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Abstract

In this paper we address a specific computational aspect of belief revision:
the size of the propositional formula obtained by means of the revision of a for-
mula with a new one. In particular, we focus on the size of the smallest formula
which is logically equivalent to the revised knowledge base. The main result of
this paper is that not all formalizations of belief revision are equal from this
point of view. For some of them we show that the revised knowledge base can be
represented by a polynomial-size formula (we call these results “compactability”
results). On the other hand, for other ones the revised knowledge base does not
always admit a polynomial-space representation, unless the polynomial hierarchy
collapses at a sufficiently low level (“non-compactability” results). We also show
that the time complexity of query answering for the revised knowledge base has
definitely an impact on being able to represent the result of the revision com-
pactly. Nevertheless, formalisms with the same complexity may have different
compactability properties. We also study compactability properties for a weaker
form of equivalence, called query equivalence, which allows to introduce new
propositional symbols. Moreover, we extend our analysis to the special case in
which the new formula has constant size and to the case of sequences of revisions
(i.e., iterated belief revision). A complete analysis along these four coordinates
is shown.

*An extended abstract of this paper appeared as [5].
fCurrent address: Politecnico di Bari, Dipartimento di Elettrotecnica ed Elettronica, Via E.
Orabona 4, I-70125 Bari, Italy.



1 Introduction

In many areas of computer science, such as Databases and Artificial Intelligence (AI),
we are faced with the problem of constructing and maintaining up-to-date large bodies
of information. How can new facts be added to an existing database (or knowledge
base)? Intuition might suggest that we simply conjoin the formula P, representing
the new information, with our previous information 7. However, this would destroy
consistency when 7" and P contradict each other. Moreover, even when 7" and P are
compatible, simply conjoining them might not lead to the desired result, as pointed
out by Winslett in [27].

As remarked in [27], the problem of finding general methodologies to update and re-
vise data and knowledge bases has been studied in at least three research communities.
In the AI community, the problem of revising a set of beliefs naturally arises when we
want to construct an artificial agent that is able to operate in the real world. Since the
real world undergoes frequent changes the agent must be able to revise and modify its
beliefs accordingly to the new information acquired, without losing an overall consis-
tency. In the Database community problems with updates arose when incompleteness
started being introduced in a database via the use of null values and the update of
views (see, e.g., [2]). Finally, the meaning of belief revision has also been analyzed by
philosophers. Recently, Alchourrén, Gardenfors and Makinson [1, 12] have presented
a general framework for belief revision where the basic properties of belief revision are
introduced and discussed.

There are two approaches to revision of logical theories, which are known in the
literature as belief revision and knowledge base update. To see intuitively their similar-
ities and differences, we consider the following temporal diagram, representing that 1)
our knowledge at time ¢; was T', and 2) at time ¢, we come to know that P is true.

After t5 there is no doubt we have to assume that P is true, because it represents the
most recent observation. As far as T is concerned, things are not so obvious, since
T A P might be unsatisfiable. Anyway, a general principle seems to be that we should
retain most of the information of T', if possible.

The main assumption in belief revision is that 7" was (at least partially) wrong at
time t;, because it came from non-valid observations. On the other hand in update we
assume that 7" was true at time ¢1, but the world of interest has changed between ¢; and
to, so T is no longer true after t,. The following example clarifies the two approaches.

Example. George and Bill share an office near yours, and you wonder whether
they are in the office or not. In what follows, propositional letters g and b denote that
George is in the office and Bill is in the office, respectively.



Reuvision. Walking in the corridor, you hear someone talking in the office but you
don’t recognize his voice. Thus, you suppose that either George or his colleague is in
the office, and your knowledge is T" = ¢ V b. Just beyond the corner you see George
chatting with someone. This can be formalized as P = —g, so your conclusion is that
the voice you heard was Bill’s one (because T'A P = =g A b). A fundamental property
of revision is that if 7' A P is not contradictory then the result of revising T" with P is
simply T'A P.

Update. Similarly to the previous case, you are walking in the corridor and hear a
voice from the office. Then, George exits the room and you meet him. 7" and P are
exactly the same as in the previous case. Nevertheless, you do not conclude that Bill
was in his office, because there is no evidence supporting this conclusion. The only
fact you know for sure is P. An interesting property of update is therefore that, even if
T A P is consistent, the update of T" with P is not necessarily equal to the conjunction
of the two formulas. O

More details on the difference between revising a knowledge base and updating it
can be found in [19]. Other general references on belief revision and update are [13, 28].
For an account of knowledge update in the context of probabilistic approaches, see [21].
From now on, unless when explicitly stated, we will generically talk about revision of
knowledge. In symbols, we denote with T"x P the result of the revision of T" with P.
Both T" and P are propositional formulae.

Proposed formalizations of belief revision are very different in spirit, but, following Eiter
and Gottlob’s [8] presentation, they can be classified according to three orthogonal
criteria.

o (Ir)relevance of syntax. Some of the approaches perform the revision by adding
to T the update formula P and retracting some sub-formula of 7', in order to
preserve consistency. Such methods (e.g., [10, 15, 23]) are known as formula-based
approaches. On the other hand, most approaches deal with the models of T, thus
not taking into account the syntactic presentation of the knowledge bases. Such
methods (e.g., [4, 7, 11, 25, 26, 27]) are known as model-based approaches.

o Measure of closeness. In model-based approaches the underlying idea is that the
models of T'x P are the models of P intersected with (a superset of) the models
of T'. Only the models of T" which are closest to the models of P are added. Each
formalism has its own definition of what “being closer” means. Formula-based

approaches are guided by the principle of retracting a minimal set of sub-formulae
of T.

o Revision versus update, which we explained intuitively above.

Other researchers [8, 23, 27, 22] focused on computational properties of belief revi-
sion. As an example, they addressed questions such as: given formulae T, P, Q) and a



suitable semantics for the revision operator *, what is the time complexity of deciding
T« P = Q7 In which cases polynomial algorithms exist? Same questions have been
asked for the problem of deciding M |= T % P, where M is an interpretation.

Both aspects of belief revision (semantic and computational) are important from
the theoretical as well as the practical point of view.

In this paper we address a new specific computational aspect of belief revision: the
size of the revised theory T % P. An informal description of our work follows. We
insist that 1'% P is represented as a propositional theory, i.e., we want a propositional
theory T” such that

{RQITEQ={Q|TxPEQ} (1)

() being any formula where only symbols of T" or P occur. We call this property query
equivalence, and we say that a T" satisfying the above criterion is query equivalent to
T« P.

The reason why we insist on T % P being a propositional theory is twofold. From
the epistemological point of view, it seems reasonable that our set of beliefs does not
change the format of its representation after being revised. From the computational
point of view, it would be nice to split the task of deciding 7'« P |= @ into two subtasks:

1. compute 7" such that (1) holds;
2. decide T" E Q.

There are two positive aspects in such a computational approach: the first subtask
can be done off-line, i.e., not necessarily when the query @) arrives. Moreover we could
use the same set of algorithms and heuristics both for subtask 2 and for regular query
answering.

A question now naturally arises: what is the size of such a T"7 If the size of the
smallest 7" is super-polynomial in the size of T' plus the size of P, then the above
mentioned approach to query answering is clearly not practical. Moreover —from the
cognitive point of view— it is questionable to assume belief revision as the evolutionary
model of an agent’s mind: An agent would either need an unreasonable amount of
storing space, or change the format it uses to represent knowledge. The main result of
this paper is that not all formalizations of belief revision are equal from this point of
view. For some of them (e.g., Dalal’s [7]) we show that 7" admits a polynomial-space
representation (we call these results “compactability” results). On the other hand we
are able to prove that for other ones (e.g., Ginsberg-Fagin-Ullman-Vardi’s [15, 10] and
Forbus’ [11]) T" does not always admit a polynomial-space representation, unless the
polynomial hierarchy collapses at a sufficiently low level (“non-compactability” results).
The time complexity of answering 7' P |= @ on-line (T, P and () being the input)
has definitely an impact on being able to represent 7" compactly, although formalisms
with the same time complexity may have different compactability properties.



Winslett addresses this problem in [27] for the specific case where the size of P is
bounded by a constant, showing several compactability results. We give a complete
analysis, proving that some formalisms (e.g., Ginsberg-Fagin-Ullman-Vardi’s) are not
compactable even in such a restricted case, while other ones (e.g., Forbus’) are com-
pactable.

A further aspect we address is the representation of a revised knowledge base using
a form of equivalence characterized by the following requirement

T'=TxP (2)

We call this property logical equivalence, and we say that a T” satisfying the above
criterion is logically equivalent to T * P. Notice that a T” satisfying logical equivalence
(2) satisfies query equivalence (1) as well, but not the other way around. Basically,
query equivalence (1) gives the possibility of introducing new propositional letters,
hence it yields formulae 7" with less information (e.g., model checking wrt 7" gives
different results in the two cases). This has definitely an impact on compactability:
as an example, Dalal’s formalization admits compact representations only according
to criterion (1). As we prove in this paper, unless the polynomial hierarchy collapses,
Dalal’s formalization admits no compact representation w.r.t. criterion (2).

As further information arrives continuously, it may happen that a revised knowledge
base needs to be revised once again. In general, we talk about iterated belief revision
when an unbounded number of revisions occur. As far as the size is concerned, if
a formula is compactable after a single revision then it is not guaranteed that it is
compactable after several revisions. As an example, we show that Forbus’ operator
—which admits compact representations for the bounded revision/logical equivalence
case— admits polynomially-sized iteratively revised formulae only according to the
query equivalence criterion, but not for the logical equivalence criterion (unless the
polynomial hierarchy collapses).

Summing up, we provide a complete characterization of the compactability prop-
erties for belief revision operators along four coordinates:

1. the formalism;

2. bounded vs. unbounded size of the new formula P;
3. logical equivalence vs. query equivalence;

4. single revision vs. iterated revision.

For what concerns non-compactability results, we use concepts such as Turing ma-
chines with advice and non-uniform complexity classes, as well as results relating uni-
form and non-uniform complexity classes. In fact, our results not only show unlike-
liness of propositional representations of revised theories, but are valid for a generic



data structure, i.e., any structure representing the result of the revision (cf. Section 7
for an exact definition). As for compactability results, we show effective procedures for
obtaining compact representations.

The structure of the paper is as follows: Section 2 contains definitions about theories
of belief revision and non-uniform complexity classes. Section 3 contains the analysis
for the unbounded-size case; we prove compactability as well as non-compactability
results. Section 4 contains the analysis for the bounded-size case, while Sections 5
and 6 deal with iterated belief revision, in the unbounded-size and bounded-size case,
respectively. The results are summarized in Table 1 and Table 2. Section 7 presents
results for generic data structures and Section 8 contains some conclusions.

2 Preliminaries

The alphabet of a propositional formula is the set of all propositional letters occurring
in it. The special letter L denotes falsity, while T denotes validity. We use x Z y as a
shorthand for (zVy)A(—zV—y), and x = y for (xAy)V (-2 A—y). Another shorthand
we use is x — y for ~z V y. An interpretation of a formula is a truth assignment to
the letters of its alphabet. A theory T is a finite set of propositional formulae. We
denote with A T the formula representing the logical “and” of all elements of 7. When
no confusion arises, we simply write 7" for AT. A model M of a formula P (theory
T) is an interpretation that satisfies P (all formulae in 7'). This is written M = P
(M |=T). Interpretations and models of propositional formulae will be denoted as sets
of letters (those which are mapped into true). L is always mapped into false and T
is always mapped into true. Given a propositional theory 7', we denote with M(T)
the set of its models. The expression |IW| denotes the size of W, e.g., the number of
distinct occurrences of propositional variables in W, if W is a propositional theory.

