Reconciling Different Semantics for Concept Definition
(Extended Abstract)

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
Unwversita di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italia

e-mail: degiacom@assi.ing.uniromal.it

1 Introduction

Most of the modern formalisms used in Databases and Artificial Intelligence for describing an
application domain allow for using the notions of concept (or class) and relationship among con-
cepts. There are basically two ways of using and describing classes. In the first one (prescriptive
approach) the description formalism allows for expressing properties of the classes to be repre-
sented, thus prescribing the properties that instances of the classes must possess. In the second
one (definitional approach) the formalism allows for providing the definition of a class, i.e. a
set of properties that precisely characterize the instances of the class. While the prescriptive
approach is quite well understood and established, the definitional approach is still the subject of
an interesting debate, regarding both its nature and its semantic foundation. In particular, it is
well known that there are various possibilities for assigning a meaning to a definition of a class,
especially if such a definition contains some sort of recursion ([Baa90, Neb91, BB92, Bee90]).

In this paper, we are concerned with the semantical problems related to the definitional ap-
proach, arguing that, instead of choosing a single style of semantics for the knowledge represen-
tation formalism, we achieve a better result by adopting a powerful formalism allowing different
semantics to coexist. Specifically, we present a concept language (an extension of ALC) with the
above characteristics, discuss its properties, and describe a method for reasoning effectively with
knowledge bases (T-Boxes) expressed in the language. Such a method is based on a correspon-
dence with a particular modal logic of programs called modal mu-calculus ([Ko0z83, ES88, SA89]),
which has been recently investigated for expressing temporal properties of reactive and parallel
processes ([Sti92, Lar90]).

2 Concept definitions as equations

It is widely recognized that the notion of knowledge base can be made more powerful if we allow
some sort of concept definitions to be expressed. Let us assume that the form of a definitin
statent (or simply definition) is

A=4ey C

where A is an atomic concept and C is a concept expression in ALC. Intuitively, the above
definition provides an account for of A in terms of C (i.e. it defines A as the set of objects
satisfying C'). For example, the definition statement

parent =ge5 Ichild. T



provides the definition of the concept parent, in the following sense: given an interpretation
T = (A%, 1)L, parent® denotes a single subset of A%, exactly the one denoted by (Ichild.T)Z,
ie., {s|3t.(s,t) € child?}.

The situation remains clear when we define new concepts using already defined ones. Things
change dramatically if we allow an atomic concept to appear both in the left-hand side and the
right-hand side of a definition statement. For example, in

A =def Jehild. A

we cannot appeal any more to the idea of defining new concepts on already defined ones. Actually
the word “defining” itself seems misleading in this case. What the above definition statement
specifies is that, given any interpretation Z, it must be the case that

AT = {s € AT | Ft.(s,t) € child® and t € AT}.

We call the definition statements of the above kind cyclic definition statements® (or simply

cyclic definition), and we use
A =45 F(4)

for denoting the generic cyclic definition, where F/(A) stands for a concept that contains A as a
subconcept?.

(From a semantical point of view, a cyclic definition statement A =4.r F(A) is a sort of
equation specifying that, for any interpretation Z, the subsets of A7 which can be tied to the
concept A must satisfy the equation A7 = (F(A))Z, i.e. must be its solutions. Notice that,
in general, given any interpretation Z, either none, one, or several subsets of A” may exist
which are solutions of the above equation. Notice also that, given an interpretation Z, we can
associate to a definition statement an operator from subsets of AZ to subsets of AZ, such that the
solutions of the equation correspond to the fixpoints of the operator. For example to the definition
A =g 3child. A we can associate the operator: A\S.{s € AT | 3t.(s,t) € child® and t € S} for
any interpretation Z.

Typically, in the literature on concept languages, there are three ways of interpreting cyclic
definitions, according to one of the following semantics:

e Descriptive Semantics,
e Least Fixpoint Semantics,

e Greatest Fixpoint Semantics.

