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Reti Passive (Passive Networks)

• Traditionally, the function of a 
communication network has been to deliver 
the packets from one endpoint to another.

Example: ethernet.
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• Conventional routers just examine packet 
headers, e.g. the IP header, and forward 
packets according to the contents of a 
routing table. These “passive” routers 
switch the packets from one port to another 
without modifying the packet contents. 
Passive router functions are limited to the 
Network and Transport Protocol layers.



  

Reti Attive (Active Networks)

• Definition: Active networks allow 
individual user, or groups of users, to inject 
customized programs into the nodes of the 
network.
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Why?

• "Active" architectures enable a massive 
increase in the complexity and customization 
of the computation (routing, flow control, 
error correction, etc…) that is performed 
within the network, e.g., that is interposed 
between the communicating end points.



  

 More in depth…

• Active networks are characterized by dynamic 
programmability where the users can program the 
network hardware to manipulate the information 
flowing through them, which might lead to a 
change in transport system behaviour.

• The network is active in the sense that it can 
dynamically perform computation on the user 
data, while packets can carry information and/or 
program to be executed by intermediate nodes and 
possibly change their state.



  

Advantages (I)

• Flexibility: Active networks provide a 
much more flexible network infrastructure 
with increased capabilities compared to 
traditional passive networks.

• Optimization: redundant controls executed 
in different places of the protocol stack can 
be condensed a single time.



  

Advantages (II)

• Routers in passive networks can only perform 
computation up to the network layer: computation 
in the application layer is carried out by 'smart' 
hosts sitting at the edge of the network.

• It is difficult to integrate new technologies and 
standards into the traditional network 
infrastructure. Redundant operations at several 
protocol layers lead to poor performances and 
difficulties in accommodating new services that 
might require computation within the network 
such as firewalls, web proxies, mobile proxies, etc.



  

Active Networks Approaches

• Active packets
• Active nodes
• Hybrid



  

Active Packets - definition

• Most common approach to early active 
network architecture.

• The executable code is carried in the active 
packets and no code resides in the nodes. 
The nodes are active because they allow 
computation to take place up to the 
application layer.



  

Active Packets – Drawbacks

• Performance related problems because of the huge 
safety and security requirements. This stems more 
from the fact that users can define arbitrary 
functions to be computed.

• It also suffers from capability related problems 
because the only way to minimize the security and 
safety issues is by restricting the programs carried 
in the packets.

• Increased bandwidth and/or latency consumption 
to carry the programs inside the packets.



  

An Example
• An example of this architecture is the smart packets 

approach as proposed by BBN technologies. They 
decided that programs must be self-contained and 
must fit entirely into one packet, so programs cannot 
be more than 1kbyte. They also made the operating 
environment provide safety and security because 
packets containing executable codes are extremely 
dangerous. A way of achieving this is to check 
whether a program comes from an authorized user, 
and also to check its integrity in each node.

• Still…. What happens if the authorized user is 
malicious? Or just makes an honest mistake?



  

Active Node - Definition

• The active packet does not carry the actual 
code, but they carry some identifiers to 
predefined functions that reside in the 
nodes. The packets decide which function is 
going to be executed on their data, and also 
provide the parameter for these functions. 
But the actual code for these functions 
resides in the active node.



  

Active Networks - Problems

• In the active node approach, users cannot 
define arbitrary functions, so it has an 
advantage with respect to security and 
efficiency.

• However, it is slightly restricted because 
only the functions that have been preloaded 
can be called upon.



  

Hybrid (both packets and nodes 
are active)

• This is a combination of the active packet 
and active node approaches. Here the active 
packets carry actual code which is relatively 
simple, and more complex code resides in 
the active nodes.



  

Active Networks Drawbacks (I)

• More complex (expensive) hardware

Making nodes capable to run programs and 
at the same time process communication at 
a rate comparable with existing off-the-
shelf passive networks requires more 
complex hardware and designs than those 
available in passive networks.



  

Active Networks Drawbacks (II)

• Safety and Security
Giving a user the ability to program the network 
increases the security and safety problems. In 
general, the attacks that an active node is 
susceptible to are greater than in current passive 
networks. Some of the security problems could be:
– misuse of an active network node by the active code
– misuse of active code by other active code
– misuse of active code by an active network node
– misuse of active code by the underlying infrastructure



  

Active Networks Drawbacks (III)

• Transparency

Passive networks are End-to-end. You give a 
packet (or stream) as input, you receive a packet 
(or stream) in output, and you don’t worry at all 
about anything in the middle.

