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Abstract

The problem of visualizing huge amounts of data is well known in Infor-

mation Visualization. Dealing with a large number of items forces almost

any kind of Infovis technique to reveal its limits in terms of expressivity

and scalability. In this paper we focus on 2D scatter plots, proposing a

”feature preservation” approach, based on the idea of modeling the visu-

alization in a virtual space in order to analyze its features (e.g, absolute

density, relative density, etc.). In this way we provide a formal framework

to measure the visual overlapping, obtaining precise quality metrics about

the visualization degradation and devising automatic sampling strategies

able to improve the overall image quality. Metrics and algorithms have

been improved through suitable user studies.

Keywords: overplotting, sampling, quality metrics, numerosity
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1 Introduction

Visualizing a large data set likely produces a noisy image: many pixels become

overplotted, losing useful data insights. In this paper we attack this problem

focusing on 2D scatter plots, a very useful and widely adopted visualization

technique. In particular, we analyze data density, one of the main clues the user

can grasp from such a kind of visualization and, in order to reduce overplotting,

we sample the data preserving, as much as possible, density related aspects.

We address the overplotting problem in two steps: first we provide a formal

framework to measure the degradation affecting a given visualization, then,

upon these measures, we sample the data improving the image quality.

To measure the image degradation we define a formal model that estimates

the amount of overlapping elements in a given area and, consequently, the re-

maining free space. These pieces of information give an objective indication of

what is eventually visualized on the physical device and we can compute the

quality of the displayed image.

To reduce overplotting we employ different sampling techniques taking into

account how much and where to sample in order to preserve interesting features.

In fact, the formal model we discuss in the paper gives precise indications on the

right amount of data sampling needed to produce a representation preserving the

most important image characteristics. We use two different sampling techniques,

best uniform sampling and non uniform sampling. Best uniform sampling tries

to present the user with as many density differences as possible, preserving the

magnitude of such differences; non uniform sampling increases the number of

density differences available on the screen altering their magnitude.

To improve our sampling algorithms we analyze the way users perceive den-

sity differences through a user study that investigates the correspondence be-

tween numerical density differences and users’ perception of density differences.

This allows for fine tuning our metrics, considering perceptual density differ-
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ences instead of numerical ones.

Moreover, as discussed in Section 8, using the tool we developed for test-

ing our metrics and algorithms, we discovered that the availability of different

sampling techniques, revealing different data insights, facilitates interactive ex-

plorative analyses.

Summarizing, the contribution of the paper is twofold:

1. it presents a novel model that allows for defining and measuring data

density both in terms of a virtual space and of a physical space;

2. it defines user validated quality metrics that allow for (a) estimating the

image degradation and (b) driving novel automatic sampling techniques.

1.1 Paper organization

The paper is structured as follows: Section 2 analyzes related works, Section 3

describes the model we use to characterize overplotting and density, Section 4

describes the user study, Section 5 introduces several quality metrics, Section

6 describes our sampling techniques, Section 7 reports implementation issues,

Section 8 outlines possible extensions of our approach, and, finally, Section 9

presents some conclusions.

2 Related work

The main objective of our investigation is to provide models and techniques

to deal with overplotting, exploiting quality metrics and sampling strategies.

In the following we first report on related perceptual studies, then we discuss

metric proposals for Infovis, and, finally, we provide on overview on techniques

to cope with overplotting.
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2.1 Density Perception

Central to our purposes is the visual phenomenon called ”numerosity” which

explains how people perceive relative densities. When an observer has to judge

how many items are on a scene, and there are too many objects and/or time

is too short to count, a person is still able to provide an approximate number

which is called numerosity. Many studies have been conducted on the subject,

presenting involved people with short sequences of random black dots and asking

them to recognize the one containing more items.

Studies show that the spatial configuration of dots influences the perception

of density so that, e.g., two figures with the same number of dots can be per-

ceived as having a different number of items. The occupancy model partially

explains these effects providing a model [30] in which each dot has an area of

influence upon its neighborhood; the regions where the areas overlap and exceed

a threshold value are considered as being filled with dots. The size of the area

occupied by the dots seems to be irrelevant in the perception of numerosity [3]

(but it has been tested on a limited range of values), whereas the dimension of

dots seems to influence it in a inverse relation between size and numerosity [13].

Another relevant factor is the color. Beaudot et al. demonstrate in [31] that

there is a ”consistent bias in favor of blue-yellow stimuli which are perceived as

significantly more dense than red-green and achromatic stimuli”.

Various studies aimed at finding threshold values, i.e., given a certain num-

ber of base items, to discover how many additional ones are necessary to see

a difference, and how this difference changes with the number of base items.

Results show that numerosity increases with the number of items but not lin-

early [1], as often happens with psychophysics measures [27]. A peculiarity of

numerosity judgement is that it does not follow the Weber’s law 1 as one might
1The Difference Threshold (or ”Just Noticeable Difference”) is the minimum amount

by which stimulus intensity must be changed in order to produce a noticeable vari-

ation in sensory experience. Weber’s Law says that the size of the just notice-

5



expect: the ratio between the number of additional items necessary to see a dif-

ference and the number of items in the reference pattern is not constat; actually

it decreases as the number of items increases. This means that the more we add

items, the less is the percentage of new items needed to see a difference.

Without pretending to draw generalizable results for vision science or to

extend the theory on numerosity, we conducted a series of experiments which

resembles those classic studies, but targeted at our peculiar needs. The main

aim of our experiments is to tweak our algorithms in order to take into account

perceptual density differences in place of plain numeric ones. The description

of our motivations, peculiar needs, and differences with existing studies are in

Section 4, where the experiment is described in detail.

2.2 Metrics for Information Visualization

Providing quality metrics is a well known Infovis need: there is the necessity to

objectively assess the quality of a visualization through formal measures [23].

