
Course on Automated Planning: Planning and Heuristic Search

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain

Hector Geffner, Course on Automated Planning, Rome, 7/2010 1

Models, Languages, and Solvers

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model =⇒ Planner =⇒ Controller

• Many models, many solution forms: uncertainty, feedback, costs, . . .

• Models described in suitable planning languages (Strips, PDDL, PPDDL, . . .)
where states represent interpretations over the language.

Hector Geffner, Course on Automated Planning, Rome, 7/2010 2

State Model for Classical Planning

• finite and discrete state space S

• an initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• a transition function f(s, a) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

A solution is a sequence of applicable actions ai, i = 0, . . . , n, that maps the initial
state s0 into a goal state s ∈ SG; i.e., sn+1 ∈ SG and for i = 0, . . . , n

si+1 = f(a, si) and ai ∈ A(si)

Optimal solutions minimize total cost
∑i=n

i=0 c(ai, si)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 3

Language for Classical Planning: Strips

• A problem in Strips is a tuple P = 〈F,O, I, G〉:

. F stands for set of all atoms (boolean vars)

. O stands for set of all operators (actions)

. I ⊆ F stands for initial situation

. G ⊆ F stands for goal situation

• Operators o ∈ O represented by

. the Add list Add(o) ⊆ F

. the Delete list Del(o) ⊆ F

. the Precondition list Pre(o) ⊆ F

Hector Geffner, Course on Automated Planning, Rome, 7/2010 4

From Problem P to State Model S(P)

A Strips problem P = 〈F,O, I, G〉 determines state model S(P) where

• the states s ∈ S are collections of atoms from F

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are ops in O s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) + Add(a)

• action costs c(a, s) are all 1

– (Optimal) Solution of P is (optimal) solution of S(P)

– Thus P can be solved by solving S(P)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 5

Solving P by solving S(P)

Search algorithms for planning exploit the correspondence between (classical)
states model and directed graphs:

• The nodes of the graph represent the states s in the model

• The edges (s, s′) capture corresponding transition in the model with same cost

In the planning as heuristic search formulation, the problem P is solved by
path-finding algorithms over the graph associated with model S(P)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 6

Search Algorithms for Path Finding in Directed Graphs

• Blind search/Brute force algorithms

. Goal plays passive role in the search
e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost

(Dijkstra), Iterative Deepening (ID)

• Informed/Heuristic Search Algorithms

. Goals plays active role in the search through heuristic function h(s) that
estimates cost from s to the goal

e.g., A*, IDA*, Hill Climbing, Best First, DFS B&B, LRTA*, . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 7

General Search Scheme

Solve(Nodes)
if Empty Nodes -> Fail
else Let Node = Select-Node Nodes

Let Rest = Nodes - Node
if Node is Goal -> Return Solution
else Let Children = Expand-Node Node

Let New-Nodes = Add-Nodes Children Rest
Solve(New-Nodes)

• Different algorithms obtained by suitable instantation of

• Select-Node Nodes
• Add-Nodes New-Nodes Old-Nodes

• Nodes are data structures that contain state and bookkeeping info; initially
Nodes = {root}

• Notation g(n), h(n), f(n): accumulated cost, heuristic and evaluation function;

e.g. in A*, f(n) def= g(n) + h(n)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 8

Some instances of general search scheme

• Depth-First Search expands ‘deepest’ nodes n first

. Select-Node Nodes: Select First Node in Nodes

. Add-Nodes New Old: Puts New before Old

. Implementation: Nodes is a Stack (LIFO)

• Breadth-First Search expands ‘shallowest’ nodes n first

. Select-Node Nodes: Selects First Node in Nodes

. Add-Nodes New Old: Puts New after Old

. Implementation: Nodes is a Queue (FIFO)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 9

Additional instances of general search scheme

• Best First Search expands best nodes n first; min f(n)

. Select-Node Nodes: Returns n in Nodes with min f(n)

. Add-Nodes New Old: Performs ordered merge

. Implementation: Nodes is a Heap

. Special cases
Uniform cost/Dijkstra: f(n) = g(n)
A*: f(n) = g(n) + h(n)
WA*: f(n) = g(n) + Wh(n), W ≥ 1
Greedy Best First: f(n) = h(n)

• Hill Climbing expands best node n first and discards others

. Select-Node Nodes: Returns n in Nodes with min h(n)