In active networks the “middle” may be important 
since the application using it is affected by the 
active code running on the network. Ensuring both 
transaperency AND flexibility is a complex issue.



  

An Example of Active Network: 
Myrinet

• Myrinet is a good example of high-performance, 
high-availability, cluster interconnect active 
network. 

• It is employed in many of the world's premier 
cluster-computing systems. A total of 141 (28.2%) 
of the June-2005 TOP500 supercomputers use 
Myrinet technology.

Why Myrinet?

http://www.top500.org/


  

Myrinet Characteristics
• Myrinet is a cost-effective, high-performance, 

packet-communication and switching technology 
widely used to interconnect clusters of 
workstations, PCs, servers, blade servers, or 
single-board computers.

• Myrinet Clusters provide an economical way of 
achieving:
– Computation distribution across an array of cost-

effective hosts. 
– low-latency communication between host processes. 
– Fault detection and isolation 
– Alternative communication paths. 



  

Characteristics distinguishing Myrinet 
from other (passive) networks

• Flow control, error control, and "heartbeat" 
continuity monitoring on every link.

• Low-latency, wormhole switches, with monitoring 
for high-availability applications. 

• Switch networks that can scale to tens of 
thousands of hosts, and that can also provide 
alternative communication paths between hosts. 

• Network Interface Cards (NICs) that executes 
customized firmware to offload protocol 
processing from the host computer. 



  

How is Myrinet an “Active Network”?

• Network Interface Cards (NICs) that executes  
customized firmware to offload protocol 
processing from the host computer.

• The “Customized firmware” is very flexible and 
can effectively run any program of size up to 4-5 
megabytes.



  

Myrinet Network Architecture

• Interconnection switch – wormhole 
technology

• Network Interface card (NIC), programmable 
from the user.

• Full-duplex interconnection wires – optical or 
copper technology.



  

Myrinet Switch Architecture
• A switch in a network is composed by 

several 8X8 crossbars (in some cases 
16X16) organized in a fat tree.

16 Hosts

?????????



  

Extending a Myrinet Network

16 hosts

16 hosts 16 hosts

16 hosts

“Switch networks that can scale to tens of thousands of hosts”



  

Examples of Myrinet Physical Layers

• Full Duplex
• SAN (System Area Network):

– 10 signals full duplex.
– 8 data bits
– 1 control/data bit
– 1 stop/go bit for flow control

• LAN (Local Area Network)
– 9 signals full duplex (18 signals)
– 8 data bits
– 1 control/data bit
– Control Flow realized with an additional control symbol



  

Routing in Myrinet

• Takes place at the crossbar level.

• First byte identifies the route that the packet must 
take, and is removed.

Source routing



  

Myrinet Data Link layer

Source route
bytes

Protocol
Header

Payload

CRC

Removed by crossbars

Automatically checked
by the hardware

Untouched by
switches



  

Myrinet NIC Architecture

• Internal BUS
• Internal memory (mappable on the host)
• RISC Processor
• Packet Interface (RDMA and SDMA)
• External BUS (EBUS) DMA



  

Myrinet Control Program (MCP)

• The Internal memory contains a program executed 
by the RISC processor. The RISC processor has 
full control on the packet interface and partial 
control on the EBUS DMA, thus it can manage 
packet send and receive, plus sophisticated 
analysis of incoming packets.

• Basically the MCP substitutes the firmware of a 
common network card.



  

Myrinet NIC in a typical PC

Host memory

CPU

PCI
Bus
(slow)

Memory bus (fast)

Internal memory

RISCDMA Packet

Myrinet network

Myrinet NIC



  

The OS point of view

Process A
on CPU

Host Memory

Address Space
0

4GB -1

NIC Memory

Host Memory

Fast Access

Fast Access

Slow Access

No mapping in the I/O space



  

Expanding NIC Memory….

NIC
Memory

0

16 MB –1

Internal
Memory

8 MB
Control Registers

8 MB + 256
Pointers for

DMA
and Doorbell

NIC Special
Registers

8 MB + 16K

8 MB + 32K

Doorbell
Region

(write only)

EEPROM
(read only)

8 MB

10 MB

8 MB + 32K



  

Myrinet NIC bootstrap

• Driver activates the external bus interface
• Driver internal maps memory into kernel 

memory space
• Driver loads (memcpy) MCP into NIC 

memory
• Driver tells RISC processor to start.