First attempts come from Tufte that in [29] proposes a set of measures to

estimate the ”graphical integrity” of static (i.e., paper based) representations.

Measures like the lie factor, that is the ratio between the size of an effect, as

shown graphically, to its size in the data, or data density that takes into account

the size of the graphic in relation to the number of displayed data, are exam-

ples of his attempt to systematically provide indications about the quality of

the displayed image. Brath, in [24], starting from Tufte’s proposal, defines new

metrics for static digital 3D images. He proposes metrics such as data density

(number of data points/number of pixels) that recall Tufte’s approach. He pro-

vides metrics aiming at measuring the visual image complexity like the occlusion

percentage, or the number of identifiable points, that is the number of visible

data points whose position is identifiable in relation to every other visible data

able difference is a constant proportion of the original stimulus value. (source:

http://www.usd.edu/psyc301/WebersLaw.htm)
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point. These metrics are interesting and are appropriate for characterizing digi-

tal images. However, as stated by the author, they are still immature. Another

approach is that of using benchmarks to evaluate visualizations. Grinstein, in

[14], proposes to run some benchmarks against predefined datasets and tasks to

evaluate and compare different visual techniques.

While the main goals of the above method is to estimate a general visualiza-

tion goodness or to compare different visual systems, we mainly aim to assess

the accuracy of a specific visualization, dealing with pixels and data points.

Moreover, we provide precise quality metrics that can be directly exploited by

recovery algorithms. In Section 5 we formally define such metrics and we show

how to use them in practice to take quantitative decisions on corrective actions.

2.3 Dealing with overplotting

Overplotting is a common problem that affects many user interfaces: as a display

hosts too many objects noisy visualizations may arise. It is hard to find general

recovery strategies and to provide formal definitions of the problem because the

spectrum of possible degradations is fairly broad and difficult to formalize.

The problem of how to deal with highly dense visualizations with overlapping

items has been directly and indirectly addressed by a variety of proposals. Some

of them deal with visualization overviews, especially when the screen displays a

large number of items, while others try to resolve the problem locally, that is,

focusing on interesting subregions.

A common solution is the use of density maps: visualizations in which data

density is mapped to color intensity to communicate density variations. There

exist some variants of the technique. A first attempt is in [5] where relational

data are previously binned and aggregated to compute discrete regions of the

screen where data density is depicted through volume rendering. The result is a

3D point-based visualization (as in the early attempts to project n-dimensional
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data in three-dimensional projection provided in PRIM9 [9]) with variable in-

tensity and color. An almost identical approach is used by Yang in [35], where

the method is used in conjunction with clustering and interactive picking and

brushing to allow effective and efficient exploration. Another solution is the In-

formation Mural [17], a general purpose technique that maps data overplotting

to pixel’s intensity or color to communicate data density. The method permits

to cope with data overplotting in a variety of visualizations like time series,

scatter plots, maps, etc. A similar approach can also be used when the primary

visual mark is not a dot but a line, as in parallel coordinates [4].

Clustering resolves the problem through abstraction [26][32]. It aggregates

similar data items in groups, so that a single visual mark represents a series of

objects rather than one single data item, thus visual density is reduced. Hier-

archical parallel coordinates uses hierarchical clustering on parallel coordinates

[16]: each cluster is represented by a single poly-line with a surrounding halo

that depicts its size [10] [11].

Jittering is used in commercial systems like Spotfire [2]; the overlapping

items are displaced around their original position so that they become visible

[22]. Trutschl et al. propose a smart jittering technique [28]: jittering is applied

in a way that items that are similar in the n-dimensional data space stay closer

when moved from their original position. PixelMap [18][19] uses the same idea

of displacing items around their original position together with a controlled

distortion. It is used in geographical applications where each pixel represents

the measure of some variable in a given location.

Similarly, pure distortion techniques [12][21][20] can be effectively employed

to resolve overplotting locally but they are almost useless in case of heavily

crowded screens. Zoom can also be useful as a way to increase resolution for

a limited area of the screen, but the overall context is often lost and complex

interaction to navigate from one area to another my be required [15]. Constant

density displays partially overcome the problem [33][34] presenting more details
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within less dense areas, and less details within denser ones, allowing the screen

space to be optimally utilized.

Sampling is used in [8][7] as a way to reduce density as well. Since sampling

reduces the number of displayed elements, the overall visual density decreases

and the visualization becomes more intelligible. Uniform sampling has the inter-

esting benefit that data features like distribution and correlation are preserved,

allowing “to see the overall trends in the visualization but at a reduced density”.

2.4 Positioning our approach

Our approach differs from the discussed proposals for three main aspects:

1. it defines a sound model for defining, both in a virtual and physical space,

several metrics specifically intended for digital images; such metrics allow

for providing some quantitative information about an image quality;

2. it exploits such results to drive sampling algorithms preserving specific

visual characteristics;

3. both metrics and algorithms are based on perceptual user studies.

As a consequence, our proposal presents some unique features, described in

the following.

• Measuring lost features. Our formal framework and quality metrics allow

for discovering, in a quantitative way, whether relevant data characteris-

tics are preserved in the actual visualization; as an example, the metric

PLDDr, described in the end of Section 5, measures the data density dif-

ferences hidden from the user.

• Providing a detailed overview without altering the image size. Zooming,

displacement, sampling, and density maps are commonly used to reduce

overplotting. Displacing elements introduces some errors in the represen-

tation, while zooming causes to lose the overall image perception, unless
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the zoom is applied to the whole image (in this case, the screen dimension

represents the limit of this approach). Sampling and density maps may

effectively improve the image readability without enlarging it; however,

if the data present quite different density values these techniques are not

very effective: faint zones may disappear while making the most dense

areas readable and little density differences are hardly perceivable by the

user. Our non uniform sampling technique, described in Section 6.2, ad-

dresses exactly this problem, providing a data overview preserving faint

zones and showing details in denser areas, without altering the image size.

