT (X). Obviously, M ′ satisfies
both P and T [X/Y ], and by definition of MT (X) it
can be extended to an assignment to W so that it also
satisfies EXACTLY (k,X, Y,W ).

From the theorem, we conclude that T ∗D P and
T [X/Y ] ∧ P ∧ EXACTLY (k,X, Y,W ) are equivalent
wrt queries over the original alphabet X.

Corollary 6 T [X/Y ]∧P ∧EXACTLY (k,X, Y,W ) is
query equivalent (1) to T ∗D P .

Now we show how Weber’s revision can be compactly
represented. Winslett, in [Win90] gives a similar proof,
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but only if the new formula has a size bounded by
a constant. Our result, instead, doesn’t need such a
restriction. Consider the theory T where the letters of
Ω are replaced by the letters of a new set Z, one-to-one
with Ω. We denote such a new theory with T [Ω/Z].

Theorem 7 T [Ω/Z] ∧ P is query equivalent (1) to
T ∗Web P .

We also note that this representation of T ∗Web P
increases the size of T only by the length of P whereas
the “compact” representation of T ∗D P requires a
formula whose size is quadratic in the number of the
letters.

3.2 Logical equivalence

In this section we investigate the size of revised knowl-
edge bases satisfying logical equivalence (2). In partic-
ular, we show that Dalal’s and Weber’s revisions, which
admit polynomial-size representations wrt query equiva-
lence (1), are uncompactable wrt logical equivalence (2)
unless the condition NP⊆ P/poly holds (which implies
Σp

2 = Πp
2 =PH [KL80]).

Theorem 8 Suppose there exists a polynomial p such
that given any revised knowledge base T ∗D P , there
exist a data structure DT ′ and P-relation ASK(·, ·) such
that |DT ′ | ≤ p(|T | + |P |), and for any interpretation
M , ASK(DT ′ ,M) is true iff M |= T ∗D P . Then
NP⊆ P/poly. The same holds for ∗Web in place of ∗D.

Proof. The proof follows the same steps as proof of
Theorem 1.

Step 1: We choose the NP-complete problem 3-sat.
Let F be a 3CNF formula with |F | = n. We observe
that the number of propositional letters contained in
F is at most equal to n. We choose an “oversized”
set X = {x1, . . . , xn} as the set of letters, even if F
uses only a proper subset of it. In such a way we have
|F | = card(X).

Step 2: We show that for any integer n, there exists a
formula Pn and a knowledge base Tn, both depending
only on n, of polynomial size wrt n, such that given any
3CNF formula F over an alphabet of n atoms, there
exists an interpretation MF such that F is satisfiable iff
MF is a model of Tn∗DPn. The proof contains implicitly
a reduction showing that model checking in Dalal- and
Weber-revised knowledge bases is NP-hard.

Let Y = {y1, . . . , yn} be a set of new letters in one-
to-one correspondence with letters of X, and let C be a
set of new letters one for each three-literals clause over
X, i.e., C = {ci | γi is a three-literals clause of X}.
Finally, let L be the set X ∪ Y ∪ C, where r is a

distinguished new letter. Notice that card(L) ∈ O(n3).
We define Tn as the conjunction of two formulae:

Tn ≡ ∆n ∧ Γn (6)

The 2CNF formula ∆n states non-equivalence be-
tween atoms in X and their correspondent in Y :

∆n ≡
∧

xi∈X

(xi 6= yi).

Γn codes every possible 3CNF formula over X, using
the atoms in C as “enabling gates”. The formula is
defined as:

Γn ≡
∧

ci∈C

γi ∨ ¬ci.

Γn is a 4CNF formula and it contains O(n3) clauses.
We define Pn as:

Pn ≡
n∧

i=1

(¬xi ∧ ¬yi) (7)

Note that the size of Tn and Pn is O(n3). Moreover,
Tn and Pn do not depend on a specific 3CNF formula
F , but only on the size n of its alphabet.

Given a 3CNF formula F over X, we denote CF =
{ci ∈ C | γi is a clause of F}. We first show that F is
satisfiable iff CF is a model of Tn ∗D Pn, then we show
that F is satisfiable iff CF is a model of Tn ∗Web Pn.

Dalal’s revision
We observe that in every model of Tn exactly n atoms
from X ∪ Y are true, while in every model of Tn ∗D Pn

all atoms from X ∪ Y are false. Hence, recalling the
definition of Dalal’s revision, kTn,Pn ≥ n. Moreover,
kTn,Pn = n since X is a model of Tn and ∅ is a
model of Pn, and the cardinality of their difference is
n. Now CF is a model of Pn, hence it is also a model
of Tn ∗D Pn iff there exists a model of Tn such that
card(CF ∆M) = kTn,Pn = n.

