
Coordination in multi-agent autonomous cognitive
robotic systems

Corso di Dottorato in Robotica Cognitiva

Daniele Nardi

Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”

Maggio 2002

work with: Claudio Castelpietra, Giuseppe De Giacomo, Luca
Iocchi, Riccardo Rosati

Programma delle lezioni

1. Cognitive Soccer Players (SPQR)

2. Coordination in Multi-Robot Systems

SPQR research goal

Experiment the Cognitive Robotics approach in the design
of Cognitive Football players in the RoboCup environment.

Summary

1. Action Theory

2. Plan Generation

3. Architecture

4. Plan Execution

5. Implementation

Dynamic System Representation

• A state of the world is an element of the interpretation
domain.

• Each state of the world is labeled by a set of concepts,
correponding to the properties that hold in that state.

• The execution of actions is modeled through action-roles,
i.e., binary relations between states.

Propositional Dynamic Logics

PDLs (Propositional dynamic logics) are modal logics orig-
inally developed for describing and reasoning about program
schemas.

Examples:

C ⇒ [R]D

〈R〉>

〈R∗〉G

Rosenschein 81 gives the basis for representing actions and
deductive planning in PDLs.

Relation with Situation Calculus

Situation Calculus PDLs

Poss(a, s) 〈a〉>
Poss(a, s) ⇒ Φ(do(a, s)) [a]Φ

Poss(a, s) ≡ Φ 〈a〉> ≡ Φ (preconditions)
Poss(a, s) ∧Φ1(s) ⇒ Φ(do(a, s)) Φ1 ⇒ [a]Φ2 (effects)

• actions in PDL are deterministic

• propositional fluents of Situation Calculus

The ALCKNF Representation Language

- PDL-DL correspondence [De Giacomo, 94],
- Epistemic Description Logics [Donini et al., 97]

Concepts: denote the properties of a set of individuals
Roles: model relationships between individuals

C ::= > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | ∃R.C | ∀R.C | KC | AC
R ::= P | P1 u . . . u Pn | KR | AR

State Individual init
State Description Concept C
Action Role R
Action Description Axioms . . .
State Constraints Axioms . . .

Transition Graphs

The interpretation structures of PDLs (DLs) are transition
graphs:

• Each node represents a state, and is labeled by the prop-
erties of that state.

• Each arc represents a transition and is labeled by the
action the causes the transition.

Each transition graph is a complete representation of the
behavior of the system. A model of the KB representing the
action theory can thus be viewed as a transition graph.

Semantics of ALCKNF
Constructs PDLs ALCKNF ALCKNF Semantics

Atomic concept/proposition A A AI ⊆ ∆

Atomic role/action R R RI ⊆ ∆×∆

Named individual — s sI ∈ ∆

True tt > ∆

False ff ⊥ ∅

Conjunction C ∧D C uD CI ∩DI

Disjunction C ∨D C tD CI ∪DI

Negation ¬C ¬C ∆ \ CI

Universal quantification [R]C ∀R.C {d ∈ ∆ | ∀d′. (d, d′) ∈ RI ⇒ d′ ∈ CI}

Existential quantification 〈R〉C ∃R.C {d ∈ ∆ | ∃d′. (d, d′) ∈ RI ∧ d′ ∈ CI}

Inclusion assertion C ⇒ D C v D CI ⊆ DI for every I

Instance assertion — C(s)
R(s1, s2)

sI ∈ CI

(sI1, sI2) ∈ RI for every I

Dynamic System Representation

• Initial situation assertions (ΓI): “C holds in the initial situation”.

C(init)

• State constraints (ΓS): “C implies D in every situation”.

C v D

• Action preconditions (ΓP): “If C is known to be true in the current situation,
then it is possible to perform action RM”.

KC v ∃KRM.>

• Effect axioms (ΓE): “If C is known to be true in the current situation, then
in the resulting situation D is known to be true”.

KC v ∀RM.D

Features of the ALCKNF approach

• Epistemic abilities: explicit representation of the robot’s epistemic
state and introduction of sensing (knowledge-producing) actions.

• Concurrency of primitive actions: reasoning about concurrent ex-
ecution of actions without an explicit introduction of new actions.

• Persistence and exogenous events: formalization of both deter-
ministic frame axioms and default frame axioms.

• State and epistemic constraints: describing relationships between
dynamic properties that enforce ramification.

