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Abstract. Description Logics (DLs) are used in Artificial Intelligence
to represent knowledge in terms of objects grouped into classes, and offer
structuring mechanisms for both characterizing the relevant properties
of classes in terms of binary relations, and establishing several interde-
pendencies among classes. One of the main themes in the area of DLs
has been to identify DLs that are both very expressive and decidable.
This 1ssue can be profitably addressed by relying on a correspondence
between DLs and propositional dynamic logics (PDLs). In this paper, we
exploit the correspondence as a framework to investigate the decidability
and the complexity of a powerful DL, in which functional restrictions on
both atomic roles and their inverse are expressible. We then show that
such DL is suitable to represent n-ary relations, as needed in the appli-
cations of class-based formalisms to databases. The PDL that we use in
this work is a proper extension of Converse Deterministic PDL, and its
decidability and complexity is established contextually.

1 Introduction

The research in Artificial Intelligence and Computer Science has always paid
special attention to formalisms for the structured representation of classes and
relations. In Artificial Intelligence, the investigation on such formalisms began
with semantic networks and frames, which have been influential for many for-
malisms proposed in the areas of knowledge representation, data bases, and
programming languages, and developed towards formal logic-based languages,
that will be called here description logics' (DLs). Generally speaking, DLs are
decidable logics specifically designed for allowing the representation of knowl-
edge in terms of objects (individuals) grouped into classes (concepts), and offer
structuring mechanisms for characterizing the relevant properties of classes in
terms of relations (roles).

Description logics have been the subject of many investigations in the last
decade. It is our opinion that the main reason for investigating such logics 1s that
they offer a clean, formal and effective framework for analyzing several impor-
tant issues related to class-based representation formalisms, such as expressive
power, deduction algorithms, and computational complexity of reasoning. This

! Terminological logics, and concept languages are other possible names.



is confirmed by the fact that the research in DLs both produced several theo-
retical results (see [22] for an overview), and has been influential for the design
of knowledge representation systems, like LOOM [19], CLASSIC [6], and KRIS
[2].

In order to use DLs as abstract formalisms for addressing diverse issues re-
lated to class-based representation schemes; they should be sufficiently general,
and, at the same time, sufficiently simple so as to not fall into undecidability of
reasoning. Currently, however, those DLs that have been studied from a formal
point of view suffer from several limitations:

1. Relationships between classes are modeled by binary relations (roles), while
n-ary relations are not supported.

2. They do not allow the modeler to refer to the inverse of a binary relation; or,
if they do, they impose several restrictions in the usage of inverse relations
(for example, although in general one can state that a relation is actually
a function, there is no possibility to state that the inverse of a relation is a
function).

3. While they offer a rich variety of constructs for building class descriptions
(i.e. expressions denoting classes), they do not generally allow one to repre-
sent universal properties of classes (such as: all instances of class 4 must be
related to at least another instance of A by means of the relation R).

All the above limitations prevent one to consider DLs general enough to cap-
ture a sufficiently broad family of class-based representation formalisms. Indeed:

1. Nonbinary relations are important in general and in particular for capturing
conceptual and semantic database models (see [16]).

2. Inverse relations are essential in domain modeling (see [29]), for example,
without the possibility of referring to the inverse of a relation, we are forced to
use two unrelated relations child and parent, with no chance of stating their
mutual dependency; also, in case inverse relations can be used in the DL,
they should be used as any other relation (for example, it should be possible
to state that the inverse of a relation is actually a function, analogously to
the case of direct relations).

3. The possibility of expressing universal properties of classes is a basic feature
for capturing both conceptual and object-oriented data models (see [9]).

Our goal in this paper is to propose a very expressive DL that both supports
all the above features, and such that reasoning in the logic is decidable. To this
end, we resort to the work by Schild [26], which singled out an interesting corre-
spondence between DLs and several propositional dynamic logics (PDL), which
are modal logics specifically designed for reasoning about program schemes. The
correspondence is based on the similarity between the interpretation structures
of the two logics: at the extensional level, objects in DLs correspond to states in
PDLs, whereas connections between two objects correspond to state transitions.
At the intensional level, classes correspond to propositions, and roles corresponds
to programs. The correspondence is extremely useful mainly for two reasons. On



one hand, it makes clear that reasoning about assertions on classes is equiva-
lent to reasoning about dynamic logic formulae. On the other hand, the large
body of research on decision procedures in PDL (see, for example, [17]) can
be exploited in the setting of DLs, and, on the converse, the various works on
tractability /intractability of DLs (see for example [14]) can be used in the setting
of PDL.