Several notational conventions help presenting the revision operators. In particular,
the expression |S| denotes the cardinality of a set .S, and symmetric difference between
two sets Si, Sy is denoted by S1ASs. Recall that A is an associative and commutative
operator, with () as its neutral element.

If S is a set of sets, NS denotes the set formed intersecting all sets of S, and
analogously US' for union; minc.S denotes the subset of .S containing only the minimal
(wrt set inclusion) sets in S; maxcS denotes the subset of S containing only the
maximal (wrt set inclusion) sets in S.

Given a propositional theory 7" we denote with V(T') the letters appearing in 7.
In the paper we frequently use the notion of substitution of letters in a formula. The
notation P[z/F| denotes the formula P where every occurrence of the letter z is re-
placed by the formula F. This notation is generalized to ordered sets: P[X/Y] denotes
the formula P where all occurrences of letters in the set X are simultaneously replaced
by the corresponding elements in Y, where X is an ordered set of letters (in general,
X CV(P)) and Y is an ordered set of formulae with the same cardinality of X. For
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example, let @ be the formula 1 A (22 V —x3). Let X = {z1,23} and Y = {y1, ~ys}.
Then, Q[X/Y] is the formula y; A (x2 V =—ys).

2.1 Non-uniform complexity classes

As already pointed out, our proofs use the notion of non-uniform computation. We
assume the reader is familiar with (uniform) classes of the polynomial hierarchy (P,
NP, ¥4, ..., and their complements), and we just briefly introduce non-uniform classes,
following Johnson [17].

Definition 2.1 An advice-taking Turing machine is a Turing machine that has asso-
ciated with it a special “advice oracle” A, which can be any function (not necessarily a
recursive one). On input s, a special “advice tape” is automatically loaded with A(]s|)
and from then on the computation proceeds as normal, based on the two inputs, x and

A(s]).
Note that the advice is only function of the size of the input, not of the input itself.

Definition 2.2 An advice-taking Turing machine uses polynomial advice if its advice
oracle A satisfies |A(n)| < p(n) for some fixed polynomial p and all nonnegative integers
n.

Definition 2.3 IfC is a class of languages defined in terms of resource-bounded Turing
machines, then C/poly is the class of languages defined by Turing machines with the
same resource bounds but augmented by polynomial advice.

Any class C/poly is also known as non-uniform C, where non-uniformity is due to
the presence of the advice. Non-uniform and uniform complexity classes are related
in [18, 29]. In particular, Karp and Lipton proved in [18] that if NP C P/poly then
115 = ¥ = PH, i.e., the polynomial hierarchy collapses at the second level, while Yap in
29, pg. 292 and Theorem 2| generalized their results showing that if NP C coNP /poly
then IT§ = 3% = PH, i.e., the polynomial hierarchy collapses at the third level. Such a
collapse is considered very unlikely by most researchers in structural complexity.

2.2 Revision operators

We now recall the different approaches to revision and update, classifying them into
formula-based and model-based ones. A more extensive exposition can be found in [8].
The boldface name prefixed to each approach will be used for further reference.



2.2.1 Formula-based approaches

Formula-based revisions operate on the formulae syntactically appearing in the theory
T. Let W(T,P) be the set of maximal subsets of 7" which are consistent with the
revising formula P:

W(T,P) = maxc{T'CT | T'U{P}}£ L}

GFUV. In [10] and in [15], the revised theory is defined as a set of theories: T *gryy
P={T"u{P} | T € W(T,P)}. Each theory of W(T, P) has been called “possible
world” by Ginsberg, with no reference to possible worlds in modal logics. Logical con-
sequence in the revised theory is defined as logical consequence in each of the theories,
e, T xgryy P = Q iff for all 7" € W(T, P), T" U{P} = Q. If a theory T is also
viewed as the conjunction AT” of its formulae, this consequence relation corresponds
to consequence from the disjunction of all theories. Hence, as far as logical equivalence
is concerned, we consider T xgryy P as being equivalent to (V ey py(AT")) A P.

Nebel. The operator *y, proposed in [23], is an extension of Ginsberg-Fagin-
Ullman-Vardi’s one, in which the new theories are built based on a prioritized partition
of the formulae in 7.

WIDTIO. Since there may be exponentially many new theories in T xgpryy P, a
simpler (but somewhat drastic) approach is the so-called WIDTIO (When In Doubt
Throw It Out), which is defined as T *yq P = (NW(T, P)) U {P}.

Note that formula-based approaches are sensitive to the syntactic form of the theory.
That is, the revision with the same formula P of two logically equivalent theories T
and T, may yield different results. We illustrate this fact through an example.

Example. Consider 71 = {a,b}, Ty = {a,a — b} and P = —b. Clearly, T} is
logically equivalent to T5. The only maximal subset of T} consistent with P is {a},
while there are two maximal consistent subsets of Ty, namely {a} and {a — b}.

Thus, T1 *gruv P = {a A =b} while Ty xgrpy P = {(a V (a — b)) A —b} = {=b}.
The WIDTIO revision gives the same results. O

2.2.2 Model-based approaches

Model-based revisions obey the principle of “irrelevance of syntax” [7]. They operate
by selecting the models of P on the basis of some notion of proximity to the models of
T. We distinguish between pointwise proximity and global proximity.

We assume both 7" and P to be satisfiable. As far as compactness is concerned,
the cases in which either T or P are unsatisfiable are not of interest. In fact, in the
various semantics, the result of revision is either T', or P, or the unsatisfiable theory,
or undefined, hence clearly compactable.

Approaches in which proximity between models of P and models of T" is computed
pointwise wrt each model of T' were proposed as suitable for knowledge update [19].



Let M be a model of T'; we define (M, P) as the set containing the minimal (wrt set
inclusion) symmetric differences A between each model of P and the given M; more
formally, p(M, P) = minc {MAN | N € M(P)} (we remind that models are identified
with the set of letters they map into true).

Winslett. In [27], Winslett defines the models of the updated theory as M(T sy,
P)={NeM(P)|3IM e M(T) : MAN € pu(M,P)}.

Borgida. Borgida’s operator *p is the same as Winslett’s, except for the case when
P is consistent with 7', in which case Borgida’s revised theory is just T'U { P}.

Forbus. This approach [11] takes into account cardinality: let ky; p be the min-
imum cardinality of sets in u(M,P). The models of Forbus’ updated theory are
M(T xp P) = {N € M(P) | 3IM € M(T) : [IMAN| = kpyp}. Note that by means
of cardinality, Forbus can compare (and discard) models which are incomparable in
Winslett’s approach.

We now recall approaches where proximity between models of P and models of T’
is defined considering globally all models of T'. Let 6(T', P) = minc Unrepmery #(M, P).

Satoh. In [25], the models of a revised theory are defined as M(T xg P) = {N €
M(P)|IM e M(T): NAM € 6(T, P)}.

Dalal. This approach is similar to Forbus’, but global. Let k7 p be the minimum
cardinality of sets in 0(7T, P); in [7], Dalal defines the models of a revised theory as
M(T %p P) = {N € M(P)|3M € M(T) : INAM| = kpp}.

Weber. Let QQ = UJ(T, P), i.e., Q contains every letter appearing in at least one
minimal difference between a model of T" and a model of P. Following [8, p. 238], the
models of Weber’s revised theory [26] are defined as M(T e, P) = {N € M(P) |
dM € M(T): NAM C Q}.

From the definitions it follows that the set of models relative to the model-based
approaches are related as described in Figure 1, where each arrow denotes set contain-
ment.

To illustrate the differences between different model-based approaches, consider the
following example.

Example. Let T and P be two formulae on the alphabet {a,b,c,d} defined as:

T = aANbAc
P = (maAN—-bA=d)V (mcANbA (a#d))

T has only two models, which are:

M, = {a,b,cd}
M, = {a,b,c}

while P has four models:
N1 = {CL, b}
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Figure 1: Containment between sets of models for the various operators.



Ny = {c}
N3 = {bv d}
N4 = (Z)

The symmetric differences between each model of T" and each model of P are:

I N P TR e O R (Y VL
M, ={a,b,c,d} {c,d} {a,b,d} {a,c} {a,b,c,d}
My ={a,b,c} {c} {a, b} {a,c,d} {a,b,c}

Hence, the minimal differences between M; and models of P are u(Mi, P) = {{c,d},
{a,b,d},{a,c}}; the minimal differences between M, and models of P are u(Ms, P) =
{{c},{a,b}}.

The cardinalities of set differences between each model of 7" and each model of P
are:

| Al | Ni={a,b} | Ny={c} [ Ns={b,d} [ Ny=10 |
M, ={a,b,c,d} 2 3 2 4
M, = {a,b,c} 1 2 3 3

Winslett. The minimal differences in p(M;, P) correspond to the models Ny, Ny, N3
of P, while those in u(Ms, P) correspond to the models Ny, Ny of P. Therefore, the
models of T xy;, P are Ny, Ny, N3. The same result holds for Borgida’s revision, since
T and P are inconsistent.

Forbus. From the table with cardinalities: the minimum cardinality of differences
between M; and each model of P is ky, p = 2, corresponding to models N; and Ns;
while kys, p = 1, corresponding to N;. Therefore, T' xp P has models N; and Nj.

We now turn to global proximity approaches, where also entries in different rows
of the above tables are compared for minimality.

Satoh. The minimal differences between any model of T" and any model of P are
(T, P) = {{c},{a,b}}. These minimal differences correspond to models N; and N; of
P, which therefore are the models of T" xg P.

Dalal. The minimum cardinality of all set differences is k7 p = 1, corresponding
to Ni. As a result, T'xp P selects only the model V.

Weber. Consider the union of all minimal global differences, that is Q@ = U§(T, P) =
{a,b,c}. In Weber’s revision, one selects the models of P for which there exists a model
of T whose symmetric difference is included in €2. Since all models of P have this prop-
erty (cf. table with symmetric differences), they are all selected. Thus, the revision
coincides with P in this case. O
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There is an important property of model-based revision operators that we frequently
use:

Proposition 2.1 Let M be a model of T and * one of the revision operators {*g, *p, *p,
kS, *Webs ¥Wwin t- Lhen, there exists a model N of T * P such that MAN C V(P).

This property states that for every model of T' there exists a model of T"* P whose
distance is bounded by the letters of P. This is sometimes crucial in showing the
existence of compact representations since it allows to focus our attention only on the
letters of P. This proposition is mentioned by Eiter and Gottlob in [8, proof of Lemma
6.1].

2.2.3 Iterated Revision

All the operators proposed in the literature aim at formalizing the process of revising
a formula with a single update. Nevertheless, it is more realistic to formalize the
result of applying a series of revisions or updates to an existing knowledge base. The
iterated application of an update or revision operator is defined as follows: given a
theory T and a sequence of updates P!,..., P™, the m-times repeated application of
% is (++- (T * PY)--- % P™). That is, the result of revising 7" with P! is revised with
P? and so on. In order to simplify the notation, we assume that the revision operator
x is left associative. Thus, the result of revising the theory T with a series of updates
P! ..., P™ will be denoted as T * P! % ---x P™,

There are at least two possible computational approaches to deal with iterated
revision. The first approach incorporates each revision one-by-one into the knowledge
base, while the second approach stores the initial knowledge base and the sequence of
update formulae and computes the result in a single step. As we show in Sections 5
and 6, the second approach leads to compact representations in a larger set of cases.