If part. Let F be satisfiable, and let XF be a model of
F . Let YF = {yi | xi 6∈ XF }, and letM = CF ∪XF ∪YF .
We show that M is a model of Tn. In fact, M satisfies
∆n by construction of YF , and also M satisfies Γn,
because for each clause γi ∨¬ci of Γn, either ci 6∈ CF or
γi is satisfied by XF . Now observe that card(CF ∆M) =
card(XF ∪ YF ) = n. Hence, CF is a model of Tn ∗D Pn.

Only if part. Suppose CF is a model of Tn ∗D Pn. Then
there exists a model M of Tn such that card(CF ∆M) =
n, that is CF and M differ on exactly n atoms. Since
M satisfies ∆n, the difference CF ∆M contains exactly
n atoms from X ∪ Y . Hence, M and CF agree on the
truth assignment to atoms of C, that is, M ∩ C = CF .
We claim thatM∩X is a model of F . In fact, M satisfies

8



Γn =
∧

ci∈C γi ∨ ¬ci. Simplifying Γn with truth values
of M∩C = CF , we conclude that M satisfies

∧
ci∈CF

γi,
which is exactly formula F . Since the formula contains
only atoms from X, the interpretation M ∩X satisfies
F , hence F is satisfiable.

We now show that F is satisfiable iff CF is a model
of Tn ∗Web Pn.

Weber’s revision
First observe that M(Pn) = 2C , i.e. every subset of
C is a model of Pn. Since X and Y are models of Tn,
µ(X,Pn) = X, µ(Y, Pn) = Y . This implies that both X
and Y are in δ(Tn, Pn) .=

⋃
M∈M(Tn) µ(M,Pn). Recall

that Ω .= ∪δ(T, P ). Hence, X ∪ Y ⊆ Ω. Moreover,
for every model M of Tn, µ(M,Pn) contains no atom
from C because M(Pn) = 2C . Hence, Ω = X ∪ Y .
From the definition of Weber’s revision, CF is a model
of Tn ∗WebPn iff there exists a model M of Tn such that
M −Ω = CF −Ω. Since Ω = X ∪ Y , the last condition
is equivalent to M ∩ C = CF .

If part. Let F be satisfiable, and let XF be a model of
F . Let YF = {yi | xi 6∈ XF }, and letM = CF ∪XF ∪YF .
From the above proof for Dalal’s revision, we know that
M is a model of Tn. Since M ∩C = CF , CF is a model
of Tn ∗Web Pn.

Only if part. Suppose CF is a model of Tn∗WebPn. Then
there exists a model M of Tn such that M ∩ C = CF .
We claim that M ∩ X is a model of F . In fact, as
for Dalal’s revision, M satisfies Γn =

∧
ci∈C γi ∨ ¬ci.

Simplifying Γn with truth values of M ∩ C = CF , we
conclude that M satisfies

∧
ci∈CF

γi, which is exactly
formula F . Since the formula contains only atoms from
X, M ∩X satisfies F , hence F is satisfiable.

Step 3: is analogous to Step 3 of Theorem 1. Let
us assume that there exists a polynomial p with the
properties claimed in the statement of Theorem 8.
Then, for each revised knowledge base Tn ∗D Pn there
exists a data structure Dn, with |Dn| < p(|Tn| +
|Pn|), and a P-relation ASK(·, ·) such that given any
interpretation M for Tn ∗D Pn, ASK(Dn,M) is true
iff M is a model of Tn ∗D Pn. We can define an
advice-taking Turing machine solving satisfiability of
3CNF formulae in this way: given a generic 3CNF
formula F , with |F | = n, the machine loads the advice
Dn, computes CF , and then decides ASK(Dn, CF ) in
polynomial time. Since |Tn|+ |Pn| = O(n3), the advice
Dn has polynomial size wrt n, hence we would have
shown that 3-sat is in non-uniform P. Since 3-sat is
an NP-complete problem, this implies NP⊆ P/poly.

Theorem 9 Let T and P be CNF formulae. Unless
NP⊆ P/poly, there is no polynomial p such that there

always exists a T ′ satisfying criterion (2), of size less
than p(|T |+ |P |), where ∗ is one revision defined above
but WIDTIO.

Proof. For Dalal’s and Weber’s revision, the claim
is a corollary of the above Theorem 8. For all other
operators, the claim follows from Theorems 1, 3 and
the fact that the non-existence of a representation
satisfying criterion (1) implies the non-existence of a
representation satisfying criterion (2).