  

The Host processor

• Has control over:
– External control registers
– Internal Memory
– DMA
– Interrupt signals (partial)

• All interaction take the form of 
writing/reading into special memory 
addresses offset from the base pointer.



  

The LANai processor

• Has control over:
– Control registers (partial)
– Packet interface: RDMA/SDMA
– Internal Memory
– DMA (partial)
– Interrupt signals (partial)

• All interaction take the form of writing/reading 
into special registers (mapped into dedicated 
memory addresses).



  

Technical specs

• PCI Bridge
– EBUS DMA
– Doorbell region

• RISC Processor
– Special registers



  

DMA Controller (I)

• The EBUS DMA is controlled by four linked lists 
of operations.

• The elements in the list are structures that describe 
a single DMA operation.

struct DMA_BLOCK {
   volatile uint32 next; /* next block in chain pointer */
   uint16 spare; /* unused */
   uint16 csum; /* ones complement cksum of this block */
   uint32 len; /* byte count */
   uint32 lar; /* lanai address */
   uint32 eah; /* high PCI address - unused for 32-bit PCI */
   uint32 eal; /* low 32-bit PCI address */ 
};



  

DMA Controller (II)

• The four lists have different priorities (I.e. one list 
must be empty before an operation with lower 
priority must be executed)

• The DMA must be activated before it starts 
processing the operations in one of the lists.

• The four lists can be activated separately, or more 
than one at the same time.

• Once activated the DMA executes automatically 
EVERY operation in the activated lists, according 
to their priority. At the end of a list the terminated 
list is deactivated.



  

DMA Controller (III)
• A single DMA operation is NON-preemptable (an 

operation in progress is not stopped even if a 
higher priority list is activated)

• The pointers to the four lists are kept into four 
registers inside the DMA controller and can be 
accessed only by the host (i.e., by the OS driver).

• The structures describing the DMA operations are 
kept inside the internal NIC memory and can be 
written by both the host and the RISC processor.

• The host can activate all the DMA channels. The 
RISC processor can activate only two of the four 
channels.



  

Doorbell Region

• Doorbell is a mechanism to temporize FIFO 
writes inside the internal memory.

• Each time a write access is performed in the 
doorbell memory space an element of the 
following type is added to a list:

struct FIFO_ENTRY {
  uint32 addr;
  uint32 data;
};



  

Problems writing a MCP
• MCPs are not written in assembly, but with a 

proper high-level language.
• Typical language is C, since it is a high-level 

language tha still allow full control of the memory 
layout.

• The MCP cannot be written by simply using the 
standard compiler, because it runs on a different 
architecture.

• This means (for instance):
– Different instruction set
– Different register organization (big-endian, little-

endian)
– Different memory layouts.



  

Cross-compiling
• Thus any MCP must be generated by a cross-

compiler. It is a compiler that compiles code for a 
different architecture than that running the 
compiler.

• Particular attention should be done when passing 
data between the CPU and the NIC, since one of 
them might work in little-endian, while the other 
works in big-endian.

• Actual case: IA32 architecture is little endian, 
while myrinet is big endian.

• In this case “transparent conversion” functions 
such as “htonl()” MUST be employed. They work 
because by definition “network order” is always 
big-endian.



  

Send Registers

• SMP
• SA
• SMLT

SMP1

SA = 0x4

SMLT1

SMP2

First 3 bytes of SMP and SMLT hardwired to zero



  

Receive Registers

• RMP
• RML

RMP1

RML1

RMP2

First 3 bytes of RMP and RML hardwired to zero



  

Status Registers

• ISR (Interface Status Register)
Contains the chip status information. Readbale by NIC and 

host, partially writable by both.

• EIMR (External Interrupt Mask Register)
When a bit of ISR AND the corresponding bit of EIMR are 

equal to 1 an interrupt is sent to the host CPU. Readable 
and writable by both NIC and host.

• PULSE
Activates the DMA lines controllable by the processor. 

Writable by the NIC, unreadable.



  

Interface Status Registers (I)
• HOST_SIG

Set to 1 by RISC processor, reset to 0 from the host. Used 
to send various signals/interrupts from the RISC to the 
host.