2.2.4 Complexity of Revision

As shown in what follows, the existence of compact representations for the revised
knowledge base is related to the complexity of model checking and inference for the
various revision operators. The complexity of these decision problems have been an-
alyzed in various papers. The complexity of deciding 7'« P = @ (T, P and @ being
the input) was studied in [8]. The results are that in Dalal’s approach the problem
is Ab[log n]-complete, while in all other approaches it is IT5-hard (in some cases, IT5-
complete).

The complexity of model checking, that is, the complexity of deciding whether
M =T x P (where M is an interpretation and M, T and P are the input) is analyzed
in [22]. Noticeably, formalisms with the same complexity w.r.t. inference have differ-
ent complexity w.r.t. model checking (e.g., Satoh’s and Ginsberg-Fagin-Ullman-Vardi’s
operators).
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The complexity of inference for iterated revision was analyzed by Eiter and Gott-
lob [9].

2.3 Compact Representations

In this paper we investigate the possibility of compactly representing, with a propo-
sitional formula, the result of an update or revision. We point out that the result
of all revision and update methods presented in Section 2.2 can be represented as a
propositional formula. However, it is difficult to know what is the size of the shortest
formula representing the result.

We call an operator query-compactable if there exists a propositional formula of
polynomial size which has the same theorems of the result of the revision. More
precisely:

Definition 2.4 (query-compactable operator) An update or revision operator
1s query-compactable if and only if there exists a polynomial p such that for any pair
of propositional formulae T and P there exists a propositional formula T' with the
following properties:

1T < p(IT| + [ P]);
2. T' is query equivalent (cf. (1)) to T * P.

In order to prove that some belief revision operators are not query-compactable we
show that this would imply some very unlikely consequences on complexity classes. In
fact, as we show in Section 7, reference to to complexity classes is necessary, because
in some cases proving logical-compactability is equivalent to prove long-standing open
questions in complexity theory. We now prove a general property that will be helpful
in the proofs of the following sections.

A decision problem, seen as the infinite set of its instances, can be partitioned
according to the size of the instances for a reasonable encoding (in the sense of [17]) of
the instances. In particular, we focus on the NP-complete problem 3-SAT [14, Problem
LO2].

Definition 2.5 We partition the set of instances as 3-SAT = ;2| 3-SAT,,, according
to their size n. For each n, we know that the number of distinct propositional letters
occurring in each instance of 3-SAT,, is at most n. Without loss of generality, we assume

that all formulae of 3-SAT,, are built on the same set of atoms B, = {b,...,b,}. For
each n, T is defined as the set of all the three-literal clauses on {by,...,b,}, and

m is the number of clauses in 7).

n

Note that 7% has size polynomial in n; in particular it has ©(n?®) clauses, and
each literal can be represented with ©(logn) bits. Moreover, each instance m € 3-SAT,,,

13



considered as a set of clauses, is a subset of 7" € 3-SAT. In Theorems 2.2 and 2.3 of
this section, and in Theorems 3.1, 3.3, 3.6, 6.5, and 6.5 of the following ones, we refer
to such a partition of 3-SAT, and the related notation.

Theorem 2.2 Let x be a revision operator. Assume there exists a polynomial p such
that, for each n > 0, there exists a pair of formulae T,,, P,, with the following properties:

1T + |Pa| < p(n);
2. for all m € 3-SAT,,, there exists a formula @), such that:

(a) Qr can be computed from 7 in polynomial time;
(b) T, x P, = Qr iff m is satisfiable.
With the above hypothesis, if * is query-compactable, then NP C coNP /poly.

Proof. Assume there exists a polynomial p such that, for each n, there exists a pair
of formulae T,,, P, with the properties stated. Now, assume * is query-compactable.
Hence, for each pair T,, P, there exists a T), with the properties stated in Definition 2.4.
Recall that the problem of deciding whether 7] = Q. (the input being 7], Q) is in
coNP. Then we can define an advice-taking non-deterministic Turing machine in the
following way.

First, we define the advice oracle as A(n) = 7). Observe that |A(n)| = |T)| <
p(|Ta| + | Pal) < pi(p(n)), where p is the polynomial mentioned in the hypothesis 1 of
the theorem, and p; is the polynomial mentioned in point 1 of Definition 2.4. Hence,
the size of the advice is bounded by a polynomial which is the composition of p; and
p.

Secondly, the machine operates as specified by the following pseudo-code:

—_

P
— — N N

let 7 be an instance of 3-SAT;
n = |zl;
load A(n); (* =T %)
use 7 to compute @Q,; (* in time polynomial in |7| *)
if T, = Qn
then return “true”
else return “false”;

By Definition 2.4, “true” is returned if and only if T, * P, = @,. Since * is query-
compactable, the problem of checking 7! = @ is in coNP (the input being 7 and
Q). Therefore, the problem “is m unsatisfiable?” can be solved by an advice-taking
non-deterministic polynomial-time machine whose input has size polynomial in |7|.
Since 3-SAT is an NP-complete problem, and co(NP/poly) = coNP /poly, this would
imply NP C coNP /poly. O

Compactability w.r.t. logical equivalence is a property of belief revision operators
stronger than query-compactability.
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Definition 2.6 (logically-compactable operator) An update or revision operator
x 1s logically-compactable if and only if there exists a polynomial p such that for any
pair of propositional formulae T and P there exists a propositional formula T with the
following properties:

1T < p(IT] + |P]);
2. T is logically equivalent (cf. (2)) to T * P.

Note that if a belief revision operator is logically-compactable, then it is also query-
compactable. Similarly to query-compactability, in order to prove that some belief
revision operator is not logically compactable we show that this would imply some
very unlikely consequences on complexity classes. Moreover, as we show in Section 7
in some cases proving query-compactability is equivalent to prove long-standing open
questions in complexity theory. We show a general property analogous to Theorem 2.2
that will be helpful in the proofs of the next sections.

Theorem 2.3 Let x, p, T,,, and P, be as in Theorem 2.2, and let the hypothesis of
Theorem 2.2 hold. If for each n > 0,

2°. for all m € 3-SAT,,, there exists an interpretation M, of T, x P, such that:

(a) M, can be computed from w in polynomial time;
(b) M, =T, * P, iff ™ is satisfiable.

then, if x is logically-compactable, then NP C P/poly.

Proof. The proof has a structure similar to the proof of Theorem 2.2. With the
hypothesis stated, and assuming that = is logically-compactable, for each pair T},, P,
we can define a 7! with the properties stated in Definition 2.6. Recall that checking
whether M = T (the input being M,T) is a polynomial-time problem. The advice-
taking Turing machine is defined similarly to the previous theorem.

In particular, the advice oracle is again defined as A(n) = T, and its size is less
than or equal to p)(|T,| + |P.|) < pi(p(n)), where p) is the polynomial mentioned in
point 1 of Definition 2.6.

The machine operates in a similar way, in particular, the following pseudo-code
substitutes the corresponding lines:

(4) use 7 to compute M,; (* in time polynomial in |7| *)
(5) if M, =T,

then return “true”

else return “false”;
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By Definition 2.6, “true” is returned if and only if M, = T, * P,. Since * is
logically-compactable, the last decision can be made in time less than or equal to
O(p1(|T| + | Pa|) + | Mx]). Therefore, the advice-taking Turing machine would globally
work in time polynomial in |7|. Since 3-SAT is an NP-complete problem, this would
imply NP C P/poly. O

Theorems 2.2 and 2.3 provide a general schema for the proofs of non-existence of
compact representations that we present in the paper. All our proofs use the same
technique, even though with major differences in the details.

We note that usage in Al of non-uniform complexity classes for proving unlikeliness
of existence of compact representations has been proposed for the first time by Kautz
and Selman in [20]. In particular, they showed that existence of a polynomial-size
representation of the Horn upper bound of a propositional formula implies that NP C
P /poly.

Horn upper bounds have been studied in the context of approximate knowledge
compilation, an approach to intractability of reasoning in Al that tries to move off-line
a significant part of the computational burden of reasoning, at the cost of losing either
soundness or completeness. In [16], Gogic, Papadimitriou, and Sideri have considered
approximate knowledge compilation of the revision of a formula, showing that in some
cases such an approximation can be computed in linear time. In this paper we do
not deal with approximation of formulae, but only with representations preserving
equivalence.

3 Single unbounded revision

The purpose of this section is to show an analysis of logical- and query-compactability
of revision operators. We consider revision operators mentioned in Section 2, and
show both compactability and non-compactability results. There is no assumption
on the size of the formula P; the bounded-size case will be addressed in the next
section. Moreover, we consider only a single revision. Notice that WIDTIO semantics
is logically compactable (hence query compactable) since it immediately follows from
its definition that the size of T y;q P is always less than or equal to |T'| 4 |P|.

3.1 Query compactability

In this subsection we investigate query compactability. We begin our investigation
focusing on Ginsberg-Fagin-Ullman-Vardi’s operator. Other researchers have already
noticed that the explicit representation of the result of revising a knowledge base under
Ginsberg-Fagin-Ullman-Vardi’s semantics might have exponential size.
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We introduce this problem with an example presented by Nebel [24]. Let

Tl :{xla"'axmayla"'aym}
Pr=NL (2 # yi)

The set W(Ty, P;) contains 2™ distinct theories, each one containing, for each i(1 <
i < m), exactly one of z; and y;. If we represent T} xgryy Pi as the disjunction of all
theories in W (T}, P;), conjoined with P, the size of this representation is exponential
in |T1| + |P1|

The problem of the explosion of the size of the revised knowledge base was also
pointed out by Winslett [27] with another example:

T, = {z, w, 21 = (mz1 V),
i, Y zi = (zi—1 A (—x V ),

Tm, Ym, Zm = (mel A (_‘xm \% _‘ym)) }
P2 = Zm

Again, the cardinality of the set W (T3, P,) is exponential in m (note that in this exam-
ple the size of P, does not depend on m). These two examples show that, in general,
given T" and P, the “obvious” representation of T xgpryy P might have size exponential
in |T'| + |P|. However, they do not rule out the existence of a different representation
of polynomial size. As Winslett notes [27, pg. 34] the exponential increase in the size
is proven if we “assume a completely naive storage organization, where the theories
are written out as we would write them down on paper”. Later on she also conjectures
that “these bounds hold even for clever storage schemes”.

We now show that her conjecture on Ginsberg-Fagin-Ullman-Vardi’s revision is in-
deed true for the more general case of query equivalence. This result is later generalized
to other revision operators. We recall that the symbol B, denotes the set of letters
{b1,...,b,} used to build all formulae in 3-SAT,,.

Theorem 3.1 Unless NP C coNP/poly, the revision operator xgryy is not query-
compactable.

Proof. We apply the general schema of Theorem 2.2 and the notation of Defini-
tion 2.5. We show that, for any integer n, there exists a formula P, and a set of atomic
facts T),, both depending only on n, of polynomial size w.r.t. n, with the following
property: given any m € 3-SAT,, there exists a query (), such that 7 is satisfiable if
and only if T, *gruv Py F Qx-

Let L be the alphabet B,, U C U D U {r}, where r is a new distinct atom, while C
and D are sets of new atoms one-to-one with the elements of 7]"**. In other words,
C=A{c|venr} and D ={d; | v; € 7"*"}.
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We define T}, and P, on the alphabet L according to the following rules:

T, = CUDUB,U{r} (3)

mazx mazx
my, my,

o= [(ABIheBIA-DY A G—)| A A G2d) @)

i=1 j=1

We define W and @, as follows:

We = H{a|vientud{d|vi¢n}
Qﬂ' - Wﬂ_)r

The interpretation on C'U D which is the unique model of W, will be denoted as
I..
The following remarks on W, U P,, are in order:

e No ¢; or d; can be added consistently to W, U P,, because P, imposes that ¢; # d;.

e The theory W, U P, is consistent, because the interpretation I’ that extends I
by making false all atoms in B U {r} satisfies both W, and P,.