• Automatic image treatment. The availability of quality metrics allows for

automatically ameliorate the image. As an example, it is possible to com-

pute the optimum sampling ratio (w.r.t. a quality function) applying it to

the image without user intervention (see Section 6.1). As another exam-

ple, to optimize the screen usage, it is possible to compute the minimum

image size that guarantees some quality threshold (see Section 5).

Finally, our approach can be used together with other techniques, produc-

ing interesting synergies. As an example, consider the gray scale density map

presented in Information Mural [17]. As stated by the authors ”Distinguishing

fine variations or level of detail in a grey-scale is difficult for people”; applying

our approach together with grey-scale could make Information Mural, or sim-

ilar methods, more effective; similarly, applying together zoom and sampling

reduces the amount of needed zoom, helping the user to not lose the context.

3 Modeling density

In this section we present a statistical framework characterizing the distortion

produced by data overplotting, a typical problem that happens when a contin-

uous space is represented in a discrete one.
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The formal environment addresses two different objectives:

1. it allows for defining in a clear way all the image features considered in

our approach, i.e., data density and represented density introduced at the

end of this section;

2. it allows for foreseeing the number of active pixels and collisions resulting

by applying a given amount of sampling on the actual data set. We will

use such forecasts to drive the sampling algorithms described in Section 6.

We consider a 2D space in which we plot items by associating a pixel to each

data element and the pixel position is computed mapping two data attributes

on the spatial coordinates. As an example, Figure 1 shows about 160,000 mail

parcels plotted on the X-Y plane according to their weight (X axis) and volume

(Y axis). Note that, even if the occupation of the screen is very little, the area

close to the origin is very crowded and presents a great number of collisions.

In the following we derive a function that estimates the amount of colliding

points and, as a consequence, the amount of free available space. More formally,

two data points are in collision when their projection is on the same physical

pixel (likely for rounding issue); each time two points collide on the same pixel

we count a collision, even if the pixel has been involved in other collisions: i.e.,

if n data points collapse on the same pixel we count n− 1 collisions.

In order to calculate the estimation function, we imagine to toss n data

points in a completely random way (that is, the probability for each point to

fall on a certain position is constant for any position) on a fixed area of p pixels.

This assumption is reasonable if we conduct our analysis on small areas in which

the real data distribution does not show large variations.

We consider the following parameters:

• n is the number of points we are plotting;

• p is the number of available pixels;
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• k is the number of collisions;

• d is the number of free pixels.

The probability of having exactly k collisions plotting n points on an area of

p pixels, Pr(k, n, p), is given by the following formula:

PERM [( p
n−k)(n−k+k−1

k )]
pn if n ≤ p and k ∈ [0, n− 1]

or n > p and k ∈ [n− p, n− 1]

0 if k ≥ n

or n > p and k ∈ [0, n− p− 1]

The function returns zero if k ≥ n because it is impossible to have a number

of collisions equal or greater than plotted points. Moreover, the probability is

equal to zero if n > p and k ∈ [0, n−p−1]: because we are plotting more points

than available pixels, we must necessarily have at least n − p − 1 collisions.

For example, if we have an area of 64 pixels and we plot 66 points, we must

necessarily have at least 2 collisions, so Pr(0, 66, 64) = 0 and Pr(1, 66, 64) = 0.

The basic idea of the formula is to calculate, given p pixels and n plotted

points, the ratio between the number of existing configurations with exactly k

collisions and the number of possible total configurations.

Pr(k, n, p) =
#config with exactly k collisions

#total configurations

The # of total configurations is computed considering all the possible

ways to choose n points on an area of p pixels allowing collisions, i.e., select-

ing n elements from a set of p elements allowing repetitions (dispositions with

repetitions: pn).

Calculating the # config with exactly k collisions is performed in three steps.

1. Compute all the possible ways of selecting n−k non colliding points from p

pixels, that corresponds to selecting n−k elements from a set of p elements

without collisions, (combinations without repetitions), i.e.,
(

p
n−k

)
.
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2. For each of the above combinations, compute all the possible ways of

hitting k times one or more of the n − k non colliding points in order to

obtain exactly k collisions, that corresponds to selecting k elements from

a set of n − k elements with repetitions (combinations with repetitions):
(
n−k+k−1

k

)
.

3. Step 2 computes combinations; since we are interested in dispositions, we

calculate the permutations (PERM) of these combinations. Because of

the variable number of duplicates (e.g., it is possible to have k collisions

hitting k+1 times the same pixel pi, or k times pi and two times pixel pj ,

or k-1 times pi, two times pixel pj , and two times pixel pk and so on) it is

not possible to express such permutations through a closed formula and

we computed it through a C program.

From the above expressions we computationally derived a series of functions

(see Figure 2) showing the behavior of the observed area as the number of

plotted points increases. More precisely, on the Y axis we have:

• the mean of colliding elements k (as n percentage)

• the used space (as p percentage)

• the free space (as p percentage)

w.r.t. the number of plotted points n (X axis, as p percentage).

For example, if we have an area of 8×8 pixels (p = 64), the figure tells us that

plotting 128 (n = 128) points (200% of p) we foresee an average of 72.5 (56.7%

of n) collisions and, as a consequence, 8.5 free pixels (d = 64−(128−72.5) = 8.5)

(13.4% of p). As the number of plotted points n increases, the percentage of

collisions increases as well, while the free space decreases.

Using this graph we can derive several useful and objective indications on

the degradation of an image. As an example, the graph tell us how much

we are saturating the space or if the display is able to accurately represent

13



relative densities and, consequently, how much to sample the data to guarantee

a prefixed visualization quality.