We argue that the work on PDLs is a good starting point for our investigation,
because it provides us with:

— a general method for reasoning with universal properties of classes;

— a general method for reasoning with inverses of relations (indeed, several
PDLs proposed in the literature, include a construct that exactly correspond
to the inverse of relations).

However, looking carefully at the expressive power of PDLs, it turns out that
the following problems need to be addressed:

1. No existing PDL allows one to impose that the inverse of relation is func-
tional.

2. No existing PDL provides a construct that can be directly used to model
nonbinary relations.

In this paper we present a solution to such problems. The solution is based
on a particular methodology, which we believe has its own value: the inference
in DLs is formulated in the setting of PDL, and in order to represent func-
tional restrictions on relations (both direct and inverse), special “constraints”
are added to the PDL formulae. The solution to the problem of expressing func-
tional restrictions on both direct and inverse roles directly leads to a method for
incorporating n-ary relation in DLs.

The results have a twofold significance. From the standpoint of DLs; we derive
decidability and complexity results for one of the most expressive DLs appeared
in the literature, and from the standpoint of PDLs, we define a very powerful
PDL (it subsumes Converse Deterministic PDL), and establish its decidability
and complexity by a methodology that can be exploited to derive reasoning
procedures for many extensions of known PDLs - e.g. PDLs including several
forms of program determinism.

The paper is organized as follows. In Section 2, we recall the basic notions of
both DLs and PDLs. In Section 3, we present the result on functional restrictions,
showing that Converse PDL is powerful enough to allow the representation of
functional restrictions on both direct and inverse roles. In Section 4, we deal
with the problem of representing n-ary relations in DLs. Finally, Section 5 ends
the paper with some conclusions. For the sake of brevity, all proves are omitted.

2 Preliminaries

We base our work on two logics, namely the DL CZ, and the PDL DI (tradi-
tionally called Converse PDL), whose basic characteristics are recalled in this
section.



The formation rules of CZ are specified by the following abstract syntax

C—>T|J_|A|Cl|_|02|01UCQ|01:>CQ|—|C|E|RC|VRC
R—>P|R1UR2|R10R2|R*|R_|Zd(C)

where A denotes an atomic concept, C' (possibly with subscript) denotes a con-
cept, P denotes an atomic role, and R (possibly with subscript) denotes a role.
The semantics of concepts is the usual one: an interpretation Z = (A%, .%) con-
sists of a domain AZ, and an interpretation function -Z that assigns subsets of
AT to concepts and binary relations over A% to roles as follows:

AT C AT,
TI_AI
17 = ’

(ﬁC)I = AI - CIa

(Cin et =Ccinct,

(CruCy)f =ctuct,

(01 = CQ)I = ("Cl)z U CQI,

(AR.C)r ={d e AT |3d' (d,d") € Rf and d' € CT},
(VR.CY! = {d € AT |Vd' (d,d") € RT implies d' € C1},

Ry URy)? = RTURE,

Ry o Ry)f = Rf o RE,

R*)I — (RI)*,

R ={(d1,d2) € AT x AT | (do, dy) € RT},
id(C)F = {(d,d) € AT x AT | d e CT}.

o —

Note that CT is a very expressive language, comprising all usual concept con-
structs, and a rich set of role constructs, namely: union of roles Ry U R, chaining
of roles Rj o R, transitive closure of roles R*, inverse roles R~ and the identity
role ¢d(C') projected on C.

A (CT) TBox (i.e., intensional knowledge base in CZ) is defined as a finite
set K of inclusion assertions of the form 7 C C5, where C, C5 are CZ-concepts.
An assertion C; C C is satisfied by an interpretation Z if C¥ C C%, and 7 is a
model of K if every assertion of K is satisfied by Z. A TBox K logically implies
an assertion Cy E Cy, written K | Cy C Cs, if Cy E Oy is satisfied by every
model of K.