Now we are ready to prove our claim, i.e., that 7 is satisfiable if and only if T}, xgryv

Py = Q.

If: suppose 7 unsatisfiable. We show that W, U P, does not entail (), and that W, is
a world from W(T,, P,), i.e., that 1) W, U P, £ Q,, and 2) W, € W(T,, P,).

1. Since 7 is unsatisfiable, for each interpretation H of the atoms of B,,, there
exists a v € m such that H [~ v. Let J = I, be an interpretation on L, i.e.,
all variables of B, U{r} are set to false. We have that J p= /\ﬁw(cj — ;).
Note that J is a model of P,, because it satisfies A, {—b; | b; € B,} A —r
and /\?ZZ;M(C]- # d;). Moreover, J does not satisfy (), because it satisfies
W, and —r. As a consequence, W, U P, £~ Q.

2. Adding to W, any other element of T}, would make W, inconsistent with
P,, therefore, W, € W(T,, P,).

Only-If: Suppose 7 satisfiable. We show that all worlds in W(T,, P,) imply Q.
Note that all worlds not including W, imply @, hence we concentrate on those
containing W.

Note that every W € W (T, P,) such that W, C W must contain r since W, U
{N2 (e =), Ny (¢ # d;)} is satisfiable. Moreover, W\W, C B U {r}.
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Since T, is a set of literals, each such world W is uniquely characterized by its
intersection with B,,. For each interpretation H of the atoms in B,,, let Wy be
defined as follows:

WH,ﬂ:qu{xi|xieH}U{r}

If H does not satisfy 7 then Wy . A P, is inconsistent because Wy = —r and
Wi e NI (¢ — 7;), therefore, Wy & W (T, P,). On the other hand, if H
satisfies 7, the interpretation J = H U I, U {r} of L satisfies Wy ,, P, and Q.
Since there exists at least one interpretation H satisfying m, the corresponding
Wy is in W(T,, P,), and therefore W, & W(T,,, P,). As a consequence, for all
elements W of W(T,,, P,) we have that WU P, &= Q. O

We now consider the model-based revision operators. Even though their semantics is
very different from Ginsberg-Fagin-Ullman-Vardi’s one, we obtain a similar result for
most of them:

Theorem 3.2 Unless NP C coNP/poly, the revision operators xg,*s and sy, are
not query-compactable.

Proof. Eiter and Gottlob’s result [8, Lemma 6.1, point (2)] implies that T«gryv P =
Qif Txg PEQifft Txg P = Q iff T x4, P = @Q when T is a maximal consistent set
of literals, i.e., it has exactly one model, and V(P) C V(T'). Note that these conditions
hold for the T,, defined in (3) and P, defined in (4). a

Using a proof similar to the one of Theorem 3.1, we can show that the same result
also holds for Forbus’ revision operator.

Theorem 3.3 Unless NP C coNP/poly, the revision operator g is not query-compactable.

Proof. We adopt the notation of Definition 2.5. We show that, for any integer
n, there exist two formulae P, and T}, both depending only on n, of polynomial size
w.r.t. n, with the following property: given any m € 3-SAT,,, there exists a query @,
such that 7 is satisfiable if and only if T, *r P, E Q.

The proof is similar to that of Theorem 3.1, but we have now to consider closeness
between models because the revision operator *r is model-based. We still use a set C
of atoms which serve as “enabling guards” to select, among the clauses of 7"**, those
belonging to w. For each clause of 7/"** we now use n + 2 guards, which are always

forced to have the same truth value. T, is defined in such a way that:

e for every two different models of 7 the corresponding models of T}, have distance
at most n+ 1,
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e given two different instances 7y, my of 3-SAT,, a model in T, corresponding to a
model of 7; has distance at least n + 2 from a model of T, corresponding to a
model of 7.

For any given n, let C' = {c | 1 <i<n+2,1<j<m™} bean (n+2) x m"*
matrix of atoms (recall that m*** is the number of clauses in 7]"**). Let L be the
alphabet B, U C' U {r}, where r is a new distinct atom.

Let

max
my, n+2

= N\ Nd=aq

j=1 =2

This formula forces all rows of the matrix C' to be equal. Let T,, and P, be defined
as follows:

T, = {UYUB,U{r}

mazx
m

Po = |(A{=bi |bi€ B A=)V A (& — )| AU,
i=1 j=1
Given 7w € 3-SAT,,, we define:
n+2 n—+2
Qﬂ'_\/ \/Cj\/\/ \/ﬁc‘j\/\/b\/T‘
=1 y;¢m i=1 V€T

We show that T, xr P, = Q. if and only if 7 is satisfiable. Note that every
interpretation of L, but M, = Urt2{c] | ~; € 7}, satisfies Q,. Thus, we only need to
show that M, = T,, xp P, if and only if 7 is unsatisfiable.

First of all, note that for each m C 7,'** the interpretation I defined as U"“{c7 |v; €
T} U B, U{r} is a model of T,,.

The distance between M and I is exactly n+ 1, while the distance from I, to any
other N € M(P,), with a different valuation of atoms in C| is at least n + 2. Hence,
the models of P, that are closest to I, must have the same valuation of atoms in C'.

Suppose 7 unsatisfiable. The model of P, closest to I, is now M, since there is no
other model of P, with the same valuation of C. Hence M, = T, *r P,.

On the converse, suppose m satisfiable. Let ¢ be the interpretation of the atoms in
B,, satisfying m. The model N, = I, — {b | b ¢ ¢} is now in M(P,), and its distance
from I is at most n letters. Hence, M, is not a model of T}, xp P,. O

We now turn our attention to operators that are query-compactable. In particular, we
focus on Dalal’s and Weber’s operators (WIDTIO has already been discussed).

Let X = {zy,...,2,} be the alphabet of the initial knowledge base T" and the
revising formula P, and Y = {yi1,...,y,} be another set of (distinct) letters. In
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order to show that xp is query-compactable, we make use of a propositional formula
EXA(k, X,Y, W), of size polynomial in n, containing letters of X and Y, and possibly
other letters W, which is true iff the Hamming distance between the values assigned
to X and Y is exactly k. We first show that such a polynomial size formula exists,
and then (cf. Theorem 3.4 below) that the revised theory T xp P can be represented as
TIX/YINPNEXA(k,X,Y,W), where k is the minimum distance between the models
of P and T, denoted as kp p in the definition of Dalal’s revision.

First of all, deciding whether the Hamming distance between two models is exactly
k requires time linear in the number of the atoms. Secondly, it has been proved (cf.
e.g., [3, Theorem 2.1]) that if a problem can be solved in time O(f(m)), m being the
size of the input, then there exists a circuit determining the solution of such a problem
using O(f(m) - log f(m)) gates. In our case, the input is composed of logn + 2n bits
representing k and truth assignments to atoms in XUY. Therefore there exists a circuit
of size O(n -logn) determining whether the Hamming distance between two models is
exactly k. Such a circuit can be represented, with routine methods, as a polynomial
size propositional formula using literals from X UY, logn literals representing k£, and
a polynomial number of new atoms W representing the internal nodes of the circuit.
EXA(k, X,Y,W) is such a formula. An explicit representation of EXA(k, X, Y, W) is
shown in [5].

Theorem 3.4 Let X be the alphabet of T and P and let k be the the minimum dis-
tance between models of T and models of P, i.e., k = kpp. Then T[X/Y]| AN P A
EXA(k, X, Y, W) is query equivalent (1) to T %p P.

Proof. Let ) be a query on the alphabet X and k be the minimal distance be-
tween the models of P and T. We prove the theorem by showing that T[X/Y] A P A
EXA(k,X,Y,W) = Qiff T+p P = Q.

If. We show that T[X/Y]APANEXA(k,X,Y,W) £ Q implies T xp P [~ Q. Let
M be a model of T[X/Y] AN PANEXA(k,X,Y,W) such that M = Q. We have:

e M N X satisfies P;
e since M satisfies EXA(k, X, Y, W), M NY satisfies T[X/Y]; and

e M N X has distance k from (M NY)[X/Y] (this is the model obtained from M
by intersecting it with Y and then replacing any y; in the resulting set with the
corresponding z;).

Since M |= P and k is by definition the minimal distance between models of 7" and
P, M N X is also a model of T xp P. Therefore, T xp P [~ Q.

Only If. We show that Txp P = @ implies T[X/Y|APAEX A(k, X, Y, W) |~ Q. Let
M be a model of T'*xp P such that M = (). This model satisfies P. Let My be a model
of T having distance k from M. Define M" as M U{y;|z; € Mr}. Obviously, M’ satisfies
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both P and T'[X/Y]. By definition of My, M can be extended to an assignment to W so
that it also satisfies EX A(k, X, Y, W). Therefore, T[X/Y|ANPANEXA(k, X, Y, W) I~ Q.
|

Now we show how Weber’s revision can be compactly represented. Winslett [27] gives
a similar proof, but only if the new formula has a size bounded by a constant. Our
result, instead, does not need such a restriction. Let Q = {wy,...,ws} be the set of
letters in the definition of Weber’s revision operator, and Z = {z,..., 2} be a new
set of letters one-to-one with .

Theorem 3.5 T[Q2/Z] A\ P is query equivalent (1) to T sy, P.

Proof. Let X = V(T)UV(P) and @ be a formula on the alphabet X. We show
that T e P = Q it T[Q/Z] NP E Q.

If. Assume that T[QQ/Z] A P [~ @Q: we prove that T sy, P [~ Q. By hypothesis,
there exists a model M of T'[Q2/Z] A P on the alphabet X U Z such that M [~ Q. From
M we build two models over the alphabet X as follows:

M = (M0 (X\Q)U{w, | 2z e M}
M = MNnX

We prove that M” is a model of T sy, P and M"” (= Q. First, M’ is a model of T,
since M is a model of T'[€2/Z] and M’ is obtained by replacing the value of the variables
in 2 with the corresponding values in Z. Similarly, M"” is a model of P. Second, M’
and M" differ only on €. Thus, M” is a model of T *yy ., P. Since M and M" evaluate
atoms in X in the same way, @ is a formula over X, and M [~ @, it follows that
M" B~ Q. As a result, there is a model of T #y, P which is not a model of @), which
implies that T sy, P}~ Q.

Only if. Assume that Ty, P [~ Q. We prove that @ is not implied by T'[Q2/Z] A P.
By hypothesis, there exists a model N of T sy, P such that N }£ Q. This means that
N E P and there exists model M = T such that M and N differ only for the atoms
in 2. Models M and N are interpretations over the alphabet X. From them, we build
a single model H over the extended alphabet X U Z, as follows:

H=NU{z|w e M}

It holds H = PAT[QY/Z] and H [~ Q. It follows that T'[Q/Z] A P I~ Q. a

We note that this representation of T sy, P increases the size of T only by —at most—
the length of P whereas the less “compact” representation of T'*p P requires a formula
whose size is quadratic in the number of the letters.
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3.2 Logical compactability

In this section we investigate logical compactability. In particular, we show that Dalal’s

and Weber’s operators, which are query-compactable, are probably not logically-compact-
able.