Sensing actions

• Action preconditions (ΓP): “If C is known to be true in the current

situation, then it is possible to perform the sensing action RS”.

KC v ∃KRS.>

• Effect axioms (ΓE): “The sensing action RS leads to a new situation in

which either S or ¬S is known”.

> v K(∀RS.S) tK(∀RS.¬S),

Concurrent actions

• Precondition axiom schema (ΓP):

∃KR1.> u ∃KR2.> u ¬A(∀R1 uR2.⊥) v ∃K(R1 uR2).>

Two actions R1, R2 can be concurrently executed in a
state s if and only if the following conditions hold:

1. both R1 and R2 can be executed in s;
2. the effects of R1 and R2 are mutually consistent.

Frame axioms

• Default frame axioms (ΓDFR): “If in the current state the property

C holds, then, after the execution of the action R, the property C holds, if it is

consistent with the effects of R.”.

KC v ∀KR.A¬C tKC

• Epistemic frame axioms (ΓEFR): “The property C is propagated

only if property D holds in the successor state”.

KC v ∀KR.¬KD tKC

Example KB for defensive actions

K(BallClose uOpponentOnBall) v ∃Ktackle.>
K(¬BallClose uOpponentOnBall) v ∃Kintercept.>
K(BallClose u ¬OpponentOnBall) v ∃Kkick.>
K(¬BallClose u ¬OpponentOnBall) v ∃KgoToBall.>

K> v ∀tackle.GoalProtected
K> v ∀intercept.GoalProtected
K> v ∀kick.(GoalProtected u ¬BallClose)
K> v ∀goToBall.(GoalProtected uBallClose)

KBallInLPS v ∃KsenseBallClose.>
K> vK(∀senseBallClose.BallClose)t

K(∀senseBallClose.¬BallClose)
KBallInLPS v ∃KsenseOpponentOnBall.>
K> vK(∀senseOpponentOnBall.OpponentOnBall)t

K(∀senseOpponentOnBall.¬OpponentOnBall)

BallInLPS(init)

Deductive Planning

The reasoning of interest is the following logical implication:

Γ |= S ⇒ 〈α∗〉G

• Γ are axioms that represent the system.

• S is a formula denoting a partial description of the initial
state.

• 〈α∗〉G is a formula expressing the reachability of a state
where the goal G holds.

From a constructive proof, one can extract the plan.

Planning Problem in ALCKNF

Deductive planning in ALCKNF is phrased as:

Σ |= CG(init).

(i) Σ is the action theory including static, dynamic and frame
axioms.

(ii) CG(init) is any concept belonging to the set PC defined
inductively as:

1. KG ∈ PC;
2. if C1, . . . , Cm ∈ PC, then ∃K(RM1 ‖ . . . ‖ RMk ‖ RS1 ‖ . . . ‖
RSl).(KS1 u . . . uKSl u C1) t . . . t (K¬S1 u . . . uK¬Sl u Cm) ∈ PC
for each 0 ≤ k, l ≤ n, where m = 2k+l, each RMi is an ordinary
action and each RSi is a sensing action for the property Si.

Examples of plans

∃K(RM1 ‖ RM2).KG

∃K(RS1 ‖ RS2).(KS1 u KS2 u ∃KRM1.KG) t (KS1 u K¬S2 u
∃KRM2.KG) t (K¬S1 uKS2 u ∃KRM3.KG) t (K¬S1 uK¬S2 u
∃KRM4.KG)

Partial Transition Graphs

A partial transition graph is a transition graph in which

• Only part of the possible states are represented.

• The represented states are in fact only partially repre-
sented (their properties are only partially known).

• Only part of the possible transitions are represented.

A partial transition graph summarizes all common features
of all possible transition graphs satisfying the axioms.

First Order Extension

The FOE of an epistemic knowledge base is a partial tran-
sition graph built by applying dynamic axioms through a
forward propagation algorithm.

The FOE provides a unique characterization of all knowledge
shared by all the models of Σ in a non-epistemic knowledge
base.

Note: During FOE Calculus each sensing action RS is replaced by two
special actions R+

S and R−
S , with the effect axiom for RS is replaced by

the following effect axioms:

> v ∀R+
S .S > v ∀R−

S .¬S

Reasoning tasks

• Given a dynamic system specification in ALCKNF and a
goal expressed in terms of a set of concepts, we are able
to express the plan generation problem in terms of a
reasoning problem in ALCKNF .