There is a direct correspondence between CZ and the PDL DZ, whose syntax
1s as follows:

¢ — true | false | A| 1 ANda | ¢1V @a | 1 = ¢o | md1 | <7 > @1 | [r]en

r——PlriUry|ryre |77 | v | 67

where A denotes a propositional letter, ¢ (possibly with subscript) denotes a
formula, P denotes an atomic program, and r (possibly with subscript) denotes a
program. The semantics of D7 is based on the notion of (Kripke) structure, which
is defined as a triple M = (S,{Rp}, IT), where S denotes a set of states, {Rp}

is a family of binary relations over § such that each atomic program P is given



a meaning through Rp, and I is a mapping from § to propositional letters such
that I7(s) determines the letters that are true in the state s. Given M, the family
{Rp} can be extended in the obvious way so as to include, for every program
7, the corresponding relation R, (for example, R,, .., is the composition of R,
and R,,). For this reason, we often denote a structure by (S,{R,}, II), where
{R,} includes a binary relations for every program (atomic or non-atomic). A
structure M is called a model of a formula ¢ if there exists a state s in M such
that M, s = ¢. A formula ¢ is satisfiable if there exists a model of ¢, unsatisfiable
otherwise.

The correspondence between CZ and DZ, first pointed out by Schild [26], is
based on the similarity between the interpretation structures of the two logics:
at the extensional level, individuals (members of A%) in DLs correspond to
states in PDLs, whereas connections between two individuals correspond to state
transitions. At the intensional level, classes correspond to propositions, and roles
corresponds to programs. The correspondence is realized through a (one-to-one
and onto) mapping é from CZ-concepts to DZ-formulae, and from CZ-roles to
DI-programs. The mapping § is defined inductively as follows (we assume U, =
to be expressed by means of M, —):

8(4) = §(P)=P

§(CL M Co) = 6(C1) AS(Co) 6(=C) = ~6(C)

§(AR.C) =< §(R) > 8(C)  6(YR.C) = [8(R)}8(C)
(S(Rl U Rz) = (S(Rl) U (S(Rz) (S(Rl o R2 = (S(Rl), (S(Rz)
S(R*) = 8(R)" 5(id(C)) = 6(C)?

8(R™) = é(R)™

From 6 one can easily obtain a mapping 61 from CZ-TBoxes to DZ-formulae.
Namely, if K = {K;,---, K,} is a TBox in CZ, and Py,..., P, are all atomic
roles appearing in K, then

STK)=[(PAU---UP, UPT - UP)* §T({K1H) A ANST({ KL},
6T ({C1 E Ca}) = (8(C1) = 6(C2)).

Observe that 67(K) exploits the power of program constructs (union, converse,
and transitive closure) and the “connected model property”? of PDLs in order
to represent inclusion assertions of DLs. Based on this correspondence, we can
state the following: if K is a TBox, then X | C; C Cy (where atomic concepts
and roles in C1, Cy are also in K) iff the DZ-formula

ST(K) AN S(C) Ad(=Cy)

1s unsatisfiable. Note that the size of the above formulais polynomial with respect
to the size of K, Cy and Cj.

By virtue of 6 and 6%, respectively, both satisfiability of CZ concepts, and
logical implication for CZ-TBoxes, can be (polynomially) reduced to satisfiability
of DI-formulae. Being satisfiability for PZ an EXPTIME-complete problem,

2 That is, if a formula has a model, it has a model which is connected.



so are satisfiability of CZ-concepts and logical implication for CZ-TBoxes. It is
straightforward to extend the correspondence, and hence both § and 6T, to other
DLs and PDLs.

In the rest of this section, we introduce several notions and notations that
will be used in the sequel.

The Fisher-Ladner closure ([10]) of a DI-formula @, denoted C'L(P), is the
least set F' such that @ € F and such that (we assume, without loss of generality,
V, =[] to be expressed by means of =, A, < - >, and the converse operator to
be applied to atomic programs only?):

P1 Ny €EF = ¢1,¢2 € F|
—¢eF => ¢ el
<r>¢€ekF => ¢ el

<ryre > EF =< ><ry>¢€el
<rUra>¢EF =><ri >¢,<ry>¢€F,
<r*>¢er > <r>Lrr>¢€F,
<¢P?t>¢peF =o' eF

The notion of Fisher-Ladner closure can be easily extended to formulae of other
PDLs.