Theorem 3.6 Unless NP C P/poly, the revision operators xp and sy, are not logically-
compactable.

Proof. We apply the general schema of Theorem 2.3 and the notation of Defini-
tion 2.5. We show that, for any integer n, there exists a formula P, and a knowledge
base T,,, both depending only on n, of polynomial size w.r.t. n, having the following
property: given m € 3-SAT,,, there exists an interpretation M, such that « is satisfiable
iff M, is a model of T,, xp P, iff M, is a model of T}, *yep P,.

Let Y = {y1,...,yn} be a set of new letters in one-to-one correspondence with the
letters of B, and let C' = {¢; | v; € m**}. Finally, let L be the set B,UY UC. Notice
that L has size O(n?®). We define T, as the conjunction of two formulae:

T, =2, A1,

The 2CNF formula ®,, states non-equivalence between atoms in B,, and their cor-
respondents in Y:

¢, = / (b; # yi)'

(2

,_.>3

max

mar using the atoms in C' as “enabling

I',, codes every possible set of clauses in 7
guards”. The formula is defined as:

max
my,

L, = /\ Vi V ¢
i=1

[, is a 4CNF formula and it contains O(n?) clauses. We define P, as:

P, = N\ (=b; A —y)

i=1

Note that the size of T,, and P, is O(n?). Moreover, T;, and P, depend only on the
size n. We define C; = {¢; € C | ~; is a clause of 7}. We divide the proof into two
parts. We show that:

(a) 7 is satisfiable implies that C is a model of T), xp P,

(b) 7 is unsatisfiable implies that C is not a model of T}, *wp Py,
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Combining these results with the fact that all models of Dalal’s revision are also
models of Weber’s revision (cf. Figure 1), we obtain that 7 is satisfiable iff C} is a
model of T, xp P, iff C is a model of T, *ycp P,.

Proof of (a) In every model of 7T}, exactly n atoms from B, UY are true, while in
every model of T}, xp P, all atoms from B, UY are false. Hence, kr, p, > n. Moreover,
kr, p, = n since B, is a model of T,, and () is a model of P,, and the cardinality of
their difference is n. Now, C; is a model of P,, hence it is also a model of T, xp P, iff
there exists a model of T}, such that |C,AM| = kg, p, = n.

Assume 7 is satisfiable. Let B, be a model of 7, Y, = {y; | b; € B,} and M =
C,UB,UY,. We show that M is a model of T},. In fact, M satisfies ®,, by construction
of Y. M satisfies I',, as well, because for each clause ~; V —¢; of I,,, either ¢; € C or
is satisfied by B,. Now observe that |C,AM| = |B, UY,| = n. Hence, C, is a model
of T,, *xp P,. Since the models of Dalal’s revision are also models of Weber’s revision,
we also have that C; is a model of T}, xyy e, Py,.

Proof of (b) We prove the claim by contradiction. Assume 7 is unsatisfiable and
C is a model of T}, *yye, P,. Then there exists a model M of T,, such that M NC = C,.
We claim that M N B,, is a model of 7. Indeed, as for Dalal’s revision, M satisfies
Iy = Ac,ec Vi V e Simplifying I', with truth values of M N C = (5, we conclude
that M satisfies A.,ec, 7i, which is exactly formula 7. Since the formula contains only
atoms from B,, M N B, satisfies m, hence 7 is satisfiable and contradiction arises.
Thus, C; is not a model of T}, *yp P,. O

We conclude the section by generalizing the negative results about query com-
pactability to logical compactability.

Theorem 3.7 Unless NP C coNP/poly, the revision operators xp,*p, *Gruv, *n, ¥,
and sy, are not logically-compactable.

Proof. The claim follows from Theorems 3.1, 3.2, 3.3 and the fact that the non-
existence of a representation satisfying criterion (1) implies the non-existence of a
representation satisfying criterion (2). O

4 Single bounded revision

In the previous section we investigated the issue of the existence of compact repre-
sentations of revised knowledge bases. As it turned out, for most of the operators a
compact explicit representation of the result of revising a knowledge base with a new
formula does most likely not exist. From an analysis of the proofs, it turns out that
this behavior depends on the new formula P being very complex. There are some
applications in which the size of the new formula is very small w.r.t. the size of the
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knowledge base. In database theory, for instance, scenarios with very large pieces of
information are very common, while modifications only concern a small part of the
base. In this section we investigate which impact this assumption has on the existence
of compact representations. In particular, throughout this section we assume that the
size of the new formula P is bounded by a constant (k£ from now on).

We first show that Ginsberg-Fagin-Ullman-Vardi’s revision remains not compactable
even under the above assumption.

Theorem 4.1 Unless NP C coNP/poly, the revision operator xgryy s not query com-
pactable, even if |P| < k.

Proof. Let s be a new propositional variable. We define T, P! from T,,, P, in (3)
and (4) by T! = {f AN (=sV P,)|f € T,} U{=s}, P, = s. It immediately follows that,
for all formulae @ on the alphabet V(T,) U V(P,), we have that T xcryy P, = Q
iff T, *gruv Py, = Q. Assume that xgryy is query compactable when |P| < k. By
the above reduction we have that xgpyy is query compactable even when there is no
bound on the size of P. By Theorem 3.1 it follows that NP C coNP /poly. O

The situation for model-based revision operators is more complex. As it turns out all
of them admit a compact representation, w.r.t. both query and logical equivalence,
when the size of P is bounded.

Without loss of generality, since the size of P is bounded we assume that the
alphabet V(P) of P is included in the alphabet V(T) of T' (e.g., we can add to T the
formula A,cy(py(p V —p)). Because of the assumption of |P| being bounded by £, it
follows that |V (P)| < k. Without loss of generality, we assume |V (P)| = k, and denote
letters in V(P) as {vq,..., v}

We use the following notation: for every set of letters H, we denote with H the
set {—z|r € H}. The formula F[H/H|, where H C V(F), is F with each letter in H
replaced by the corresponding letter in H (that is, its negation).

A useful property that we shall use is the following:

Proposition 4.2 For each interpretation M of the letters in V(F') and set H C V(F),
M = F if and only if MAH = F[H/H].

In other words, if an interpretation M satisfies a formula F' then, for any given set of
letters H, the model M AH, that agrees with M on all letters in V' (F')\ H and disagrees
on all letters in H, satisfies the formula F[H/H]|. For example, let F' = 1 A (22 V —x3),
M = {z1} and H = {z3,23}. Note that M | F. Applying the definitions, we
obtain that MAH = {x1,xq, 23} and F[H/H] = x1 A (—z3 V ——x3). It follows that
{ZL’l, T, Ig} IZ T VAN (_|ZL'2 V _|_|l’3).

25



4.1 Compactability of “pointwise” operators

We exhibit a compact representation of 7" *y;, P which uses exactly the same alpha-
bet of T and P. Basically, we exploit the fact that we can explicitly represent all
assignments to V(P) in constant space, since |V (P)| = k.

Let S be an arbitrary set of letters such that S C V(P). Let us consider the formula

PA \/ (TIS/S|AR)
SCV(P)

where \/gcy(py means a disjunction for all possible subsets S of V(P). This formula
is satisfied by a model N of P iff there is a model M of T' (whose distance from N is
given by the set 5), satisfying formula R.

In this formula S represents the distance between N and M. We define formula R
in such a way it specifies that there is no other model in P whose distance from M is
less than S.

R=- V plC/C]

CCV(P) , CASCS

where Veocy(py | cascs means a disjunction for all possible subsets C' of V(P), satis-
fying condition CAS C S (an equivalent condition is C' # (),C' C S). This formula
imposes a condition over the distance C' between two models of P. Namely, it forbids
that C' is between M and N.

The whole formula is

PA \ (T[S/S| A= \V PlC/C])

SCV(P) CCV(P) , CASCS

This formula can be rewritten, applying De Morgan’s rule, to

PA -\ (T[S/S]A A ~P[C/CY) (5)

SCV(P) CCV(P) , CASCS

It is easy to show that the following proposition holds.

Proposition 4.3 Formula (5) has size linear in |T| and is logically equivalent to

Using Proposition 4.3 and the fact that T xg P is T' A P if consistent and T sy, P
otherwise, we obtain:

Corollary 4.4 There exists a formula of size linear in |T| that is logically equivalent
toT xg P.
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We now exhibit a compact representation of T xp P which uses exactly the same
alphabet of T and P. The main difference between Forbus’ operator and Winslett’s
one relies on the fact that the notion of distance between models for the former one is
based on set cardinality, while for the latter one on set containment. As a consequence,
we obtain a formula very similar to the one obtained for Winslett’s operator. In fact,
the formula representing 1"z P is the following:

PN\ (T[S/SIA- V P[C/C)) (6)
SCV(P) CCV(P) , |CAS|<|S|
(cf. formula (5) and note that here cardinality of sets is considered in the subscript of
the last disjunction). The proof of the theorem has been omitted.

Theorem 4.5 Formula (6) has size linear in |T'| and is logically equivalent to T xp P.

We conclude this section by showing an example of the formulae obtained by ap-
plying formula (6).
Example. Let T" and P be defined as:

T = aNbAcAdANe
P = —-aV-b
T has just one model (call it M), while P has 3x23 models (each combination of
the models of =a V —=b with 2{4%¢}). T'A P has no models. The models of P closest to

T are {a,c,d,e} and {b,c,d, e} (we have ky; p = 1). These are the models of T xp P.
V(P) is {a,b}. Applying (6), we get for T xp P

P A \/ (T[S/S] A = \V P[C/C))
S:{}’{a}v{b}’{avb} CQV(P) 3 ‘CAS‘<‘SI
ie.,
P AN ( (anbANcANdNe)
V. ((ranbAcAdne)n=\/ PIC/C))
C={a}
V ((aAn=bAcAdre)n= \/ P[C/C])
C={b}
V. ((raA=bAcAdANe)A— \/ P[C/C]) )
C:{a}7{b}7{a7b}
ie.,
(ma Vv =b) A aNbAcNdNe)

(maNbANcANdNe)A—=(aV b))
(aN=bANcANdNe)N—=(-aVD))
(maN-bAcANdNe)N=((aV =b)V (maVb)V(aVb))) )

(
(
(
(
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It is easy to verify that this formula has exactly two models: {b,c,d, e} (i.e., the
unique model of the subformula on the second line), and {a,c,d, e} (i.e., the unique
model of the subformula on the third line). |

4.2 Compactability of “global” operators

For all global belief revision operators (Satoh’s, Dalal’s, and Weber’s) the result of the
revision of T with P is logically equivalent to a formula whose size is linear in the size
of T'. This means that its size is polynomial whenever the size of P is bounded by a
constant.

Theorem 4.6 The following equivalences hold:

T+«sP = PN \/ T[S/S] (7)
Ses(T,P)

T+«pP = PN \/ T[S/S] (8)
|S|=kT,p

Txwe P = PN\ T[S/S] (9)
SCO

The right-hand size formulas of those equations have size bounded by a polynomial in
the size of T'.

Proof. The proof for Weber’s revision operator (9) follows immediately from We-
ber’s original definition of *yp.,. We report a skecth for Dalal’s revision only, as the
proof of the other case is similar, and can be found in [5].

First of all, the considered formula has size polynomial in the size of T. Assuming
the size of P to be bounded by a constant, the number of sets S such that |S| = kr p
or S C Q is bounded by a constant, too. This implies that the size of Formula (8) is
linear in the size of T'.