• LANAI_SIG
Set to 1 by CPU, reset to 0 from the RISC processor. 

Used to send various signals from the host to the RISC.

• WAKE0_INT
Set to 1 when at least 1 EBUS DMA transfer is 

completed. reset to 0 from the RISC processor by 
writing 1 into it. Used to send various signals from the 
host to the RISC.



  

Interface Status Registers (II)
• SEND_INT

Set to 1 when the SDMA is completed. Set to 0 when 
the programmer writes 1 into it or a new SDMA is 
initiated.

• BUFF_INT
Set to 1 when the buffer for the RDMA is exhausted. 

Set to 0 when the programmer writes 1 into it or a 
new RDMA is initiated.

• RECV_INT (External Interrupt Mask Register)
Set to 1 when the RDMA of a packet has been 

completed. It is cleared when the programmer 
writes 1 into it.



  

Examples of using Status 
Registers

• ISR
ISR = SEND_INT;

Sets to 0 the SEND_INT bit in ISR

If (ISR & SEND_INT) ….
Tests the content of the SEND_INT bit

• EIMR
EISR = 0x0;

Disables any interrupt sent from the NIC to the CPU.

• PULSE
PULSE = 0x2; PULSE = 0x4;

Activate the DMA queue associated with the second or fourth DMA 
list, respectively.



  

Mapping

• The source routing requires every node to have 
knowledge of the whole network

• This is accomplished by having a portion of the 
MCP devoted to perform “mapping” of the whole 
network.
– The simpler MCPs just have static mapping. The 

network is assumed to be reliable and mapping is 
performed only at initialization.

– In case of unreliable networks the network mapping 
and new routes establishments must be performed on 
the fly.



  

Mapper

• The software employed to discover the map 
of network usually takes the name of 
“mapper”. It employs “scouting” packets to 
discover active links and nodes.

• Care must be taken when designing the 
routes among the nodes which might 
otherwise result in a deadlock.



  

Communication 
Techniques For 

Active Networks



  

Typical evaluation parameters in networking

• Bandwidth
Amount of data sent (or received) over the 
network in given time. Typically relevant when 
evaluating the performance of peer-to-peer 
systems, WANs, etc…

• Latency
Time required for a specific piece of information 
to go from the source to the destination. Typically 
relevant when evaluating the behavior of parallel 
simulators, or parallel computation applications 
with strict synchronization requirements.



  

Traditional Communication 
Techniques (I)

• User space is where all user programs 
execute. Historically, applications operating 
in user space make system calls into the 
kernel for privileged operations such as I/O 
commands to network or storage devices.

Examples for Communication:
• read()
• write()



  

Traditional Communication 
Techniques (II)

• Kernel space is where the operating system, 
device drivers and hardware interrupt 
handlers run. The kernel provides a safe 
interface to hardware, provides interprocess 
security, gives different processes a fair 
share of the resources, and arbitrates access 
to resources/hardware.



  

Traditional Communication 
Techniques (III)

• Transitions from user to kernel space (and the 
reverse) historically have been required to pass 
data between user programs and their clustering, 
storage and networking hardware resource. Each 
transition requires:

– Spending time to transition between the user mode and 
the kernel mode.

– Copying parameters from user space to kernel space.
– Copying return information from kernel space to user 

space.



  

Traditional Communication 
Techniques (IV)

• When the traditional communications techniques 
were developed, communication times were much 
larger than the overhead of changing between the 
different execution modes and of saving and 
restoring context information.

• However nowadays this overhead limits 
application I/O performance. As mentioned 
before, in the case of TCP/IP user-to-kernel 
transition, it can account for approximately 40% 
of the host CPU networking overhead.



  

OS Bypass
• The technique for eliminating the user-to-kernel 

transition is known as Operating System bypass.
• Operating system calls are avoided by updating the I/O 

library to take direct control of the network card from 
the application.

• This usually requires that the network card driver 
exposes to the user level some portions of the network 
card hardware.

• This modification enables direct communication of all 
commands to the I/O adapter, eliminating the user-to-
kernel transition.

• Operating system bypass is a well-proven technique 
used for years in the highest-performance cluster 
interconnects, such as myrinet.



  

Why it is not used for everyday 
communication?

• Protection and Security issues 

• Special hardware required

• Transparency issues



  

Security (and protection) issues

• Interacting with the hardware leads to many 
security issues.