A pathin a structure M (sometimes called trajectory) is a sequence (s, . .., 8q)
of states of M, such that for each i = 1,...,¢, (s;—1,s;) € R, for some a =
P | P~. The length of (so,...,s,) is ¢. We inductively define the set of paths
Paths(r) of a program r in a structure M, as follows (we assume, without loss
of generality, that in r all occurrences of the converse operator are moved all
way in):

Paths(a) =Ra(a=P|P7),
Paths(ry Ure) = Paths(ry) U Paths(ra),
Paths(ri;ra) = {(s0,...,8u,---,8¢) | (50,...,54) € Paths(r1)
and (sy,...,sq) € Paths(rs)},
Paths(r*) ={(s) | s € S} U (U;so Paths(r')),
Paths(¢'?) ={(s) | M,s = ¢'}.
We say that a path (sg) in M satisfies a formula ¢ which is not of the form
<r>¢" if M, sy = ¢. We say that a path (so,...,s;) in M satisfies a formula
¢ of the form < r; > -+ < r; > @', where ¢’ is not of the form < v’ > ¢", if
M, s, E ¢' and (so,...s4) C Paths(ri;-- ;7).
Finally, if @ denotes the atomic program P (resp. the inverse of an atomic
program P7), then we write ¢~ to denote P~ (resp. P).

3 Functional Restrictions

In this section, we consider an extension of CZ, called CZF, which is obtained
from CZ by adding the concept construct (< 1 a), where @ = P | P~. The
meaning of the construct in an interpretation 7 is the following:

? We recall that the following equations hold: (ri;re)” =3y, (mMUr)” =17 U

s ()T = (7)Y (67)7 = (07).



(< 1 a)f ={d e AT | there exists at most one d’ such that (d,d’) € a’}.

The corresponding PDL will be called DZF, and is obtained from DZ by
adding the same construct (< 1 @), where, again, a = P | P~, whose meaning
in DIF can be immediately derived by the semantics of CZF. Observe that
the construct (< 1 a) allows the notion of local determinism for both atomic
programs and their converse to be represented in PDL. With this construct, we
can denote states from which the running of an atomic program or the converse
of an atomic program is deterministic, i.e., it leads to at most one state. It is easy
to see that this possibility allows one to impose the so-called global determinism
too, 1.e., that a given atomic program, or the converse of an atomic program,
is (globally) deterministic. Therefore, DIF subsumes the logic studied in [30],
called Converse Deterministic PDL where atomic programs, not their converse,
are (globally) deterministic.

From the point of view of DLs, as mentioned in the Introduction, the fact
that in the (< 1 a) construct, a can be either an atomic role or the inverse of an
atomic role, greatly enhances the expressive power of the logic, and makes CZF
one of the most expressive DLs among those studied in the literature.

The decidability and the complexity of both satisfiability of CZF-concepts
and logical implication for CZF-TBox, can be derived by exploiting the corre-
spondence between CZF and DZF. This is realized through the mappings é and
6% described in Section 2, suitably extended in order to deal with functional
restrictions.

Note however that the decidability and the complexity of satisfiability in
DIF are to be established, yet. We establish them below by showing an encoding
of DI F-formulae in DZ. More precisely we show that, for any DZ F-formula @,
there is a DZ-formula, denoted v(®), whose size is polynomial with respect to the
size of @, and such that @ is satisfiable iff (&) is satisfiable. Since satisfiability
in DI is EXPTIME-complete, this ensures us that satisfiability in DZF, and
therefore both satisfiability of CZF-concepts and logical implication for CZF-
TBoxes, are EXPTIME-complete too.* In what follows, we assume, without loss
of generality, that DZ F-formula @ is in negation normal form (i.e., negation is
pushed inside as much as possible). We define the DZ-counterpart y(®) of the
DI F-formula @ as the conjunction of two formulae, (@) = v1(P) Ay2(P), where:

— 41(@) is obtained from & by replacing each (< 1 a) with a new propositional
letter A(< 1 4), and each (< 1 a) with (< a > H< 1 o))AM< a > ~H< 1 a)),
where H(< 1 4) Is again a new propositional letter.