Formula (8) is a disjunction of subformulas: each one P AT[S/S] is used to express
a set of models of P whose distance from a model of T is exactly S. Since S can be any
set such that its cardinality is kp p, the formula expresses exactly the result of Dalal’s
revision. O

Note that all representations can be simplified by omitting in the disjunction all

T'[S/S| which are inconsistent with P.

We close the description of results for single revision with an example:
Example. We continue the previous example. Recall that T" and P are defined as:

T = aANbAcANdANe
P = —aV-b
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The set of minimal differences between models of 7" and models of P is 6(7, P) =
{{a},{b}}. The models of P whose difference from a model of T is in (T, P) are
{a,c,d,e} and {b,c,d,e}. These are the models of T xg P. Since both differences
have the minimum cardinality, k7 p = 1, these two models are also models for 7" xp P.
Moreover, since 2 = {a,b} = V(P), T *we P has also the third model {b, ¢, e}.
Applying either Formula (7) or Formula (8), we get for T'xg P =T xp P

P A (N TIS/S)
s={a}. {0}

ie.,

(ma Vv =b) A (maANbDAcANdNe)

(
V o (aN-bANcANdNe) )

This formula admits indeed the two models {b, ¢, d, e}, and {a, ¢, d, e}. Although it
has exactly the same two models as T xp P, it is syntactically much simpler.
As for T e P, Formula (9) yields

P oA TIS/S)
S:{a}v{b}v{avb}

ie.,
(maVv=b) A ( (maAbAcAdANe)
V o (@aAN-bAcANdNe)
V o (maAN=bAcAdANe) )
which admits also the model {c, d, e}. |

4.3 Summary of results for single revision

In Section 3 and in the present section we have presented several results about the size
of a propositional theory T” representing the revision of a knowledge base and satisfying
either criterion (1) or (2). We proved that some formalizations of belief revision (e.g.,
Forbus’ and Ginsberg-Fagin-Ullman-Vardi’s) lead to propositional theories 7" which
are intrinsically not representable in polynomial space (unless the polynomial hierarchy
collapses). In other cases, e.g., logical equivalence (2) for Dalal’s and Weber’s operators,
we showed polynomial-size representations which are equivalent to the revised theory.
The results are summarized in Table 1, where YES stands for compactable, while NO
stands for not compactable.
The following comments on the table are in order.
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General case

Bounded case

Formalism || Logical equiv. (2) ‘ Query equiv. (1) || Logical equiv. (2) ‘ Query equiv. (1)
GFUV, NO NO NO NO
Nebel Th. 3.7 Th. 3.1 Th. 4.1 Th. 4.1

Winslett NO NO YES YES

Th. 3.7 Th. 3.2 Prop. 4.3 Prop. 4.3, [27]
Borgida NO NO YES YES
Th. 3.7 Th. 3.2 co. 4.4 co. 4.4, [27]
Forbus NO NO YES YES
Th. 3.7 Th. 3.3 Th. 4.5 Th. 4.5
Satoh NO NO YES YES
Th. 3.7 Th. 3.2 Th. 4.6 Th. 4.6
Dalal NO YES YES YES
Th. 3.6 Th. 3.4 Th. 4.6 Th. 3.4, Th. 4.6
Weber NO YES YES YES
Th. 3.6 Th. 3.5 Th. 4.6 Th. 3.5, Th. 4.6, [27]
WIDTIO YES YES YES YES

Table 1: Is the revised knowledge base compactable?
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e First of all, we remind that:

— if an entry in a query equivalence column is “NO”, then also the correspond-
ing entry in the logical equivalence column must be “NO”;

— conversely, if an entry in a logical equivalence column is “YES”, then also
the corresponding entry in the query equivalence column must be “YES”;

— analogously, “NO” in the bounded case implies “NO” in the general case,
and “YES” in the general case implies “YES” in the bounded case.

e As for syntax-based operators (with the exception of WIDTIO which is obviously
compactable), the size of P is not relevant. Intuitively, this holds because a
single literal is able to generate an exponential number of distinct possibilities,
cf. example concerning the xgpyy operator in Subsection 3.1.

e As for model-based operators:

— in the bounded case the revision involves only literals occurring in P, hence
compactness is guaranteed, regardless of the equivalence criterion;

— in the unbounded case, revision according to query equivalence (1) can be
computed in two steps:

1. computation of a “measure of the minimal distance” (e.g., kr p for *p,
Q) for *Web, 5T7p for *S);

2. using the measure for computing minimal sets.

Only for *p and *y¢, the measure appears to be compactable.

Note anyway that the above two-steps method does not work for logical
equivalence (2), because it uses new letters. Summing up, Dalal’s and We-
ber’s formalizations have an interesting behavior: 7" has no polynomial-size
representation if we insist on logical equivalence, but such a representation
does exist if we ask only query equivalence.

e Compactability is not directly related to the selectivity of the operators in choos-
ing the resulting set of models. The two model-based operators that more often
admit compact representations are *xp and .. As shown in Figure 1, xp is the
most selective operator while *yy.;, is one of the least selective ones.

5 Iterated unbounded revision

In the previous sections we have analyzed the size of the smallest propositional repre-
sentation of the result of a single revision or update. We now turn our attention to
the size of the result of a series of revisions or updates. Obviously, we only investigate
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operators that admit a compact representation after a single revision, since operators
shown uncompactable for a single revision are also uncompactable for a series of re-
visions. In the style of Sections 3 and 4, we divide our analysis into two cases: the
general one (considered in this section), where no constraints are imposed on the se-
quence of m revising formulae { P!, ..., P™}, and the bounded case (considered in the
next section), where we assume that the size of each P’ is bounded by a constant.

In the general case, we only need to investigate the properties of Dalal’s and Weber’s
operators under the query equivalence criterion. In particular, we show that Dalal’s and
Weber’s operators retain their compactability properties even if the revision process is
iterated m times, if we go for criterion (1), i.e., the initial language is extended.

For what concerns Dalal’s operator, note that the straightforward, m-times re-
peated, application of Theorem 3.4 yields a formula of size exponential in |T|+|P|+m.
Therefore, we need to show a different formula.

Let EXA(r,S1,Ss,53) denote the formula defined in Section 3.1 and containing
letters of S; and S5, and possibly other letters S5, which is true iff the Hamming
distance between the values assigned to S; and S5 is exactly r.

Now let P!,... P™ be the sequence of revising formulae. We denote with k; the
minimum distance between the models of P! and T and with k; the minimum distance
between the models of P and T *p P! *p --- xp P!, Moreover, we define X =
V(T)UV(PHYU---UV(P™) and we use a family Y; of sets of (distinct) letters, where
each member Y; of the family Y is one-to-one with X. Using this notation, the revised
theory T *p P! *p --- xp P™ can be expressed as:

®,, = TIX/VIAPUX/Yo]A--- AP XY, ] AP™A
EXA(ky, Y1, Yo, W) A+ AN EX Ak, Yo, X, W)

Note that the formula contains m distinct instances of the formula FX A, each one
comparing sets of cardinality at most n. Thus, we have:

Theorem 5.1 ®,, has size polynomial in |T|+|P*|+---+|P™| and is query equivalent
to T xp Pl sp---xp P™.

Proof. Let @) be a query on the alphabet X. We prove the theorem by showing
that @, = Q iff T xp Pl xp---xp P™ = Q. The proof is by induction on m, and the
base case is proven in Theorem 3.4.

If. We show that @, = Q implies T xp P! xp -+ %p P™ [~ Q. Let M be a model of
®,, such that M £ @, and let N = M N X. Since @ only uses letters of X, it holds
N B Q. Since M |= EX A(ky,, Y, X, W,,,), the distance between the two sets M N X
and M NY,, is exactly k,,. Let M' = (MA(X UY,,)) U {z]y: € M}. Note that,
by construction, M’ = ®,,_1 and, by the inductive hypothesis, M’ N X is a model of
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T xp Pl xp---*xp P!, Therefore, M N X has distance k,, from a model (M’ N X) of
T xp Pl xp---*p P™ ! and, therefore, it is also a model of T *p P! xp - -- xp P™.

Only If. We show that T xp P! xp -+ xp P™ [~ @Q implies @,, £ Q. Let N,,11 be a
model of T xp P! xp -+ *p P™ such that N,,,1 & Q. Hence there exists a model N,,
of T'xp Pt *p---%p P™ ! such that the distance between N,,,; and N,, is exactly k,,.
Inductively, for each i (1 <1 < m — 1), there exists a model M; of T xp P! xp - --xp P
such that the distance between M;,, and M; is exactly k;. Now, let M be a model of
®,, such that M coincides with NV, on X. Since () only uses letters of X, we have that

M} Q. O

Now we show how Weber’s revision can be compactly represented also for iterated
revisions. By Theorem 3.5 we know that the propositional representation of T sy e, P
only increases the size of |T| + |P| by a linear factor. We denote with €2; the set
associated to the i-th revision step (T *wep P! *wep - ¥wep PT1) #wep PP To each €
we associate a new set Z;, one-to-one with ;. Therefore, T e, P! *wep - - - *wer P
can be represented by the formula:

T/ Z1; - Q) Zn) AP Qo) Zos -+ s Q) Zin ) A+ - AP Qg1 [ Zig1s -+ Q) Zn) A+ - - AP™
(10)

where the substitutions must be performed in left-to-right order. Thus, we obtain:

Corollary 5.2 Formula (10) has size linear in |T| + |PY| + -+ + |P™| and is query
equivalent to T *wep P *ywep - - - *wep P™.

We close this section with an example of the application of Formula (10).
Example. We expand the example of the previous section. To highlight the
one-to-one correspondence between sets of letters, we use {x1, z2, x3, x4, 5} instead of

{a,b,c,d,e}. We define T', P! and P? as:

T = 21 N9 ANT3 Nxa N\ T5
Pl = ﬁZL‘l\/_|£L'2
P2 = T

T has just one model (call it M), while P! has 3x23 models and P? has 2* models.
Recall that Q; = {z1, 75} = V(P?') and, therefore, T*y o, P* has models {1, z3, 74, 75},
{x9, 13, 24,75} and {x3, 74, 75}. Now, Qy = {z5} = V(P?). As a consequence, T *yy
Pl sy, P2 has models {x1, x3, 24}, {22, 13, 24} and {z3,24}. We define two sets Z; =
{z{,22} and Z, = {z1}.

Applying Formula (10) yields T'[x1/21; xa/2%; x5/ 23] A Pzs/23] A P? ie.,

(z{ A2 Ax3 Aag A zy) A (—x1 V —29) A (—xs)
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which admits the three models {1, z3, x4, 21, 22, 23}, {22, ¥3, T4, 21, 23, 23 } and {3, 24,
1.2 .1 : o 1.2 1 1
21, 21, 23 + which — projecting out z;, z{ and z; — are exactly the models of Ty e, Pl skyyep
P2, O

6 Iterated bounded revision

In this section we assume that the size of all formulae { P!, ..., P™} of the sequence of
revisions is bounded by a constant. However, we assume that the number of revisions
is arbitrary, therefore, in order to show the existence of compact representations, we
must show formulae whose size is bounded by a polynomial in |T'| + m.

We first focus on the query equivalence criterion. Note that the propositional
formulae presented in Section 4.2 increase exponentially in m their size if the revision
operator is iterated m times. As a consequence, we first find new formulae, that only
preserve query equivalence, but that can be iterated without exploding the size. Since
all the representations are very similar, we only show the representation for Winslett’s
operator.