• A mistake can lead to severe consequences. Not 
simply a crash of the process, but hang the whole 
machine.

• Even in case of a correctly working library an 
attacker (or even a simple misplaced pointer) can 
touch some control register that shouldn’t be 
touched wreaking all sort of havoc.



  

Special hardware required

• It is not strictly needed.

A correctly written driver might expose the 
hardware controls of the network card (such as 
DMA access) to the user level

• BUT: IS THAT A SECURE APPROACH???

• Obviously, giving the user control of (for 
example) the DMA without proper hardware 
limitations is a huge security risk.



  

Transparency issues

• The typical System Call mechanism allows the 
developer to treat the machine as a black box.

• Example: system call write();
• Writing on a network card WITHOUT using 

system calls usually entails knowing hardware 
details.

• Partial solution: having a standard (user-level) 
library interfacing with the network card, that 
must be called instead of the system calls.

• Limitations:
– Third party libraries who relies on standard system 

calls cannot be used.
– Transparent, but not secure.



  

Zero-copy Send

What is it?

• A transmission optimization used on active 
networks to reduce the delay of sending 
packets.



  

Typical OS behavior
• Application prepares message by writing it in a 

user-space buffer.
• Application invokes system call
• OS copies message into an internal buffer
• OS pass data to network card (usually by DMA).

Host Memory
Network Card

Memory
Message

Application

Kernel

Message

Message Message

Network



  

Zero-copy Send Behavior
• Application prepares message by writing it in a 

user-space buffer.
• Application invokes system call (or not, in OS 

bypass mechanism)
• OS pass data to network card.

Host Memory
Network Card

Memory
Message

Application

Kernel
Message Message

Network



  

Problems
• DMA on PCI might be slower than memcpy because of 

the synchronization needed to activate the DMA transfer.
• Writing the message directly inside the network card can 

slow down the application.
• However having first the message being written in an 

applicaton buffer and then transferred to the network 
card  by DMA increases the latency and the overall 
overhead of the OS.

• Typical DMA can be done only by pinning memory 
(usually makes OS bypass unavailable)

• Non-snooping caches may create data inconsistencies. 
But the host can force it.

• Security



  

Remote DMA

What is it?

• The reciprocal of zero-copy send

A receiving optimization used on active 
networks to reduce the delay of sending 
packets.



  

Typical OS behavior
• OS receives message from network card into a 

kernel buffer.
• Application invokes system call to receive.
• OS copies message from internal buffer into an 

application level buffer.
• Application reads message from the buffer.

Host Memory Network Card
Memory

Message

Application

Kernel

Message

Message Message

Network



  

Remote DMA behavior
• Application invokes system call to receive.
• OS copies message from a network card buffer 

into an application level buffer.
• Application reads message from the buffer.

Host Memory Network Card
Memory

Message

Application

Kernel
Message Message

Network



  

Problems
• The receiving buffer must be known “A priori”.
• Receive call must be invoked BEFORE any 

receiving starts taking place.
• Receive call doesn’t conform to the typical 

“read()” paradigm.
• Very difficult to pin down memory and must be 

kept up longer.
• Non-snooping caches may create data 

inconsistencies. Forcing coherency is harder than 
in zero-copy send.

• Security



  

Pipelining technique

• Does not improve latency
• Improves dramatically the available bandwidth 

allowing to get close to the network nominal 
bandwidth

• Can be used in both send and receive operations

Network Card

Network

Host

Message being
sent from host

Message already
sent from host



  

GM – official myrinet driver

• NO OS bypass (but streamlined OS access)

• NO zero-copy.

• Remote DMA (only for some architectures)

• Employs the abstraction of “port” in which a 
single card has different connection ports (a “port” 
is defined by a specific memory area the network 
card).



  

Illinois Fast Messages – Using the 
Myrinet active networking abilities
• Uses the both zero-copy send and traditional send.
• Pipeline both in send and receive
• OS bypass
• No Remote DMA

Host Memory Network Card
MemoryApplication

Kernel

Message

Network

FM_extract()
Message

FM_sendt()



  

FM 1.x Interface

• FM_send(dest, handler, buf, size);

Traditional send, for long packets.

• FM_send_4 (dest, handler, i0, i1, i2, i3)

Zero copy send, for small packets.

• FM_extract();

Receive call.