~ 72(@)=[(PLU-- - UPL,UP - UP)ya A+ Ayl where Py, ..., P, are
all atomic roles appearing in @, and with one conjunct 74 of the form

(A< 1A < a>¢) = [d]o)
for every A(< 1 4) occurring in 1 (@) and every ¢ € C'L(71(®)).

* Indeed (81 (K) A 8§(C1) A §(=C2)) is the DI F-formula corresponding to the impli-
cation problem K = C; C C» for CZF-TBoxes.



Intuitively v2(®) constrains the models M of y(®) so that: for every state s of M,
if A< 1 q) holds in s, and there is an a-transition from s to ¢; and an a-transition
from s to t2, then ¢; and #2 are equivalent wrt the formulae in C'L(y1(P)). We
show that this allow us to actually collapse ¢; and 2 into a single state.

To prove that a DZ F-formula is satisfiable iff its DZ-counterpart is, we pro-
ceed as follows. Given a model M = (S, {R,}, IT) of v(®), we build a tree-like
structure M* = (S*,{RL}, II'") such that M? root = v(®) (root € S* is the
root of the tree-structure), and the local determinism requirements are satisfied.
From such M*, a model M% of @ can easily be derived. In order to construct M?
we make use of the following notion: For each state s in M, we call by ES(s)
the smallest set of states in M such that

— s € ES(s), and
— if s’ € ES(s), then for every s” such that (s, 5"”) € R4.4
ES(s).

20—, ES(s") C

(<1 a=) 5

The set ES(s) is the set of states of M that are going to be collapsed into a
single state of M. Note that, by v2(®), all the states in E'S(s) satisfy the same
formulae in C'L(71(®)). The construction of M? is done in three stages.

Stage 1. Let < a1 > 91,...,< ap > 2y be all the formulas of the form
< a> ¢ included in C'L(®).> We consider an infinite h-ary tree 7 whose root is
root and such that every node x has h children child;(x), one for each formula
< a; > ;. We write father(z) to denote the father of a node # in 7. We define
two partial mappings m and [: m maps nodes of 7 to states of M, and [ is used
to label the arcs of 7 by either atomic programs, converse of atomic programs,
or a special symbol ‘undefined’. For the definition of m and [, we proceed level
by level. Let s € S be any state such that M, s |= v(®). We put m(root) = s, and
for all arcs (root, child;(root)) corresponding to a formula < a; > ; such that
M, s |E< a; > 1; we put {((root, child;(root))) = a;. Suppose we have defined
m and { up to level k, let « be a node at level k+ 1, and let {((father(z),z)) =
aj. Then M m(father(xz)) E< a; > v;, and therefore, there exists a path
(S0,51,...,54), with s, = m(father(z)) satisfying < a; > 1;. Among the states
in BFS(s1) we choose a state ¢ such that there exists a minimal path (i.e., a
path with minimal length) from ¢ satisfying «;. We put m(z) = ¢ and for every
< a; > € CL(P) such that M, t =< a; > ¢; we put I((x, child;(x))) = a;.

Stage 2. We change the labeling {, proceeding level by level. If M, m(root) =
A< 1 a), then for each arc (root, child;(root)) labeled a, except for one randomly
chosen, we put {((root, child;(root)) = ‘undefined’. Assume we have modified !
up to level k, and let  be a node at level k + 1. Suppose M, m(x) = A< 1 a)-
Then if {((father(x),z)) = a~, for each arc (z,child;(z)) labeled a, we put
[((z,child;(#)) = ‘undefined’, otherwise (i.e. {((father(z),x)) # _) we put
l((z,child;(#)) = ‘undefined’ for every arc (=, child;(z)) labeled a, except for
one randomly chosen.

Stage 3. For each P, let R = {(z,y) € T | l((z,y)) = Porl((y,x)) =
P~}. We define the structure M' = (8", {RL}, ') as follows: §' = {z €

® Notice that the formulas %; may be of the form < r > ¢, and that ¢, € CL(®).