3.1 Data density and represented density

The previous results give us a way to measure and, consequently, control the

number of colliding elements. Before describing quality metrics and optimiza-

tion strategies, we need to clarify our scenario and to introduce new definitions.

In particular, we need to differentiate the measurement of density in the data

space from density in the device space.

We assume the image is displayed on a rectangular area and that small

squares of area A divide the space in m× r sample areas (SA) where density is

measured. Given a particular monitor, the resolution and size affect the values

used in calculations. In the following we assume that we are using a monitor of

1280× 1024 pixels and size of 13”x10.5”. Using these figures we have 1,310,720

available pixels and if we choose SA of side l = 0, 08 inch, the area is covered

by 20,480 (160× 128) sample areas whose dimension in pixels is 8× 8.

For each SAi,j , where 1 ≤ i ≤ m and 1 ≤ j ≤ r, we calculate two different

densities : data density and represented density.

Data density is defined as Di,j = ni,j

A where ni,j is the number of data

points that fall into sample area Ai,j . For a given visualization, the set of data

densities is finite and discrete. In fact, if we plot n data elements, each SAi,j

assumes a value Di,j within the set 0, 1
A , 2

A , . . . , n
A . For each distinct value we

can count the number of sample areas characterized by that value, obtaining

the data density distribution.

Represented density is defined as RDi,j = pi,j

A where pi,j is the number of

distinct active pixels in SAi,j . The number of different values that a represented

density can assume depends on the size of sample areas. If we adopt sample

areas of 8× 8 pixels the number of different not null represented densities is 64.
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Data densities are measured in a continuous space, while represented den-

sities in a discrete one; because of collisions the number of active pixels on a

sample area SAi,j will likely be less than the plotted points so RDi,j ≤ Di,j .

4 The User Study

This section describes the studies we performed to understand what is the min-

imum difference in active pixels between two sample areas that allows for per-

ceiving a density difference. Moreover, we investigated a second issue: does the

distance between two different areas influence the users’ density perception?

To answer these questions we performed two studies based on a comparison

strategy [25], one investigating the first question, and the other one challenging

the figures coming from the first experiment against the distance issue.

It is worth noting that our approach, even if based on dot-stimuli, differs

from the ones discussing numerosity discrimination for three main aspects:

1. Area size. Our technique requires to investigate density perception in

very little areas; typical numerosity discrimination studies use wider areas,

spanning several degrees and, as a consequence, it is not immediate to

apply the presented results to our environment (the least area considered

while studying size invariance in [3] spans 40’ of arc; a sample area of 8

by 8 pixels spans 13’ of arc);

2. Dot nearness. We are considering small areas and pixels that very likely

may touch, producing continuous patterns and saturation. Density and

numerosity studies consider ideal dots without saturation and adjacency.

3. Exposure time. Most of the available studies involve a very short exposure

time (typical values are less then a second) while the real usage of our

visualization allows for a virtually infinite exposure time.
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These differences pushed us to design an ad-hoc experiment, investigating on

little areas with adjacent pixels. In order to reduce the experiment complexity

we did not consider pattern issues and we used monochromatic pixels, neglecting

the color influence on density perception [31]. As a consequence, while the

experiment results fits quite well the objective of our proposal, generalize them

is not a trivial task.

We involved 38 people in the user study (25 males and 13 females, ranging

between 23 to 46) asking the subject needing glasses to wear them. According

to the first objective, we asked the users to recognize few more dense areas on a

uniform background (basis), repeating the test for different bases and different

density differences. A typical experiment step is depicted on Figure 3. The

image contains 100 sample areas, 97 of which filled randomly with the same

number of active pixels (basis) while the remaining 3 are filled with extra pixels

(δ). In the example the 97 sample areas are filled at 20% (basis=20) of their

capacity and the 3 densest contain 150% more pixels than the basis (δ = 150); in

the figure the user identified and selected the uppermost densest sample area. A

preliminary pilot study showed us that the δ values we were looking for depend

on the basis and, in order to cope with this issue, we arranged the experiment

as follows. All the users were presented (i.e., we performed a within subjects

experiment) with 11 steps, corresponding to having the 97 equal sample areas

progressively filled at 5%, 8%, 10%, 20%, . . . , 90% of the sample area capacity.

For each step, 5 substeps were performed, each of them showing 3 denser sample

areas characterized by 5 increasing δi. The users were asked to select, for each

substep, the 3 densest areas and the program recorded attempts and errors.

The results are collected in Figure 4. The two tables on the left show in each

column a different basis (5, . . . , 90) expressed as percentage of active dots with

respect to the capacity of the sample ares. Each row represents the incremental

steps adopted in the the test. For each increment D the tables show the corre-

sponding recognition percentage R expressed as percentage with respect to the
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basis. As an example, the second column tells us that, while evaluating a basis

of 10%, we asked the user to identify sample areas containing 55%, 65%, 75%,

85%, and 95% extra pixels and that the recognition rate was 62%, 77%, 82%,

92%, and 97%, respectively. The table on the right shows, for each basis, the

increment that produced a successful recognition rate greater than 70 per cent.

Linearly interpolating these values we derived a function minimumδ(RDi,j) re-

turning the minimum increment a sample area must show to be perceived as

denser than SAi,j (see the graph in the lower right of Figure 4).

The results of this first test were used as input for the second one. The

users were presented with couples of sample areas ranging on the same 11 steps

of the first experiment and differing in density exactly of minimumδ(). The

same couple was presented 5 times to the users in a random fashion and at

variable distance and the users were asked, for each step, to select the denser

area. A typical experiment step is depicted on Figure 5. We run an ANOVA

test but we could not find any statistically significant difference, therefore, in

our context, we consider distance as having no influence in the perception of

density differences.