Let V(T') be the alphabet of T'; without loss of generality, assume that the alphabet
V(P) of P is included in V(T"). Because of the assumption of |P| being bounded by
a constant k, it follows that |[V(P)| < k. We assume |V(P)| = k, and rearrange
subscripts in such a way that V(P) = {z1,...,2x}. Let Y = {y1,...,yx} be a set of
letters one-to-one with V(P). Since T'A P may be inconsistent, we replace in 7" the
letters in V' (P) with the new letters Y. This yields the formula

TV(P)/YIAP (11)

This formula is satisfiable — if both 7" and P are — but it is not query equivalent to
T swn P, since any model of P can be suitably extended to a model of (11). Hence
we want to impose further constraints to this formula. In the following we use the
notation Mg to represent the set of letters that are mapped into true by M and that
belong to S, i.e., M NS.

Let M be a model of (11), i.e., an assignment to V(T) UY. Let V(P) denote the
set V(T') — V(P), i.e., letters of T not appearing in P. We partition M as My p) U
My U My . Let M = {x; € V(P) | yi € My}, ie., M' = My [Y/V(P)]. Observe
that M is a model of (11) if and only if M is a model of P and M’ U Mgz is a model
of T

By Proposition 2.1, it follows that the models of P which are closest to a model M
of T'—i.e., having minimal set difference with M — agree with M on letters in ﬁ

Therefore, a model M = My (p) U Mgz U My of (11) should be discarded if there
exists another model of P which is closer to the model M’ U M|W of T. Let Z be a
set of letters one-to-one with V' (P). In order to make the notation more compact, we
introduce three formula schemata:
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Fp(S) = PV(P)/S]

Fc(S1,52,55,51) = N((s1 £ s5) — (s} # s1))

j=1

where the sets S, .51, S2, .53 and Sy contain k letters each. The first schema Fp ensures
that the assignment to S is a model of P, while the second one F states that for each
truth assignment to S; U .S, U S3U .Sy the set of atoms that have a different truth value
in S; and S; is a subset of the set of atoms that have a different truth value in S5 and
54.

Using this notation, we impose that an assignment to Z is a model of P with the
formula Fp(Z). Since a model of (11) must be considered only if there is not a closer
model, the whole revision can be reformulated as the following quantified boolean
formula:

TIV(P)/Y]| AP ANZ.(Fp(Z) NF=(Z,Y,Y,V(P))) — Fc(V(P),Y,Y,Z)  (12)

where V7 is a shorthand for Vz; - - - Vz,. This formula is now turned into an (unquanti-
fied) propositional formula by replacing the universal quantification with a conjunction
over all assignments to Z. Since there exist 27! distinct assignments to Z, the total
size of T #y, P is O(|T| + | P| + 2/71). Observe that the assignments to Z which are
not models of P can be discarded (they do not satisfy Fp(Z), hence the implication
simplifies to T), and the simplified formula is linear in the number of models of P,
hence it could be significantly smaller than 2!, Note that this explicit representation
introduces new letters, hence it does not preserve logical equivalence (2). A linear-size
representation with new letters was also shown by Winslett herself in [27].

Example. As in the last example, T'= x1 A x5 A x3 A x4 A x5 and M is its unique
model. Now, we take P = —x;. Note that T' A P has no models.

V(P) is {x1}. Let Y = {11} and Z = {21} be two new sets of letters. Applying
(12), we get for T sy, P

(y1 ANza Axg Axy Axs) A ()
A

Vo (2 A Zm) = Z0) = (11 £ ) = (£ 2)) )

Substituting the universal quantification with a conjunction corresponding to the
two possible assignments for z; and considering that the assignment mapping z; to
true does not satisfy Fp(Z), hence it can be discarded, we obtain

(y1 ANxo Nx3 \Nxg N\ $5) VAN (—031)
A

(DAL Zy) = @ #Za) = (@ Zn) = @ # 1))
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Now the formula could be simplified and rearranged; anyway, observe that its single
model is {9, 3, T4, x5, y1 } Which — projecting out y; — is exactly the model of T sy, P.
[

Along the same lines, one could verify that Satoh’s revision 1" xg P is query-
equivalent to the quantified boolean formula

TV (P)/YINPANWNZ(Fp(Z)NT[V(P)/WINFc(Z, W, Y, V(P)) — Fc(V(P), Y, W, Z))

(13)
Analogously, Forbus’ revision T xp P is query-equivalent to the quantified boolean
formula

TIV(P)/Y]|NPANZ(Fp(Z) — =(IW Wo.DIST(Z,Y,W1) < DIST(V(P),Y,W3)))
(14)
where DIST(-,-,-) is a formula that computes the Hamming distance between the
assignments to the two sets of letters and W; and W, are two sets of new letters
that represent the intermediate results and must satisfy the appropriate constraints.
Moreover, the < operator can be represented with a circuit that compares the binary
representations of the two numbers DIST(Z,Y,W;) and DIST(V(P),Y, Ws).

As far as Borgida’s revision is concerned, since it coincides with Winslett’s one if
T N P is unsatisfiable and it is T' A P otherwise, a query-equivalent formula can be
directly obtained from formula (12).

Formulae (12), (13) and (14) only apply to the result of a single revision, but,
differently from formulae (5), (7) and (6), they can be extended to hold for a series of
revisions. We focus on Winslett’s operator.

The main idea of the following construction is to define a series of formulae WIN;
that are query equivalent to T' after a series of updates with the formulae P!,..., P?
(i.e., T *win P *win -+ ¥y P?). These formulae WIN; are built inductively, starting
with formula (12). In order to make the final formula understandable we introduce
some notation.

Without loss of generality, assume that for each i the alphabet V(P?) of P is
included in the alphabet V(T') of T. If we assume that for each P? its size is bounded
by a constant k;, it follows that for each i, |V (P?)| < k;. We assume |V (PY)| = k;.
For each P', let Y; and Z; be sets of letters one-to-one with V(P"). Given a formula
T and a series of revising formulae P!,... P™, we start with formula (12) rewritten
with index 1:

WIN, = T[V(PY) /YA |AP'AVZy (Fpi (Z)NFc (21, Y1, Y1, V(PY) — Fc(V(P), Y1, Y1, Zh)
(15)

and, inductively, we define:

WIN; = WIN; 1 [V(P"))YiAP'NYZ;.(Fpi(Z)NFc(Z;, Y3, Yi, V(PY)) — Fc(V(PY),Y;,Ys, Z;)
(16)
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It can be easily proved that the above formula is polynomial, and equivalent to Winslet-
t’s revision.

Theorem 6.1 Formula (16) has size polynomial in |T'|+m and is query equivalent to
T *win P! *win - %win P™

Given the similarities with Borgida’s operator, the size of the above formula is also
an upper bound for Borgida’s operator. A similar construction can also be applied to
Satoh’s and Forbus’ revision operators. As a consequence, we have that:

Theorem 6.2 The iterated version of formula (13) has size polynomial in |T| + m
and is query equivalent to T g P! xg - -- xg P™. Furthermore, the iterated version of
formula (14) has size polynomial in |T|+m and is query equivalent to T xp Pl xp -+ *p
pm.

In order to prove that those revision operators are query equivalent to propositional
formulas of polynomial size, what is missing is to prove that Formulas 12-16 can be
rewritten as propositional formulas (in the way they are currently written, they are
quantified boolean formulas). This is done by replacing each universal quantifier with
a conjunction over all possible assignments over the quantified variables. Note that
there are only polynomially many assignments to the quantified variables.

Theorem 6.3 Formulas 12-16 can be converted into equivalent propositional formulas
with an increase in size that is at most quadratic.

As a result, we have proved the query compactability of all the above revision
operators.

Corollary 6.4 The iterated version of Winslett’s, Borgida’s, Forbus’, and Satoh’s re-
wvision operators are query-compactable.

We remark that the existence of a compact representation for Dalal’s and Weber’s
operators is guaranteed by Theorems 5.1 and 5.2.

6.1 Logical Equivalence

While compact representations still exist if we go for query equivalence, this is not the
case for logical equivalence.

Theorem 6.5 Unless NP C P/poly, there is no formula of size polynomial in |T|+m
that is logically equivalent to T x P x ---x P™, where * € {*p, *p, *p, ¥, *Web, ¥Win | -
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Proof. The proof relies on (implicitly) showing that an unbounded number of
bounded revisions can accomplish the same task of a single unbounded revision. Since
we know that all of the above operators are not logically compactable when a single
unbounded revision is applied, this proves the result.

We apply an iterated version of the general schema of Theorem 2.3 and the notation
of Definition 2.5, so we show that for any integer n, there exists a sequence of n
formulae P!...P" and a knowledge base T},, all depending only on n, of polynomial
size w.r.t. n, such that given any m € 3-SAT,,, there exists an interpretation C) such
that 7 is satisfiable iff C;; is a model of T}, * P! - -- x P".

Let Y = {y1,...,yn} be a set of new letters in one-to-one correspondence with
letters of B,,, and C be a set of new letters one for each clause in 7", i.e., C' = {¢; |
v; € ™}, Finally, let L be the set B, UY UC. Notice that |L| is O(n?®). We define:

T, =®, NIy,

max

where T', = Al% ¢; — 7; and the 2CNF formula ®,, states non-equivalence between
atoms in B,, and their correspondent in Y:

3

¢, = . (bi * yi)'

=1

We define the set of n formulae {P!... P"} as:
P, = (=i A —wy)

Note that the size of T}, is O(n?®) and the size of each P! is constant. Moreover, T;, and
{P!...P"} do not depend on a specific 3CNF formula 7, but only on its size n.

We denote C = {¢; € C'| ; is a clause of 7}. We show that 7 is satisfiable iff C;
is a model of T x Pl % ---x P" where * € {xp, *p, *r, %5, ¥web, ¥Win } -

We first show that the sets of models of (T'* Pl -.x P") coincide for all considered
model-based operators. Equivalence is shown inductively on n. Let us consider the base
case and show equivalence of TP} for all operators. Let S = {N|3M € M(T) s.t. N =
M/{by,y1}}. First of all, note that all models in S satisfy P! since they contain neither
by nor y;. We want to show that S is the set of models of T’ P! for all of the operators.
In order to accomplish this, we only need to show that S is the set of models of T'xp P},
T swep P} and T sy, P, The other equivalences follow from Figure 1 and the fact
that T'A P! is inconsistent, and, therefore T x5 P! coincides with T sy, P}
Dalal We observe that in every model of T' for each i there is exactly one of b; and

y; that is true, while in every model of T xp P! both b; and y; are false. Hence,
kr p1 > 1. Moreover, kp p1 = 1 since B, is a model of T" and B,, — {b; } is a model
of Pl. Since S is exactly the set of models of P! that have distance 1 from a
model of T, it follows that M(T xp P!) = S.
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Weber Note that B, and Y are models of T, ju(B,, P!) = {b;} and u(Y, P}) = {y;}.
This implies that both {b,} and {y,} are in §(T, P,) = Uprepmr) (M, Pyy). Recall
that Q; = US(T, P}). Hence, {b1,y1} C Q1. Moreover, for every model M of T,
w(M, P}) contains no atom from C' because for every subset of C' there is a model
of P'. Hence, Q1 = {by,y;}. By definition of Weber’s operator it follows that
M(T e P = S.