  

FM Baseline Myrinet Control Program
While (1)

{
    If ((hostsent != lanaisent)  && (SDMA available))

{
Send packet;
Lanaisent++;
}

If (packet on Receive)
{
Receive Packet
Activate EBUS DMA;
}

If (EBUS DMA completed)
Notify host;

}

(Old Myrinet card)



  

FM streamed Myrinet Control Program

While (1)
{
while ((hostsent != lanaisent) && (SDMA available))

{
Send packet;
Lanaisent++;
}

while (packet on Receive)
{
Receive packet;
Activate EBUS DMA;
}

If (EBUS DMA completed)
Notify host;

}

• Optimizes peak traffic situations



  

FM Myrinet Control Program
While (1)

{
    If ((hostsent != lanaisent)  && (SDMA available))

Activate SDMA;
If (packet on Receive)

Activate RDMA;
 If (SDMA completed)

lanaisent++;
If (RDMA completed)

Activate EBUS DMA;
If (EBUS DMA completed)

Notify host;
}

(New Myrinet card)



  

FM 1.x Examples

• Send
char buf[500];

FM_send(2, 5, buf, 500);

FM_send_4 (2, 5, 1, 2, 3, 4);

• Receive
FM_register_handler (5, myhandler )

FM_extract();



  

Full streaming over Myrinet

• Full streaming exists only on upper layers 
(examples GM-TCP or GM-SOCKS).

• Low level communication based only on packets
• Mandatory for every communication based on a 

non-virtual circuit paradigm.
• However higher layer for communication (such 

as MPI) can dramatically slow down the lower 
levels (such as FM)



  

Problems due to “stream” upper layers

• All data to be transmitted must be into a single contiguous 
buffer.

• The receiving process decides when to service the network, 
but is unable to decide how much data to serve

Cost of assembling/disassembling messages

Cost of additional buffer management



  

FM 2.x

• Low level similar to FM 1.x

• Added flow control at application level.

• Interface changed to reduce interface 
inefficiencies
– support receiver flow contol
– Gather/scatter send



  

FM 2.x Interface (Send API)

• FM_stream * FM_begin_message (unsigned long
 dest, unsigned long size, unsigned long handler);

– Opens a transmission stream with dest.
– Sends up to size bytes.
– The data from this stream will be managed by handler.

• void FM_end_message(FM_stream * stream);
– Close the transmission stream “stream”.

• void FM_send_piece(FM_stream * stream,
void * buf, unsigned long bytes);

– Sends a message of size bytes over a stream.



  

FM 2.x Interface (Receive API)
• int FM_extract(bytes);

– This is used to verify whether there are messages pending on 
the network and in that case the appropriate handler is 
invoked. Bytes is used to manage receive side flow control.

• void FM_receive(FM_stream stream, buf, bytes);
– This is used inside an an handler to receive an amount of 

bytes data from stream

• unsigned long FM_register_handler (unsigned long
 id, FM_handler *handler);

– Register the function handler as a stream handler with a 
certain id.

• int handler (FM_stream * stream,
unsigned long sender);

– Prototype of a stream handler.



  

FM 2.x Examples• Send
FM_stream stream;
Char buf[100], buf2[200];

stream = FM_begin_message (dest, 500, 5);
FM_send_piece (stream, buf1, sizeof(buf1));
FM_send_piece (stream, buf2, sizeof(buf2));
FM_end_message(stream);

• Receive
FM_register_handler (5, myhandler )
FM_extract(500);

• Receive handler
char * buf;
int myhandler( FM_stream * str, unisgned long sender)

{
buf = malloc(500);
FM_receive(buf, str, 500);
Return FM_continue
}



  

GM – official myrinet driver

• NO OS bypass (but streamlined OS access)

• NO zero-copy.

• Remote DMA (only for some architectures)

• Employs the abstraction of “port” in which a 
single card has different connection ports (a “port” 
is defined by a specific memory area the network 
card).



  

GM Interface (Send API)
• GM_ENTRY_POINT gm_status_t gm_open  (struct gm_port ** p,

unsigned int unit, unsigned int port, const char * port_name,
enum gm_api_version version);

– Creates a new handle p on the card unit on port, assigning a name 
to the new handle and specifying which version of GM is in use.