5 Quality metrics

In this section we provide several quality metrics. Some of them are intended

for measuring the absolute image degradation, i.e., the metrics provide a way to

evaluate the collision percentage, the fraction of the screen bearing not accept-

able distortion, and the data percentage that is affected by visual degradation;

other ones, computed through a weighted algorithm, focus on distorted areas

and provide an indication on how many density differences are still visible in the

displayed image. Moreover, since we sample the data that generates the image,

we need to measure the negative effects of such an activity as well.

The complete list of the involved parameters is the following:
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• the overall number of points being plotted, n;

• the display area size, in terms of number of pixels, x pixels, y pixels;

• the squared sample areas size in terms of number of pixels, l pixels;

• the number of collisions k per sample area (SA) (as defined in Section 3);

• the data density and the represented density (as defined in Section 3.1).

The first quality metric we provide is the following:

PPr(Points Pixels ratio)= n
x pixels×y pixels

that gives the measure of how much we are overplotting the screen.

This measure provides an overall information about the image degradation

but it is not able to capture local distortions. As an example, if we apply it to

Figure 1, displayed on a 600 × 600 pixels area, we obtain quite a good value,

0.43, denoting that pixels are more than twice the plotted points. The problem

is that overplotting is associated with a very little area; the following metrics are

thought to discover such kinds of distortions. First of all we want to measure

the percentage of distorted points:

CPr(Collisions Points ratio)= k
n

that gives the measure of the overall collisions/points ratio.

Still referring to Figure 1, such a metric is equal to 0.73: roughly speaking

we can say that 73% of the data set is colliding. What we still miss is the

information about the screen percentage bearing such a distortion. To this

aim, we introduce a threshold value ∆ that allows for distinguishing acceptable

crowded SAs from non acceptable ones. To fix the idea, we can state that we

cannot bear SAs showing more than 32% of collisions w.r.t. l pixels× l pixels

(that, according to Figure 2 corresponds to an overplotting of 161 %). Obviously,
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the lower this value the better the image and ∆ is a parameter that allows for

fine-tuning the algorithms described in Section 6.

Using ∆ we can define the following metric:

BGSAr(Bad Good SA ratio)=# of SA showing k>∆
# of SA

that gives the measure of the screen percentage affected by a non acceptable

distortion; in our example BGSAr is equal to 4% (the area very close to the axes

origin). In order to measure the data percentage belonging to such a distorted

area we define the following metric:

CPPr(Crowded Points Points ratio)=# of points falling in a SA showing k>∆
n

CPPr in our example is equal to 70%, a very bad value. Combining the last

two metrics we can say that 70% of the data set is represented in a very small

(4%) and crowded area.

Summarizing, we can say that while the screen dimension should nicely bear

the image (PPr=0.43) we are experimenting a very high number of collision

(CPr=0.73) that are concentrated in a very small screen area (BGSAr=0.04)

and that most of the data points (CPPr=0.70) are not adequately represented

(w.r.t. ∆ = 32%).

Till now we focused on collisions and distorted areas; now we concentrate

on relative densities, measuring the lost density differences through the metric

LDDr (Lost Data Densities ratio). This metric is calculated comparing couples

of sample areas and checking whether their relative data density (D) is preserved

or not when considering their represented density (RD).

Introducing the Diff(x, y) function defined as:

Diff(x, y) =





1 if x > y

0 if x = y

−1 if x < y
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we define the match(i, j, k, l) function that returns true iff Diff(Di,j , Dk,l) =

Diff(RDi,j , RDk,l).

To produce a measure, we apply an algorithm that considers all the couples

of Distorted SAs (DSA), comparing their D and RD through the Diff function

and counting the non matching pairs 2.

Moreover, in order to take into account the relevance of a comparison be-

tween two sample areas, we weight each comparison using the number of points

falling in the two sample areas.
In pseudo-code, the algorithm is:

function LDDr(){

Let DSA[m][r]; \* distorted sample areas

Let couples=0; \* weighted couples of distinct distorted sample areas

Let sum=0; \* weighted non matching couples of distinct distorted sample areas

foreach distinct pair(DSA[i][j], DSA[k][l]){

couples = couples + pt(DSA[i][j]) + pt(DSA[k][l]);

if ( NOT match(i, j, k, l) )

sum = sum + pt(DSA[i][j])+ pt(DSA[k][l]);}

return (sum / couples);}

where pt(SAi,j) returns the number of data points falling in a SA.

The variable sum contains the number of weighted non matching couples

encountered during the iterations; dividing it by the weighted total number of

possible distinct distorted couples we obtain the weighted percentage of non

matching sample areas ranging between 0 and 1 (the lower the better).

The main drawback of this metric is that it uses numerical differences be-

tween sample areas to decide whether a data density difference is well repre-

sented or not by the corresponding represented densities. As an example, a

sample area containing 55 active pixels is considered denser than another one

containing 54 active pixels while both of them look the same to the end user.
2We count non matching pairs to produce a metric that behaves as the other ones: high

values of the metric correspond to a bad situation
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The function minimumδ() defined in the end of Section 4 allows for defin-

ing the PDiff(x, y) (Perceptual Diff) function as a modification of the above

introduced Diff(x, y) function:

PDiff(x, y) =





1 if x ≥ y + y ×minimumδ(y)

−1 if y ≥ x + x×minimumδ(x)

0 otherwise

Using the PDiff function within the match function, we obtain the PLDDr

(Perceptually Lost Data Densities ratio) metric. In this way the quality metric

deals with user perceptible vs numeric density differences.