4 Bounded revision

In the previous section we investigated the issue of
the existence of compact representations of revised
knowledge bases. As it turned out, for most of
the operators it does not exist a compact explicit
representation of the result of revising a knowledge base
with a new formula. From an analysis of the proofs,
it turns out that this behavior depends on the new
formula being very complex. However, in database
applications it is reasonable to assume that the size
of the new formula is very small wrt the size of the
knowledge base. In this section we investigate which
impact this assumption has on the existence of compact
representations. In particular, throughout this section
we assume that the size of the new formula P is bounded
by a constant (k in the sequel).

We first show that Ginsberg’s revision remains incom-
pressible even under the above assumption. This theo-
rem is a trivial consequence of the results of Eiter and
Gottlob [EG92, Theorem 8.2]. Note that in the follow-
ing theorem the size of the data structure representing
T ∗G P depends only on |T |.

Theorem 10 Suppose there exists a polynomial p such
that given any revised knowledge base T ′∗GP

′, there ex-
ists a data structure DT ′,P ′ and coNP-relation ASK(·, ·)
such that |DT ′,P ′ | < p(|T ′|), and for any clause Q, T ′∗G

P ′ |= Q iff ASK(D,Q) is true. Then NP⊆ coNP/poly.

Proof. Let s be a new propositional variable. Define
T ′, P ′ from T, P in (3) and (4) by T ′ = T ∪{¬s,¬s∨P},
P ′ = s. It immediately follows that T ′ ∗G P ′ |= Q iff
T ∗G P |= Q. Now suppose there is a polynomial p
satisfying the hypotheses of the theorem, in particular,
there is a data structure DT ′,P ′ such that |DT ′,P ′ | <
p(|T ′|). Since |T ′| = O(|T | + |P |), there exists a
(slightly greater) polynomial satisfying the hypotheses
of Theorem 1. Hence, NP⊆ coNP/poly.

The situation for model-based revision operators is more
complex. As it turns out all of them admit a compact
representation when the size of P is bounded.

Since all the representations are very similar, we
only show the representation for Winslett’s operator.
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Without loss of generality, assume that the alphabet of
P is included in the alphabet of T . Let X1 be the set
of all letters appearing in P , and X = X1 ∪X2 be the
alphabet T . Because of the assumption of |P | being
bounded by k, it follows that card(X1) ≤ k. Without
loss of generality, we assume card(X1) = k, and denote
letters in X1 as {x1

1, . . . , x
1
k}. Let Y be a set of letters

one-to-one with X1. Since T ∧ P may be inconsistent,
we replace in T the letters X1 of P with the new letters
Y . This yields the formula

T [X1/Y ] ∧ P (8)

This formula is satisfiable – if both T and P are – but
it is not query equivalent to T ∗Win P , since any model
of P can be suitably extended to a model of (8). Hence
we want to impose further constraints to this formula.

Let M be a model of (8), i.e. an assignment to
X1∪X2∪Y . We partitionM asM|X1∪M|X2∪M|Y , with
M|X1 = M ∩X1, M|X2 = M ∩X2 and M|Y = M ∩ Y .
Observe M is a model of (8) if and only if M|X1 ∪M|X2

is a model of P , and M ′
|X1∪M|X2 is a model of T , where

M ′
|X1 = {x1

i ∈ X1 | yi ∈M|Y }.
Recall that in Winslett’s revision, proximity between

models is defined using set difference. Since P does
not impose constraints to letters in X2, the models of
P which are closest to a model M of T – i.e. having
minimal set difference with M – agree with M on letters
in X2.

Therefore, a model M = MX1 ∪MX2 ∪M|Y of (8)
should be discarded if there exists another model of P
which is closer to the model M ′

X1 ∪MX2 of T . Let Z
be a set of letters one-to-one with X1. We impose that
an assignment to Z is a model of P with the formula

V1 = P [X1/Z]

The assignment M|Z on Z defines an assignment M ′′
|X1

on X1 as M ′′
|X1 = {x1

i ∈ X1 | zi ∈ M|Z}. This
assignment is closer than the assignment M ′

X1 if the
following two formulae are both satisfied:

V2 =
k∧

j=1

((zj = x1
j ) → (yj = x1

j ))

V3 =
k∨

j=1

((zj = x1
j ) ∧ (yj 6= x1

j ))

Since a model of (8) must be considered only if there
does not exist a closer model, the whole revision can
be reformulated as the following quantified boolean
formula:

T [X1/Y ] ∧ P ∧ ¬∃Z.(V1 ∧ V2 ∧ V3)

where ∃Z is a shorthand for ∃z1 · · · ∃zk. This formula
could be turned into an (unquantified) propositional

formula by replacing the existential quantification with
a disjunction over all assignments to Z, which are 2k (a
constant, since k = |P | is a constant). Hence the total
size of T ∗Win P is O(|T | + |P | + 2|P |). Observe that
the assignments to Z which are not models of P can be
discarded (they do not satisfy V1), and the simplified
formula is linear in the number of models of P , hence
it could be significantly smaller than 2|P |. Note that
this explicit representation introduces new letters, hence
it does not preserve logical equivalence (2). A linear-
size representation with new letters was also shown by
Winslett herself in [Win90].