• GM_ENTRY_POINT void gm_send_with_callback  (struct gm_port *  p,
void *  message, unsigned int  size, gm_size_t len, unsigned int priority, 
unsigned int target_node_id, unsigned int target_port_id, 

gm_send_completion_callback_t callback,  void * context) 

– Sends a message of size from port p to host target_node_id and 
port target_port_id with a certain priority and sends a callback 
with parameter context when the message is arrived.

http://www.myri.com/scs/GM-2/doc/html/gm_8h.html
http://www.myri.com/scs/GM-2/doc/html/gm_8h.html
http://www.myri.com/scs/GM-2/doc/html/gm_8h.html
http://www.myri.com/scs/GM-2/doc/html/gm_8h.html


  

GM Interface (Receive API)
• GM_ENTRY_POINT union gm_recv_event* gm_receive (struct gm_port * p) 

– Receives any event or callback from GM. Return event 
GM_NO_RECV_EVENT if nothing is pending, 
GM_RECV_EVENT if a common message is pending or

GM_HIGH_RECV_EVENT if a high priority message is

pending.

• GM_ENTRY_POINT void gm_provide_receive_buffer_with_tag  (gm_port_t

 * p, void * ptr,  unsigned size, unsigned priority, unsigned int tag) ;

– Allocates a buffer in which GM can receive a message.

• GM_ENTRY_POINT void gm_unknown (struct gm_port * p,

union gm_recv_event * e) ;

– Processes any event or callback returned by gm_receive()



  

Esercizio 1 (A)

Data una scheda myrinet che utilizza un MCP 
con la seguente struttura:

While (1)

{

If (hostsent != lanaisent) activate_SDMA();

If (packet on Receive) activate_RDMA;

 If (SDMA completed) lanaisent++;

If (RDMA completed) activate_EBUS_DMA();

If (EBUS DMA completed) notify_host();

}



  

Esercizio 1 (B)

Tenendo presente che:
2) Il DMA verso l’host attivato dalla funzione 

activate_EBUS_DMA() usa il quarto canale di priorita’ 
(canale 3).

3) La struttura di un pacchetto ricevuto consista di un header 
di 32 byte, una prima porzione di 256 byte, e una seconda 
porzione di altri 1024 byte,

4) I primi due canali a priorità più alta (canali 0 e 1) siano 
inutilizzati

5) I pacchetti in ricezione vengano ricevuti in pipeline in due 
buffer alternativi, all’indirizzo LANai 0x2000 e 0x4000.



  

Esercizio 1 (C)

La criticità dell’informazione contenuta nella prima porzione del payload 
suggerisce di far si che il MCP trasferisca questa informazione 
all’host alla massima priorita’ possibile. Si richiede quindi che 
l’informazione critica (e solo essa) dovra’ essere trasferita 
all’indirizzo fisico dell’host 0x50000 sfruttando l’opportuno canale e 
successivamente l’MCP dovrà segnalare all’host il completamento del 
trasferimento tramite una interruzione. Si noti che la procedura di 
ricezione vera e propria del messaggio non deve subire alterazioni.

Si descriva:
D)come va modificata la struttura del MCP per ottenere l’obiettivo 

descritto sopra.
E) Il codice di tali modifiche.
F) Si discuta l’opportunita’ di tale modifica,e  in quali casi essa risulta 

giustificata.



  

Esercizio 2 (A)
• Si supponga di avere un cluster di macchine 

interconnesse da reti attive. Su ognuna delle macchine 
si trova una applicazione che per accelerare la 
comunicazione con le altre utilizza gli Illinois Fast 
Messages 2.x. Ognuna di queste applicazioni in vari 
momenti temporali può aver bisogno di interrogare 
tutte le altre macchine sul loro stato attuale, e di 
effettuare un calcolo su di esse una volta ricevute tutte. 
Tuttavia tra la richiesta delle informazioni e la loro 
ricezione l’applicazione deve essere libera di eseguire 
altri calcoli e in particolar modo di processare altri 
messaggi.



  

Esercizio 2 (B)
• Date le seguenti informazioni:

– 1) La dimensione dello stato e’ fissa e costituita da 4 
byte.

– 2) Il calcolo sui diversi stati viene effettuato da una 
funzione di libreria void calcolo_sugli_stati(struct 
_stato * stato, int numero_stati) dove stato e’ un 
puntatore a una lista di stati e numero_stati rappresenta 
il numero di elementi in questa lista.

• si implementi la funzione start_computation() che 
attiva la computazione, nonchè gli handler 
necessari a gestire la comunicazione (in entrambi i 
sensi).