T | (root,z) € (Up(Rp UR;D_))*}, RL = Rp N (S x S, and IT'(z) =
I(m(z)) (Ve.x € 8'). From {R%} we get all {RL} as usual.
The basic property of M? is stated in the following lemma.

Lemmal. Let § be a DIF-formula, and let M be a model of y(P). Then, for
every formula ¢ € CL(y1(®)) and every x € S', M',x = ¢ iff M,m(z) E ¢.

From M?, we can define a new structure ML = (8&,{R%,}, II) where,
Sy =8 {R%,} = {R!}, and T (x) = II'(x) — {A(< 1 4), Hi< 1 o)}, for each
z € S8&. The structure M% has the following property.

Lemma?2. Let & be a DIF-formula, and let M, ML be obtained from a model
M of v(®) as specified above. Then M*, root = v1(P) implies Mk, root = .

Considering that every model of @ can be easily transformed in a model of
¥(P) we can state the main result of this section.

Theorem 3. A DIF-formula $ is satisfiable iff its DI -counterpart v(P) is sat-
1sfiable.

Corollary 4. Satisfiability in DIF and both satisfiability of CLF -concepts and
logical implication for CLF-TBozes are EXPTIME-complete problems.

The fact that DZ F-formulae can be encoded in DI, calls for some comments.
Notice that DZ-formulae have always a finite model M (finite model property)
while DI F-formulae don’t - e.g. the formula AA[(P7)*]((< 1 P)A < P~ > —A)
does not have any finite model ©. Indeed, M?, and thus ML, built from a finite
model M are not finite in general.

It is also interesting to observe that, since DZF subsumes Converse Deter-
ministic PDL, also formulae of that logic can be encoded in DZ. This fact gives
us procedures to decide satisfiability of Converse Deterministic PDL formulae
that do not rely on techniques based on automata on infinite structures as those
in [30].

Finally, the construction above can be easily modified/restricted to encode
Deterministic PDL formulae in PDL. In fact, the original construction, used in
[3] to study satisfiability of Deterministic PDL, is similar in the spirit, though
not in the development, to such a restricted version of the our construction.

In concluding the section we would like to present some examples of CZF
concepts, that demonstrate the power of this DL. The examples concern the
definition of concepts denoting common data structures in computer science.
The first example regards lists. A LIST can be (inductively) defined as: a NIL
is a LIST, a NODE that as exactly one successor that is a LIST, is a LIST.
From this definition it follows that a list is a chain of NODEs of any length, that

® This formula is a variant of the Converse Deterministic PDL formula A A [(P7)*] <
P~ > —A (see [30]).



terminates with a NIL. Therefore, we can denote the class of LISTs as (we use

Cy = (' as a shorthand for C; E Cy,Cy C C):
List = 3(id(Node M (< 1 suec)) o suce)* . Nil.

The second example concerns (possible infinite) trees. A TREE is formed by a
single NODE, that has no father (the root), whose all children are inner NODEs
of a TREE, where an inner NODE of a TREE is a NODE having exactly one
father, whose children are themselves all inner NODEs of a TREE. This defini-
tion implies that TREEs are formed by a NODE that has no father and such
that all its descendants are NODEs having exactly one father. Note that infinite
TREEs are allowed. The CZF concept corresponding to this definition of TREE
is

Tree = Ychild™. LN (Yehild* .(Node (< 1 child™))).

As last example, we specialize the above definition of TREE, to BINARY-TREE
where left and right subtrees are identified through different roles. That is,
BINARY-TREEs are TREEs such that each NODE has at most one LEFT
child and at most one RIGHT child. The corresponding CZ F-concept is

BinTree = (Vleft—.L)N (Vright—.1)N
(V(left Uright)*.(Node M (< 1left) N (< 1 right)n
(< Tleft/)yn (< Lright=)n ((Vleft—.L)U (Yright—.L1)))).

Observe that, in order to fully capture the latter two concepts, we need to make
use of functional restrictions on both atomic roles and inverse of atomic roles.
To the best of our knowledge, CZF is the only DL allowing for a correct and
precise definition of TREE and BINARY-TREE.

4 N-ary Relations

In this section we extend CZF by means of suitable mechanisms to aggregate
individuals in tuples. Each tuple has an associated arity which is the number of
individuals constituting the tuple. Tuples of the same arity n can be grouped
into sets forming n-ary relations.