It is also possible to find a compact representation
which uses exactly the same alphabet of T and P .
Again, we exploit the fact that we can explicitly
represent all assignments to X1 in constant space, since
card(X1) = k.

Let S ⊆ X1. Define the substitution RS =
{xi/¬xi | xi ∈ S}, replacing each letter in S with its
negation. The formula

P ∧
∨

S⊆X1

(
T [RS ] ∧ V )

where
∨

S⊆X1 means a disjunction for all possible
subsets S of X1, is true iff there is a model in T (whose
distance from the model of P is given by the set S),
satisfying condition V .

Now S represents the distance between these models.
We have to specify that there is no other model in P
whose distance is less than S.

V = ¬
∨

C 6=∅ , C⊆S

P [RC ]

where RC = {xi/¬xi | xi ∈ C}, and
∨

C 6=∅ , C⊆S means
a disjunction for all possible subsets C of S, except for
∅. This formula imposes a condition over the distance
C between two models of P . Namely, it forbids that C
is between the model of T and the model of P .

The whole formula is

P ∧
∨

S⊆X1

(
T [RS ] ∧ ¬

∨

C 6=∅ , C⊆S

P [RC ]
)

Notice that this formula uses only letters of X,
and has size linear in |T |, but exponential in |P |
(i.e. O(22|P |)). We found similar representations for the
other operators. As a result of the above analysis we
obtain the following property:

Theorem 11 Let T and P be propositional formulae.
There exist formulae T ′ of size polynomial in |T |
satisfying criterion (2) where the revision operator is
one of {∗B , ∗D, ∗F , ∗S , ∗Web, ∗Win}.
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5 Conclusions

In this paper we presented several results about the size
of a propositional theory T ′ representing the revision
of a knowledge base and satisfying either criterion
(1) or (2). We proved that some formalizations of
belief revision (e.g., Forbus’ and Ginsberg’s) lead to
propositional theories T ′ which are intrinsically not
representable in polynomial space (unless there is a
collapse in the polynomial hierarchy). Dalal’s and
Weber’s formalizations have an interesting behavior: T ′

has no polynomial-size representation if we insist on
logical equivalence (2), but such a representation does
exist if we ask only query equivalence (1).

Restricting our attention to the bounded-size case
also lead to interesting results. Some formalizations
retain their non-compactability, while others admit a
compact representation. In this case no differences
arise when we choose a different equivalence criterion.
Results are summarized in Table 1, where YES stands
for compactable, while NO stands for not compactable.

While the analysis presented in the paper covers a
number of systems and situations, many other inter-
esting cases are yet to be considered. We are cur-
rently addressing other restricted cases. In particular,
we will focus on situations where both T and P admit
polynomial-time algorithms for inference (e.g., they are
Horn). We want to find out when the representation T ′

of T ∗ P is such that T ′ |= Q can be decided in polyno-
mial time.

Another issue that we want to address is the increase
of the size of a revised knowledge base when this is
composed with a series of revisions, not only one. Take
for example Dalal’s revision and query equivalence. If
we are to apply the representation proposed in the
paper, after a series of n updates the size of the
result is exponentially larger than the original theories.
Nevertheless, it might well be the case that more
compact representations can be found when a series
of revisions is applied.
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General case Bounded case
Formalism Logical equiv. (2) Query equiv. (1) Logical equiv. (2) Query equiv. (1)
Ginsberg, NO NO NO NO

Nebel th. 9 cor. 2 th. 10 th. 10
Borgida, Satoh NO NO YES YES

Winslett th. 9 th. 3 th. 11 th. 11, [Win90]
Forbus NO NO YES YES

th. 9 th. 4 th. 11 th. 11
Dalal NO YES YES YES

th. 8 cor. 6 th. 11 cor. 6, th. 11
Weber NO YES YES YES

th. 8 th. 7 th. 11 th. 7, th. 11, [Win90]
WIDTIO YES YES YES YES

– – – –

Table 1: Is the revised knowledge base compressible?
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