Let us describe the basic ideas underlying the above semantics. According to the Descriptive
Semantics, a definition statement of the form A =4, F(A) is a constraint stating that A has
to be some solution of the corresponding equation. Hence, in our example, A =4,y Jchild.A
states that the individuals in the class A have a child in the class A, and the individuals that
have a child in the class A are themselves in the class A, where A is no better specified. Thus,
interpreting the definition statement A =4.¢ F'(A) in terms of the descriptive semantics means
that we consider it just as an equivalence statement, A = F(A) ({A < F(A4), F(A) < A}),
and therefore it does not represent a real definition.

According to the Least Fizpoint Semantics, a definition statement of the form A =4.; F(A)
specifies that A is to be interpreted as the smallest solution (if it exists) of the corresponding
equation. Notice that, if the operator associated with the definition statement is monotonic, then
for any interpretation Z satisfying the definition statement, the corresponding equation singles

I'We recall that an interpretation Z = (AZ,.Z) consists of a domain o nterpretation AT and an interpretation
function -T, mapping concepts to subsets of AZ, in particular TZ = AT and 17 = emptyset.

2Terminological cycles in [Neb91].

3A subconcept of a concept C is any substring of C' (including C' itself) that is a concept, according to the
syntax rules.



out a unique subset of A%, hence it defines the concept C. It is easy to verify that in the example
A =405 Jchild. A, the least fixpoint semantics leads to identify A with L. Indeed the empty set
is a solution of the equation corresponding to the statement, and it is obviously the smallest
solution.

By the Greatest Fizpoint Semantics, a definition statement of the form A =45 F(A) specifies
that A is to be interpreted as the greatest solution (if it exists) of the corresponding equation.
Again, if the operator associated with the definition statement is monotonic, then for any inter-
pretation Z satisfying the definition statement, the corresponding equation singles out a unique
subset of AZ. Therefore, as for the least fixpoint semantics, the definition statement defines the
concept A. In the example A =4.¢ Ichild. A, the greatest fixpoint semantics leads to interpret A
as the class of all the individuals having a child in A, i.e. the greatest solution of the equation
corresponding to the above definition statement.

Which of the three semantics is the best is a long standing matter of debate. It is easy to
find examples in which one is adequate and the others are not. Actually, they capture different
interesting and important intuitions. In particular, the descriptive semantics is effective when
we want to specify constraints on concepts, the least fixpoint semantics is appropriate when we
want to define a structure inductively, and, finally, the greatest fixpoint semantics is the one to
go for when defining cyclic structures. Therefore, we may need them all in the same knowledge
base in order to model the various properties of the different concepts.

3 The language puALC

Our proposal in this work is exactly in the direction of reconciling the various semantics in the
same knowledge base. This idea is pursued by means of a language, called pALC, that incor-
porates special constructors denoting the least fixpoint and the greatest fixpoint of definitions,
respectively.
The idea underlying the language uALC is to add to ALC the two constructors (the symbols
X,Y, ... stand for concept variables)
uX.F(X)
vX.F(X)
denoting respectively the smallest solution and the greatest solution of the equation corresponding
to the definition X =4,y F(X). We enforce the restriction that every occurrence of any variable
X in F(X) must be in the scope of an even number of — (this guarantees that both the smallest
and the greatest solutions exist).
No definition statement will actually appear in pALC knowledge base. Instead, a knowledge
base will be simply a set of inclusion statements or equivalence statements over uALC concepts
(that are interpreted according to the descriptive semantics). Let us show some examples of

BALC concepts. First, consider the following inductive definition of a single source directed
acyclic graph (DAG):

e The EMPTY-DAG is a DAG (base step).
e A NODE that has connections and all connections are DAGs, is a DAG (inductive step).
e Nothing else is a DAG.
We can easily write a definition statement reflecting the first two conditions:
X =gy emptydag Ll (node M Jare. T NVare.X).

To enforce the third condition we need to take the smallest solution of the corresponding equation
(interpreting the above definition statement according to the least fixpoint semantics). In uALC
we can define such a concept by a non-cyclic equivalence statement:

dag = pX . emptydag U (node M Jare. T MVare.X).