In order to better understand the difference between the two metrics, we

apply them against the example in Figure 1. Using the pure numeric metric,

LDDr (with ∆ = 32%), we obtain the reasonable value of 0.29, meaning that

in the distorted area about 71% of the data points are presented correctly in

the image (i.e., their relative density is preserved in the final image). If we

consider, by contrast, the PLDDr metric we obtain a worse (but more realistic)

value, 0.57, meaning that in the distorted area only 43% of the data points are

presented correctly. That implies that the pure numeric metric counts a great

number of “fake” density differences not perceivable by the users.

Finally, we have to consider the negative effects of the sampling activity;

through the following metric we measure the portion of the screen that has

been emptied by the sampling.

ESAr (Erased SAs ratio)= #emptySA after sampling−#emptySA before sampling
# of SA

The above metrics give some precise clues about the image degradation and,

in the following, we provide some general examples of how to exploit them; more

formal usage of such metrics is in Section 6:

1. given a data set and a prefixed display area size, it is possible to check the

quality figures against a predefined set of threshold values and, in case of
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violation, to sample the data until all the threshold are satisfied (details

about how and how much to sample are provided in Section 6);

2. given a data set and a set of threshold values, it is possible to compute

the minimum display area size preserving all the threshold values, allowing

the system to optimize the screen usage;

3. given a data set and a prefixed display area size, it is possible to devise

a non monotonic quality index, i.e., a linear combination of two or more

contrasting quality indexes (e.g., ESAr and BGSAr) or an inherently non

monotonic quality index (e.g., PLDDr) and to choose the sample ratio

that minimizes such a quality index.

6 Sampling the data set

In this section we introduce two sampling strategies, namely uniform sampling

and non uniform sampling. We apply them against the metrics introduced in

Section 5. In the following examples we use the monotonic CPr and the non

monotonic PLDDr metrics as representative cases; the same approach can be

applied considering the other quality metrics.

6.1 Uniform sampling

Uniform sampling presents two main advantages: it is easy to implement and

preserves the intensity of density differences; on the other hand, to reveal density

differences in very crowded zones requires a sample ratio that destroys data in

faint areas.

Using the quality metrics introduced in Section 5 we can measure, for a given

sampling factor, the quality of the generated image and than we can estimate the

minimum amount of sampling to apply to produce an ideal final representation.

For single, monotonic metrics the approach is quite straightforward: we choose
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a quality threshold and we sample the image as much as needed to satisfy it. As

an example, using the image shown in Figure 1, displayed on a 600× 600 pixels

screen, assume that we want to generate a new image presenting a CPr ≤ 0.6

(against the initial value 0.73). Applying decreasing sampling factors we find

that 40% is the first value that satisfies the constraint (CPr=0.598).

Conversely, we may decide to not sample the data and to enlarge the image

to 976 × 976 pixels (CPr=0.597). Such examples clarify the first two ways of

exploiting the metrics discussed at the end of Section 5.

If we are dealing with non monotonic metrics (e.g., PLDDr), or with a linear

combination of metrics showing opposite behavior (e.g., ESAr and BGSAr),

we have to follow a different approach, looking for the sampling factor that

minimizes the function. As an example, still referring to data on Figure 1, let

us assume that we want to minimize the PLDDr metric that, for the original

image is equal to 0.43. If we apply ours algorithm we obtain the optimal sample

ratio of 22% and the PLDDr metric reaches the minimum value of 0.19.

6.2 Non uniform sampling

Applying the same amount of sampling to the whole image is straightforward

but presents several drawbacks. For instance, to sample areas presenting very

low data density is useless and potentially dangerous, because empty areas may

appear where data was previously plotted 3. In addition, in some cases the user

is interested in discovering as many density differences as possible, neglecting

their intensity. Therefore, we introduce a novel non uniform sampling approach

able to (a) preserve low density areas and (b) to show to the user a greater

number of density differences.

The main idea is to apply a different sample ratio to each sample area,

to obtain a suitable represented density distribution. In fact, the problem of
3This problem is captured by the ESAr metric that can be combined with other metrics

to find out optimal uniform sampling values
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preserving relative densities can be challenged altering the mapping between the

set of the actual data densities and the set of available represented densities;

while the uniform sampling approach alters the mapping in linear way, non

uniform sampling forces different data densities to be represented on the same

represented density, through different sampling ratios. Moreover, because of

numerical differences are not always perceived, as discussed in Section 4, we

need to fine tune our technique exploiting the user study results.

In the following we use an artificial numeric example to explain our approach;

next section will provide a real example. For the sake of the clarity, we present

our technique in two steps: first we describe our algorithm using numerical

differences and, after that, we introduce the perceptual modifications.

6.2.1 The numerical algorithm

Let us assume we are plotting points on a 40 × 40 pixel screen arranged in

100 4× 4 sample areas. In the example we concentrate on the number of data

elements or active pixels neglecting the SA area (what we called A), that is just

a constant. In Figure 6(a) the data densities (in terms of number of points)

corresponding to each sample area are displayed.

Figure 6(b) shows the data density distribution; as an example, we can see

that the maximum data density 56 is shared by five sample areas. Figure 6(c),

obtained applying the statistical results discussed in Section 3, shows the actual

represented density (in terms of active pixels) ranging, for each SAi,j , between

1 and 16; figure 6 (d) shows the represented density distribution.

Comparing the data densities with the represented densities we discover that

41% of the visualization pane ranging between 30 and 56 data density collapsed

on just three different represented data densities (14, 15, and 16).

In order to improve such a situation we compute a new mapping among the

existing data densities and the 16 available represented densities.

To obtain such a result, starting from the data density distribution (Figure 6
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(b)), we split the X axis in 16 (i.e., the available represented densities) intervals,

each of them containing the same number of SAs, i.e., 6.25=(100/16). Because

we are working on discrete values, we cannot guarantee that the average value

is 6.25 and, as a consequence, we use an algorithm that minimizes the variance.