Winslett Given a model M of T, we compute u(M, Pl). If by € M then u(M, P!) =
b1, otherwise if y; € M then u(M, P!) = y;. As a consequence, we have M (T*yy,
P} = AU B, where:

A = {NeM(P)|3M € M(T) : ((by € M) AN (MAN = {b1}))}
B = {NeM(P)|3M € M(T): ((y: € M) AN (MAN = {y:})}
Since any model of T' contains exactly one of y; and b;, this set is equal to

{N e M(PH|IM € M(T) : MAN C {by,y,}}. This set clearly coincides with
S.

By repeating the same line of reasoning, it follows that for all 1 < ¢ < m we have
that by, pi . pi-tpi =1, Qi = {b;} U{y;} and for any model M of T sy, Pl *win
P if b; € M then u(M, P!) = b;, otherwise if y; € M then u(M,P!) = y;. The
equivalence immediately follows.

Using the equivalence of all of the model-based operators it suffices to show that =
is satisfiable if and only if C is a model of T xp P} ---xp Pr.

By definition, C is a model of T xp Pl...xp P" iff there exists a sequence of m
models { My, M, ..., M,,} such that:

3. M,, =Cr;

If. Let 7 be satisfiable, B, be a model of 7 and Y, = {; | b; € B,}. We define the
sequence of models as follows:

o My=C,UB,UY,;
o M1 =M, — {biayi}'
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Note that conditions (3) and (4) are trivially satisfied, while condition (1) is satisfied
since M, satisfies ®,, by construction of Y,, and also M, satisfies I',,, because for each
clause ¢; — ~; of I',,, either ¢; € C; or ; is satisfied by B,. We show that also condition
(2) is satisfied by induction on m. The base case is proven by condition (1); Assume
that M; = T xp P} ... xp P!. Since M;,; = P! and M1 AM;| = 1 it follows that
M ET xp P! .. xp PIFL

Only if. Suppose C, is a model of T xp P!...xp P". Then there exists a sequence of
models { My, My, ..., M,,} such that

3. M, =C4;

Since |M; 1 AM;| = 1, the difference M, 1 AM; contains exactly 1 atom from B,UY .
Hence, all M; agree on the truth assignment to atoms of C', that is, M; N C' = C,.
We claim that My N B, is a model of . In fact, M, satisfies I',, = /\?ﬁm C; — Y-
Simplifying I',, with truth values of My N C = C,, we conclude that M, satisfies all
clauses in {~;|c; € C, which is exactly formula 7. Since the formula contains only

atoms from B,,, the interpretation My N B, satisfies 7, hence 7 is satisfiable. O

6.2 Summary of results for iterated revision

In Section 5 and in the present section we have shown several results about the size
of a propositional theory representing the iterated revision of a knowledge base and
satisfying either query equivalence or logical equivalence. In general, all formaliza-
tions of belief revision considered (with the exception of WIDTIO) lead to logically
equivalent propositional theories which are intrinsically not representable in polyno-
mial space (unless the polynomial hierarchy collapses). Restricting our attention to
query equivalence, we found situations where compact representations exist. Results
are summarized in Table 2, where YES stands for compactable, while NO stands for
not compactable.
The following comments on the table are in order.

e First of all, if an entry is “NO” in Table 1, then it is “NO” also in this table.

e As for the general case, the “YES” entries are the same as in Table 1, because the
methods for compacting Dalal’s and Weber’s operators can be iterated without
leading to explosion of space.
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Iterated General case Iterated Bounded case
Formalism || Logical equiv. (2) ‘ Query equiv. (1) || Logical equiv. (2) ‘ Query equiv. (1)

GFUV, NO NO NO NO
Nebel Th. 3.7 Th. 3.1 Th. 4.1 Th. 4.1

Winslett, NO NO NO YES
Borgida Th. 3.7 Th. 3.2 Th. 6.5 Cor. 6.4

Forbus NO NO NO YES
Th. 3.7 Th. 3.3 Th. 6.5 Cor. 6.4

Satoh NO NO NO YES
Th. 3.7 Th. 3.2 Th. 6.5 Cor. 6.4

Dalal NO YES NO YES
Th. 3.6 Th. 5.1 Th. 6.5 Th. 5.1

Weber NO YES NO YES
Th. 3.6 Cor. 5.2 Th. 6.5 Cor. 5.2

WIDTIO YES YES YES YES

Table 2: Is the iteratively revised knowledge base compactable?

e As for the bounded case:

— when logical equivalence is considered, this case is similar to the single re-
vision for the unbounded case, and non-compactability holds in all cases;

— when query equivalence is considered, although the proofs of compactness for
the single revision cannot be directly used, the methods have been adapted.

Tables 1 and 2 give also some indications on implementations and practical systems.
Note that exponential space is needed to store the result of a revision T x P in almost
all cases. Hence, a reasonable strategy (as suggested by Winslett [27]) seems to be to
delay revisions P!, ..., P™ and incorporate them when T x P! % -.. % P™ is accessed.
Moreover, it is helpful to save the formulae P!,..., P™ even after incorporation, for
possible further revisions. In fact polynomiality in Table 2 is guaranteed only if all
formulae are available.

7 Generalization and strengthening of results

Our results can be easily generalized in several directions. First of all, we can withdraw
the assumption that the result of a revision must be a propositional formula. Such an
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assumption, which we made in the introduction, is motivated from both an epistemo-
logical and a practical point of view. However, suppose the result of revision can be a
generic data structure which admits a polynomial-time algorithm for model checking;
Definition 2.6 can be rephrased as follows:

Definition 7.1 (logically-compactable (data structure) operator) An update or
revision operator x is logically-compactable with a data structure if and only if there
exist two polynomials p1 and py and an algorithm ASK such that for any pair of propo-
sitional formulae T and P there exists a data structure D with the following properties:

1Dl < p(IT1+ | P));

2. for all interpretations M of V(T) UV (P) the call ASK(D, M) returns yes iff
M =T x P;

3. ASK(D, M) requires time < po(|M| + |D|).
In the above definition the algorithm ASK ensures that the data structure D

correctly represents the set of models of T'x P, and can be used to perform model
checking.

Theorem 7.1 Let % be a revision operator. Assume there exists a polynomial p such
that, for each n > 0, there exists a pair of formulae T),, P,, with the following properties:

1 \Tal + [F] < p(n);
2. for all m € 3-SAT,,, there exists an interpretation M, of T, x P, such that:

(a) M, can be computed from w in polynomial time;

(b) M, T, x P, iff ™ is satisfiable.

With the above hypothesis, if x is logically-compactable with a data structure, then
NP C P/poly.

As a consequence, our negative results also apply to all representations where the
equivalent of model checking can be decided in polynomial time.

A similar modification can also be applied to Definition 2.4 of query-compactability
and to Theorem 2.2.

In the previous sections we showed that, for many revision operators, it is very
unlikely that the result can be expressed with a compact propositional formula. In
particular, the existence of these representations would imply a collapse in the poly-
nomial hierarchy, which most researchers in computational complexity consider to be
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very unlikely. However, necessary and sufficient conditions for the existence of com-
pact representations can be obtained quite easily by applying the technique used in
[6, Proof of Theorems 6 and 7]. In fact, Theorems 2.3 and 2.2 can be, more precisely,
formulated as follows:

Theorem 7.2 Let x be a revision operator. Assume there exists a polynomial p such
that, for eachn > 0, there exists a pair of formulae T, P, with the following properties:

1T, + [Pl < p(n);
2. for all m € 3-SAT,,, there exists an interpretation M, of T, * P, such that:

(a) M, can be computed from m in polynomial time;
(b) M, =T, * P, iff ™ is satisfiable.

With the above hypothesis, * is logically-compactable if and only if NP C
NC!/poly.

We remind (cf. [17]) that the class NC! consists of all languages recognizable by log-
space uniform families of Boolean circuits having polynomial size and depth O(logn).
Since NC!' C NC!/poly, NP ¢ NC! /poly implies NP# NC!. Hence proving the un-
conditioned impossibility of logical compactability of a revision operator would be, by
Theorem 7.2, at least as strong a result as proving NP# NC*.

Theorem 7.3 Let x be a revision operator. Assume there exists a polynomial p such
that, for each n > 0, there exists a pair of formulae T,,, P, with the following properties:

1Tl + [ Pa] < p(n);
2. for all m € 3-SAT,,, there exists a formula @), such that:

(a) Qr can be computed from 7 in polynomial time;
(b) T, x P, |= Qr iff 7 is satisfiable.

With the above hypothesis, * is query-compactable if and only if NP C coNP /poly.

Using the above reasoning schema, Theorem 7.3 implies that if we are able to prove
that a revision operator is unconditionally not query-compactable, then NP+# coNP.
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8 Conclusions

When we are faced with the problem of representing and updating a large body of
information, we must choose the most appropriate representation formalism and revi-
sion operator. Our analysis suggests that important aspects in the choice of a revision
operator are its compactability properties. We presented several results about the size
of a propositional theory T" representing the revision 7" x P of a knowledge base. We
considered both the query-equivalence criterion (1) and the more restrictive logical
equivalence criterion (2). In particular, we proved that some formalizations of belief
revision (e.g., Forbus’ and Ginsberg-Fagin-Ullman-Vardi’s) lead to propositional the-
ories 1" which are intrinsically not representable in polynomial space. Dalal’s and
Weber’s formalizations have an interesting behavior: 7" has no polynomial-sized rep-
resentation if we insist on logical equivalence (2), but such a representation does exist
if we ask only for query equivalence (1).

Furthermore, we investigated the impact of bounding the size of the revising for-
mula P. Several operators (e.g., Winslett’s and Satoh’s) are logically compactable only
in such a restricted case (cf. Table 1). We made another analysis about the impact
of iterating the revision process an unbounded number of times. The analysis showed
that many revision operators (e.g., Winslett’s and Satoh’s) become not logically com-
pactable, although they remain query compactable (cf. Table 2).

We proved non-existence of polynomial-sized representations subject to non-collapse
of the polynomial hierarchy. Anyway, proving unconditional non-existence of such
representations is equivalent to solving some long-standing questions in computational
complexity (cf. Section 7). Our results can also be generalized from propositional
formulae to general data structures.

There are several lessons to be learned from this analysis.

e WIDTIO is a very drastical approach, but always results in a logically com-
pactable formula.

e On the other hand, most belief revision operators have the undesired property
that, in the worst case, it is not feasible to explicitly store the result of revising
an existing knowledge base with a new formula.

e In particular, the syntax-based *gpyy operator has the worst behavior: it is
uncompactable even for query equivalence and in the bounded case (a single
literal is able to generate an exponential number of distinct possibilities).

e As for model-based operators, boundedness of P is a significant restriction: the
revision involves only literals occurring in P, hence compactness is guaranteed,
regardless of the equivalence criterion.

e Compactability and computational complexity of inference are different, although
somehow related. In fact, from Eiter and Gottlob’s work [8] it follows that two
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of the computationally more difficult operators are sy, and *y;4; nevertheless,
these operators admit compact representations in more cases than computation-
ally simpler operators, such as *xg and xgpyy .

Compactability is also not directly related to the selectivity of the operators in
choosing the resulting set of models. As a matter of fact, the two model-based
operators that more often admit compact representations are xp and *ye,. As
shown in Figure 1, xp is the most selective operator while *y, ., is one of the least
selective ones.

The iterated bounded case is often similar to the single revision for the unbounded
case.

Delaying revisions P', ..., P* and incorporating them when T * P! % --- x P* is
accessed seems to be a reasonable strategy. Moreover, it is helpful to save the
formulae P!, ..., P* even after incorporation, for possible further revisions.
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