Second, suppose we want to denote the class FOB of individuals who are “blond” and genera-
tion after generation have some descendant who is “blond”. We can write the following definition

X =gef blond M Ichild. X.

With this definition statement we want to denote the class of all individuals satisfying the equation
corresponding to the above definition statement, that is, we want its greatest solution (greatest
fixpoint semantics). In uALC we can write:

fob = vX.blond 1 3child. X.

Third, assume we want to express the fact that humans are mammals having parents that
are humans, and, on the converse, that mammals having parents that are humans are humans
themselves. We can write the equivalence statement:

human = mammal N dparent. T N Vparent.human.
This is by no means a definition for human, indeed horses satisfy an analogous property:
horse = mammal M dparent. T M Vparent.horse.

It is interesting to observe that the above two equivalence statements do not imply any mutual
relationship between human and horse. This is not true if we use a fixpoint semantics for
interpreting these two concepts.

The idea of adding suitable constructors for the least and the greatest solutions of equations
not only allows different semantics to be used in the same knowledge base, but also increases the
expressive power of concept definitions.

Consider the following example: among the inhabitants of the planet “Plonk”, a disease called
“foo” is quite common. Such a disease manifests in two forms: a “visible” one and a “latent”
(not visible) one, and it has a quite strange hereditary pattern. Individuals that have the visible
form transmit the visible form to at least one direct descendant (obviously, if there is any direct
descendant), who in turn does the same, and so on, until someone transmits the latent form of
the disease. All direct descendants (if any) of an individual that has the latent form inherit the
visible form. The pattern goes on like this, generation after generation, forever.

Notice that, along any chain of descendants, the visible form of the disease sooner or latter is
interrupted, because either an individual has no direct descendant or an individual transmits to
some descendant the latent form.

The rather intricate hereditary pattern (foo_hp) of the above disease can be defined as follows:

foo-hp = vX.uY.((visible N (Fchild.Y U Vchild. L)) U (~wisible M Vchild.(visible N X))).

where visible denotes the visible form of the disease, while —wisible denotes the latent form. This
example shows that embedding fixpoint constructors within each other goes beyond the simple
equational format by which we motivated their introduction.

In the full paper we formally introduce the language uALC, providing a formal account of the
meaning of the fixpoint constructors and we discuss several properties of the language including
the complexity of reasoning, by showing a tight correspondence between our language and the
modal mu-calculus. With respect to the complexity of reasoning we prove that subsumption
between concepts in a pALC knowledge base 7 (and hence satisfiability of concepts in 7) is
decidable in deterministic exponential time (tight bound). Thus, in spite of the big increase of
expressivity, reasoning in uALC knowledge bases is no harder then reasoning in ALC knowledge
bases.

References

[Baa90] F. Baader. Terminological cycles in KL-ONE-based KR-languages. In Proc. of the 8th
Nat. Conf. on Artificial Intelligence (AAAI-90), pages 621-626, 1990.



[BB92]

[Bee90)]

[ESS8]

[Koz83]

[Lar90]

[Neb91]

[SA89]

[Sti92]

D. Beneventano and S. Bergamaschi. Subsumption for complex object data models. In
Proc. of the Jth Int. Conf. on Database Theory, LNCS 646, pages 357-375. Springer-
Verlag, 1992.

C. Beeri. A formal approach to object-oriented database. In Data and Knowledge
Engeneering, pages 353-382, 1990.

E. A. Emerson and Jutla C. S. The complexity of tree automata and logics of programs.
In Proc. of the 20th Ann. Sym. on the Foundations of Computer Science (FOCS-88),
pages 328-337, 1988.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333-355, 1983.

K. J. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science, 72:265—288, 1990.

B. Nebel. Terminological cycles: Semantics and computational properties. In John F.
Sowa, editor, Principles of Semantic Networks, pages 331-361. Morgan Kaufmann,
1991.

R. S. Streett and Emerson E. A. An automata theoretic decision procedure for the
propositional mu-calculus. Information and Control, 81:249-264, 1989.

C. Stirling. Modal and temporal logic. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, pages 477-563. Clarendon
Press, Oxford, 1992.