After that, the SAs belonging to interval i are sampled to produce a represented

density equal to i, as depicted on Figure 7. In the example, the first interval

encompasses 6 SAs with data density 1 and no sampling is required. The second

interval encompasses 3 SAs with data densities 2, 1 SAs with data densities 3,

and 4 SAs with data densities 4; they are sampled as much as needed to produce

a represented density equal to 2. The third interval encompasses SAs with data

densities 5, 6, and 7 that are sampled as much as needed to produce data density

equal to 3, and so on.

The represented densities resulting from this approach are depicted in Fig-

ure 8 (a); Figure 8 (b) shows the new, more uniform density distribution. In

this new representation the 41 % data densities that collapsed on just three

different values (14, 15, and 16) now span on the interval between 10 and 16.

On the other hand, as an example of the distortion introduced by the method,

the difference between data densities 25 and 11 (2.27), previously mapped on

represented densities 8 and 13 (1.62) is now mapped on 5 and 8 (1.60).

6.2.2 Perceptual issues

We can say that the algorithm tries to maximize the number of density differ-

ences through a uniform represented density distribution. But, as pointed out

in Section 4, this trail of thoughts does not take into account that numerical

differences below a certain threshold are not perceived, so it make no sense to

use all the possible represented densities. For a given sample area size, using

the results presented in Section 4, it is possible to compute the largest ordered

subset of represented densities values that are perceived as different by users.

We call them perceptual densities.
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As a numerical example, considering the more realistic case of 8 × 8 pixels

SAs used in the next section, we devised the figures depicted on Table 1. Start-

ing from the first perceptual density 1 we computed, using the minimumδ()

function, the second perceptual density: 1 + minimumδ(1) = 2; in a similar

way we computed the third one as 2 + minimumδ(2) = 4, and so on. The

table shows, on the right part, the 14 perceptual densities; for each of them

the left part groups the represented densities that collapse on the perceptual

ones. According to this result, the algorithm described so far proceeds taking

into account only the perceptual densities while splitting the data density dis-

tribution axis. That corresponds, in the case of 8 × 8 pixels SAs used in the

following examples, to consider only 14 intervals instead of 64 and sampling the

SAs belonging to the interval i in order to produce a represented density equal

to the ith perceptual density. As an example, all the SAs belonging to the 5th

interval are sampled to produce a represented density equals to 11.

Roughly speaking, we can think of the whole process as follows. We have

at disposal p different represented densities that are matched against k data

densities where, likely, k >> p; that implies that each represented density is in

charge to represent several different data densities, hiding differences to the user.

The strategy consists in changing, with sampling, the original data densities,

altering their assignment to the p represented densities to maximize the number

of correctly represented density differences. Moreover, since the problem of

perceptual differences is recognized, we apply the algorithm not to all the p

represented densities but to the subset of them that produces the maximum

number of perceivable density differences, i.e., the perceptual densities.

6.3 An example with a real dataset

In this section we apply our techniques against the dataset used in Section 6.1:

the one containing 160,000 mail parcels (displayed on a 304 × 304 screen and
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using 8×8 pixels SAs). Note that the images used in this section have the same

dimension of the screen shots they come from, in order to preserve, as much as

possible, the original visual feeling.

Figure 9 shows the original, crowded, visualization (no sampling) while Fig-

ure 10 shows the same image enlarged enough to show most of the details of the

crowded area. More precisely, the original image is characterized by the follow-

ing figures: CPr=0.80, BGSAr=0.149, and CPPr=0.79 while the enlarged one

presents the following values: CPr=0.51, BGSAr=0.01, and CPPr=0.34. Note

that the enlarged image is provided for reference purposes: it shows the data

insights that the sampling algorithms should reveal.

Figure 11 shows the results of the best uniform sampling algorithm minimiz-

ing the PLDDr metrics: the algorithm discovered a minimum with a sampling

factor of 22%. The sampling makes evident the clusters close to the origin and

the clusters very close to the X axis. On the other hand, the faint zones in the

uppermost part of the images are badly represented.

Conversely, Figure 12 shows the result obtained applying the perceptual non-

uniform sampling algorithm. High density areas present more density differences

than both the original image and the one obtained with the best uniform sam-

pling. The PLDDr metric, measuring the perceptually lost density differences,

confirms the visual impression: it is equal to 0.43 against the original value 0.63

and the one obtained using the best uniform sampling algorithm 0.51. More-

over, the algorithm does not alter low density areas that are represented as

they appear on the original image. We can say that the non uniform sampling

produces the advantages of both strong and weak sampling: crowded areas are

sampled enough to show interesting patterns, as happens with strong sampling,

faint areas remain quite untouched, as happens with weak sampling.
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7 Working prototype and implementation

To validate our ideas and tune up the parameters of our methods we developed

an analysis and inspection tool that permits to calculate metrics and to apply

sampling algorithms. The basic functionalities of the system are:

• Quality metrics computation - The user can inspect a list of quality metrics

associated with the current visualization;

• Sampling algorithms execution - The user can run both uniform and non-

uniform sampling algorithms. While using uniform sampling, s/he can

either interactively sample the image or set some metric thresholds forcing

the systems to return the sampled image satisfying them;

• Interactive image inspection - It is possible to use dynamic filters on sample

areas. For instance, it is possible to interactively filter out or brush sample

areas with number of values above/below a given threshold.

In case of interactive activities, the system memorizes the intermediate results

reusing them in order to save time and avoiding pixel flickering. As an example,

the system allows for manually sampling the data at different ratio (1..99%).

This is obtained assigning, once for all, to each data element a random inte-

ger ranging between 1 and 100. Sampling to 23% is obtained discarding all

the elements whose associated integer is greater than 23. In this way, if the

user browses different sampling ratios, redisplaying the same sampling percent-

age more times, s/he will be presented with continuously and homogenously

changing images.