• Given a plan we are able to reduce verification of such
a plan (i.e., the problem of establishing whether such a
plan allows the robot to reach a state where the goal is
satisfied) to a deduction problem in ALCKNF .

Plan generation

• Build the FOE (first-order extension).

• Visit the FOE, searching for a path from the initial state
to a set of nodes where G holds.

In the implementation:

• The construction of the whole FOE is not necessary

• The FOE can be constructed off-line for a specific situ-
ation

Extending the notion of plan

b)a)

senseopend4
(F)

senseopend4
(T)

senseopend8
(T)

senseopend8
(F)

followc1d4

enterd4

GOAL

followc1c5

followc5c7

followc7d8

INIT

GOAL

enterd8
FAIL

senseopend4
(F)

senseopend4
(T)

followc1d4

enterd4

GOAL

followc1c5

followc5c7

followc7d8

enterd8

INIT

GOAL

Planning defensive actions

K(BallClose uOpponentOnBall) v ∃Ktackle.>
K(¬BallClose uOpponentOnBall) v ∃Kintercept.>
K(BallClose u ¬OpponentOnBall) v ∃Kkick.>
K(¬BallClose u ¬OpponentOnBall) v ∃KgoToBall.>

K> v ∀tackle.GoalProtected
K> v ∀intercept.GoalProtected
K> v ∀kick.(GoalProtected u ¬BallClose)
K> v ∀goToBall.(GoalProtected uBallClose)

KBallInLPS v ∃KsenseBallClose.>
K> vK(∀senseBallClose.BallClose)t

K(∀senseBallClose.¬BallClose)
KBallInLPS v ∃KsenseOpponentOnBall.>
K> vK(∀senseOpponentOnBall.OpponentOnBall)t

K(∀senseOpponentOnBall.¬OpponentOnBall)

BallInLPS(init)

Example 1

Goal: GoalProtected

Plan generated:

senseBallClose || senseOpponentOnBall;
if (BallClose and not OpponentOnBall)
{ kick; }
else { if (BallClose and OpponentOnBall)

{ tackle; }
else { if (not BallClose and OpponentOnBall)

{ intercept; }
else { goToBall; }

Planning the pass

K(BallPossi u FreeAheadi) v ∃KfwdKeepingBalli.>
K(BallPossi u ShootPsni u FreeAheadi) v ∃Kkicki.>
K(BallPossi u ShootPsnj u ¬FreeAheadi) v ∃Kpassj

i .>
K(BallClosej u ShootPsnj) v ∃KreceiveAndKickj.>
KBallPossi v ∃KpositionForPassj.>

K> v ∀fwdKeepingBalli.(BallPossi u ShootPsni)
K> v ∀kicki.BallKicked
K> v ∀passj

i .BallClosej
K> v ∀receiveAndKicki.BallKicked
K> v ∀positionForPassi.ShootPsni

K> v ∃KsenseFreeAheadi.>
K> vK(∀senseFreeAheadi.FreeAheadi)t

K(∀senseFreeAheadi.¬FreeAhead)

KShootPsni v ∀Kpassi
j.A¬ShootPsni tKShootPsni

...

(BallPoss1 u FreeAhead1)(init)

Example 2

Goal: BallKicked

Plan generated:

senseFreeAhead1 || fwdKeepingBall1 || positionForPass2;
if (FreeAhead1)
{ kick1 }
else { pass12; receiveAndKick2;}

Limitations of Plans

1. plan structure is a tree

2. actions duration is not considered

We can define a generalization of the plan structure, which
allows to capture a simple form of cycles.

The issue of non instantaneous actions is solved by the ex-
ecutor (outside the action theory), by providing additional
specification for the execution of actions.

Generalization of plan structure

• A strong plan for G is a conditional plan SG such that the
execution of SG leads to a state in which G is known to
hold for each possible outcome of the sensing actions in
SG.

• A weak plan for G is a conditional plan SG such that there
exists an outcome of the sensing actions in SG for which
the execution of SG leads to a state in which G is known
to hold.

We call partially strong plan for G a plan SG such that, for
each possible outcome of the sensing actions in SG, if the
execution of SG terminates, then it leads to a state in which
G is known to hold.