. Add-Nodes New Old: Returns New; discards Old

Hector Geffner, Course on Automated Planning, Rome, 7/2010 10

Variations of general search scheme: DFS Bounding

Solve(Nodes,Bound)

if Empty Nodes -> Report-Best-Solution-or-Fail
else

Let Node = Select-Node Nodes
Let Rest = Nodes - Node

if f(Node) > Bound
Solve(Rest,Bound) ;;; PRUNE NODE n

else if Node is Goal -> Process-Solution Node Rest
else
Let Children = Expand-Node Node
Let New-Nodes = Add-Nodes Children Rest
Solve(New-Nodes,Bound)

Select-Node & Add-Nodes as in DFS

Hector Geffner, Course on Automated Planning, Rome, 7/2010 11

Some instances of general bounded search scheme

• Iterative Deepening (ID)

. Uses f(n) = g(n)

. Calls Solve with bounds 0, 1, .. til solution found

. Process-Solution returns Solution

ıIterative Deepening A* (IDA*)

. Uses f(n) = g(n) + h(n)

. Calls Solve with bounds f(n0), f(n1), . . . where n0 = root and ni is
cheapest node pruned in iteration i− 1

. Process-Solution returns Solution

• Branch and Bound

. Uses f(n) = g(n) + h(n)

. Single call to Solve with high (Upper) Bound

. Process-Solution: updates Bound to Solution Cost minus 1 & calls
Solve(Rest,New-Bound)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 12

Properties of Algorithms

• Completeness: whether guaranteed to find solution

• Optimality: whether solution guaranteed optimal

• Time Complexity: how time increases with size

• Space Complexity: how space increases with size

DFS BrFS ID A* HC IDA* B&B
Complete No Yes Yes Yes No Yes Yes
Optimal No Yes∗ Yes Yes No Yes Yes
Time ∞ bd bd bd ∞ bd bD

Space b · d bd b · d bd b b · d b · d

– Parameters: d is solution depth; b is branching factor

– BrFS optimal when costs are uniform

– A*/IDA* optimal when h is admissible; h ≤ h∗

Hector Geffner, Course on Automated Planning, Rome, 7/2010 13

A*: Additional Properties

• A* stores in memory all nodes visited

• Nodes either in Open (search frontier) or Closed

• When nodes expanded, children looked up in Open and Closed lists

• Duplicates prevented and no node expanded more than once

– A* is optimal in another sense: no other algorithm expands less nodes than A*
with same heuristic function (this doesn’t mean that A* is always fastest)

– A* expands ‘less’ nodes with more informed heuristic, h2 more informed that
h1 if 0 < h1 < h2 ≤ h∗

Hector Geffner, Course on Automated Planning, Rome, 7/2010 14

Practical Issues: Search in Large Spaces

• Exponential-memory algorithms like A* not feasible for large problems

• Time and memory requirements can be lowered significantly by multiplying
heuristic term h(n) by a constant W > 1 (WA*)

• Solutions no longer optimal but at most W times from optimal

• For large problems, only feasible optimal algorithms are linear-Memory algo-
rithms such as IDA* and B&B

• Linear-memory algorithms often use too little memory and may visit fragments
of search space many times

• It’s common to extend IDA* in practice with so-called transposition tables

• Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1025

Hector Geffner, Course on Automated Planning, Rome, 7/2010 15

Learning Real Time A* (LRTA*)

• LRTA* is a very interesting real-time search algorithm (Korf 90)

• It’s like a hill-climb or greedy search that updates the heuristic V as it moves,
starting with V = h.

1. Evaluate each action a in s as Q(a, s) = c(a, s) + V (s′)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Exit if s′ is goal, else go to 1 with s := s′

• Two remarkable properties

. Each trial of LRTA gets eventually to the goal if space connected

. Repeated trials eventually get to the goal optimally, if h admissible!

• Generalizes well to stochastic actions (MDPs)

Hector Geffner, Course on Automated Planning, Rome, 7/2010 16

Heuristics: where they come from?

• General idea: heuristic functions obtained as optimal cost functions of relaxed
problems

• Examples:

– Manhattan distance in N-puzzle
– Euclidean Distance in Routing Finding
– Spanning Tree in Traveling Salesman Problem
– Shortest Path in Job Shop Scheduling

• Yet

– how to get and solve suitable relaxations?
– how to get heuristics automatically?

We’ll get more into this as we get back to planning . . .

Hector Geffner, Course on Automated Planning, Rome, 7/2010 17