The sampling algorithms work in a one-shot fashion, switching back and

forth between the original image and the sampled one. In order to maintain

visual continuity, data samples are collected only once when the algorithm runs

for the first time. When the user swap to the original visualization and back

again to the sampled one, the representation stays the same, thus achieving
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visual consistency. A specific function is provided to explicitly request for a

new ”fresh sample” when needed.

These implementation details are relevant when using the system for explo-

ration activities. It is worth to note, in fact, that our methods can be used to

detect potentially interesting patterns by moving back and fort from the original

and the final image, and changing the available settings (we often informally no-

ticed this kind of patterns while using the tool) in an explorative fashion. When

this happens, visual continuity and consistency obtained through the solutions

outlined above, become crucial.

8 Extensions of our approach

The work presented in this paper deals with 2D scatter plots using monochro-

matic points; it is our opinion, however, that it is possible to extend our approach

to other Infovis techniques (e.g., scatter plots using colors and shapes, parallel

coordinates, etc.); however, such an activity is not a trivial task and the aim of

this section is to describe the overall methodology and the involved challenges.

Extending our approach can be done pursuing two different methods. The

first one, useful when the target visual representation is very far from scatter

plots, is to devise a bidirectional mapping between the visual representation

and a scatter plot: first we transform the representation in a scatter plot, after

that we apply the sampling algorithms, and finally we step back to the original

visualization. We applied this strategy to parallel coordinates, obtaining quite

encouraging results (see, e.g.,[6]); however the overall approach is not mature

enough and it is out of the scope of this paper to discuss it. The second method

is based on the idea of redefining our concepts (data density, represented density,

density estimation, etc.) in term of the new target visualization, applying our

algorithms directly on it. Again, our results are very preliminary; however,

in our opinion, it is interesting to provide an overview of the problems and the
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challenges we are dealing with while trying to extend our approach to 2D scatter

plots using shapes and colored dots.

• Sample area size. While the use of color does not affect this issue, the size

of the sample areas must be increased according to the shapes’ dimension.

It is not clear (1) how much and (2) what is the effect of this new size on

the uniform distribution assumption.

• Collisions. Both colors and shapes require a new way of defining and

handling collisions. Concerning colors, if the colliding points are of dif-

ferent colors a strategy for assigning the resulting color is is needed. A

discussion of the matter is in [17] and a reasonable choice is to select the

color that occurs most frequently in the collision. Considering shapes, the

definition of collision is based on the idea of computing the percentage

of overlapping area between two shapes and the resulting notion of colli-

sion can be either binary or fuzzy. In the first case, a collision happens

when the overlapping percentage is more than a threshold; obviously, the

threshold value is a critical parameter and its definition requires a non

trivial analysis, involving user studies. On the other hand, it is possible to

weight each collision with a value corresponding to the normalized value

of the overlapping areas. The way of considering these different collisions

while computing the quality figures is, again, a non trivial task.

• Data and Represented density definition. For colored points both data

and represented density require to take into account the color distribution;

moreover, because of density perception is strongly affected by the involved

colors [31], user studies and perceptual metrics require a new, non trivial,

definition. Considering shapes, a simple approach foresees to apply the

same definitions provided for points considering the shapes’s barycenters

falling within a sample area. A more precise calculation is based on the

idea of computing, for each shape, the area percentage falling within a
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sample area.

• Density estimation. The probabilistic formulae must be (non trivially)

revised considering color distribution and that, in case of shapes, we have

to take into account collisions belonging to a sample area generated by

adjacent sample areas.

9 Conclusion And Future Work

In this paper we presented two complementary combinatorial sampling tech-

niques, uniform and non uniform sampling, that aim at automatically dealing

with overplotting in 2D scatter plots. The techniques exploit some statistical

results and a formal model describing and measuring overplotting, screen oc-

cupation, and both data density and represented density. Such a model allows

for defining precise and sound quality metrics that are used for: (a) measur-

ing in an objective way the degradation of several data characteristics and (b)

computing the right amounts of sampling to apply in order to guarantee some

quality parameters. The overall formal framework takes into account the results

of ad-hoc user studies providing precise figures about the perception of density

differences.

We are actually trying to extend our approach to other Infovis techniques;

the issues rising from such an activity have been described in Section 8.
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Figure 1: Plotting mail parcels: an example of a visualization with a high

number of overlapping items.
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Rep Density Perc Density

1 1

2, 3 2

4, 5, 6 4

7,8,9,10 7

11,12,13,14,15,16 11

17,18,19,20,21,22,23 17

24,25,26,27,28,29,30,31 24

32,33,34,35,36,37,38 32

39,40,41,42,43,44,45,46 39

47,48,49,50,51,52 47

53,54,55,56,57 53

58,59,60 58

61,62,63 61

64 64

Table 1: Represented densities mapped to perceptual densities.
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Figure 2: Plotted functions showing the behavior of overplotting as the number

of plotted points increases.

Figure 3: Testing numerical differences issues
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Figure 4: The user study results (all values are percentages).
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Figure 5: Testing distance issues

(a) (b)

(c) (d)

Figure 6: A screen area made of 100 sample areas: data density (a, b) and

represented (c, d) density.
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Figure 7: Data density distribution split algorithm

(a) (b)

Figure 8: The distribution of represented density obtained by applying non

uniform sampling.
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Figure 9: Original image (304 x 304 pixels)
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Figure 10: Enlarged original image (864 x 864 pixels)
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(a) (b)

Figure 11: Uniform sampling: a) original image , b) best uniform sampling .

(a) (b)

Figure 12: Non uniform sampling: a) original image , b) perceptual non uniform

sampling.
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