Example of partially strong plan

T

GotoAreaLine

GotoGoal

SenseFreeArea
F

a) b)

FAIL

TF

GotoAreaLine

GotoGoal

SenseFreeArea

Plan Execution

A plan is a transition graph, where each node denotes a state,
and is labeled with the properties that characterize the state,
and each arc denotes a state transition and is labeled with
the action that causes the transition.

A Plan Execution Monitor is in charge of the correct execu-
tion of the actions composing the plans.

The monitor’s task is that of visiting the graph, calling and
suspending the actions as necessary.

Executable Plans

Actions are not instantaneous, thus preconditions and effects
can be interpreted in different ways by the plan’s executor.

The actual execution of the plan requires an additional (extra-
logical) specification on how to execute the actions.

Checking preconditions

• Preconditions that must be constantly verified during the
execution of the action (NearBall in a PushBall action)

• Preconditions that need to be checked only for the ac-
tion’s activation (NearBall in a Kicking action)

If the condition becomes false during the execution of the
action, an exception occurs and the action fails.

Checking effects

• Effects that determine the action’s termination and the
state transition (NearBall in a GoToBall action)

• Effects that are side effects of the action but do not
cause the state transition (NearGoalArea in a GoDefense
action)

Executable plan

An executable plan is the result of a two-step procedure.

1. Designing a plan: this plan can be the result of the au-
tomatic generation process.

2. Modifying the plan resulting from the first step in order
to have it executed by the monitor.

Plan selection

Given a set of initial situations one can generate a library of
plans.

A plan selector allows the monitor to choose the current plan
to be executed

Examples:

• penalty kick

• rising from a fall

Architecture review

Data
Interpretation

World
Model

Reasoning
System

Control
System

ActuatorsSensors
Wandering

b)

Exploring

Obstacle Avoidance

Building maps

.

Sensors Actuators

a)

Modeling

Hybrid Architectures

Data
Interpretation

Knowledge
Acquisition

Task
Execution

Control
System

Reasoning
SystemModelling

Deliberative

(symbolic)

Operative

(numeric)

World Model
Numeric

Symbolic
World Model

Sensors Actuators

Requirements for the SPQR Architecture

Integration of reasoning and reactivity through:

• heterogeneity

• asynchronism

The deliberative level is the same for all our robotic platforms,
while the operative level depends on the robotic platform.

Deliberative level

• A plan execution module running on-line during the ac-
complishment of the robot’s task and is responsible for
coordinating the primitive actions of a single robot;

• A reasoning module, running off-line before the beginning
of the robot’s mission, and generates a set of plans to be
used to deal with some specific situations.

SPQR Architecture

 Actions
 Primitive

 Generation
 Plan

Coordination
Module

 Plan
 Execution

 Perception World
Model

KB
Library

Plan
��� � � ��� � �
	 � ����
�� ��� �

��� ��� � � ���

Conditions
High-level

ActuatorsSensors

��� � � �
	 � ����
�� ��� �

� � � � � ���
��� � � ��� � �
	 � ����
�� ��� �

Integration of plans in the robot control system

• High-level robot control is driven by a plan execution pro-
gram and coordination among robots is obtained by ex-
plicit communication.

• Plans are obtained off-line by the planner from a declar-
ative specification of the environment.

SPQR Mixed Architecture

 Generation
 Plan Graphic

 Tool

 Plan
 Verification

 Perception
 Actions

 Primitive

 Plan
 Execution

World
Model

Library
Plan

KB

Conditions
High-level

ActuatorsSensors

����� � ��� 	
��
���
�� �

����� � 	 ���
� � � 	 ��� � ��� 	
��
���
�� �

� � � 	 ��� � ��� 	
��
���
�� �
�
� ��� � 	 ���

Communication-based Coordination

The effects of the communication among agents are em-
bedded into the state and thus verified through high-level
conditions.

1. Dynamic role assignment can be viewed as a goal selec-
tion process

2. Constraints on shared resources correspond to additional
pre-conditions on the actions to be executed.

Design steps

1. Define the primitive control actions

2. Define the high level-conditions

3. Specify the Knowledge Base

4. Build the plan library by analysing various situations

5. Specify the execution of actions

Conclusion

• Implementation of plan generation procedure in a rich
formal framework in RoboCup

• Same approach in Legged and Middle-size

• Fast software development from specification