An n-ary relation is described by a name and n relation roles (r-roles in the
following). Each r-role names a component of the relation, i.e., a component of
each of its tuples. For each relation R the set of its r-roles is denoted by rol(R).
The cardinality of this set is greater or equal to 2, and implicitly determinates
the arity of R. We call “U-component” the component of R named by the r-role
U € rol(R).

We present a DL, called CZFR, with suitable constructs to deal with rela-
tions, having the following abstract syntax:

C—>T|J_|A|Cl|_|02|01UCQ|01:>02|—|C|VRC|E|RC|
(< 1P) (< 1P) (< TR |
VR[U]Tl 101,...,TmZCm|E|R[U].T1:Cl,...,TmZCm
R— P|R[U,U'] | RyURy | RioRs | R* | R~ | id(C).



The intuitive meaning of the new constructs is explained below (the other
constructs have the usual meaning).

— R[U] denotes the relation between individuals d and tuples of R that have
d as U-component - i.e., the inverse of the function projecting R onto its
U-component.

— R[U,U’] denotes the function projecting the relation R onto its U, U’ com-
ponents.

— (£ 1 RJ[U]) represents the individuals d that occur at most once as U-
component of the relation R.”

— VRIU].Ty : Cy, ..., Ty : Cpp, represents the set of individuals @ such that for
each tuple r of R with z as U-component, the T;-component of r belongs to

the extension of C; (i =1,...,m).
— 3R[U].Ty : Ch, ..., T : Cyp, represents the set of individuals @ such that
there exists a tuple r of R with  as U-component and z; (i = 1,...,m) as

Ti;-component such that z; belongs to the extension of Cj.

The semantics of CZFR is given, as usual, through an interpretation 7 =
(A%, .T), now extended to interpret relations and the new constructs. In partic-
ular, if R is a (n-ary) relation whose set of r-roles is rol(R) = {Uy,...,U,},
then R” is a set of labeled tuples of the form < Uy : dq,...,U, : d, > where
di,...,d, € AT. We write r[U] to denote the value associated with the U-
component of the tuple r. The new constructs are interpreted as follows:

— R[U)? ={(d,r) € AT x R | d = r[U]}.

— R[U, U ={(d,d")e AT x AT |FIr e RT.d=r[U]Ad' = r[U']}.

— (< 1R[U))? = {d € AT | there exists at most one » € R? such that r[U] =
d}.

— (VRIUTY : Cyy o T C)E = {d € AT | Vr e REp[U] = d = (#[T1] €
CEN- - Ar[Th] € CI)Y.

~ AR[U)TL : Chy oo\ Ty - C)E = {d € AT | 3r € RE[U) = dAr[Th] €
CEN---AP[T,]) €CLY.

CIFR-TBoxes are defined as a finite set of inclusion assertions C; C C', where
C1,C5 are CIFR-concepts. Satisfiability of CZFR-concepts, as well as logical
implication, in CZFR-TBoxes is defined as usual.

Let us show some examples of use of CZFR. Consider the relation Parents,
with rol(Parents) = {child, father, mother}, denoting the set of tuples child
and his/her (natural) parents (father and mother). An inclusion assertion re-
garding this relation can be:

Human C YParents[child].father : Human, mother : Human

stating that both the father and the mother of a child, who is human, must be
human as well (more precisely, every individual who is Human is such that, if

" Note that CZFR does not include the concept construct (< 1 R[U]7), because, by
definition, R[U]™ is always functional.



(s)he participates, as child-component, in a tuple r of the relation Parents, then
both the father-component of r and the mother-component of r are Human).
Note that, in order to represent the (natural) parents of a child, the relation
Parent must be so that child has exactly one father and one mother in the rela-
tion Parents - that is, individuals may occur as child-component in at most one
tuple of the relation. This fact can easily be represented in CZFR by asserting
that:
T C (£ 1 Parents[child]).

Next we investigate the decidability and the complexity of the reasoning tasks
for CZFR. For ease of exposition, we concentrate on satisfiability of CZFR-
TBoxes. In fact, it is easy to check that, satisfiability of CZFR-TBoxes and
logical implication in CZFR-TBoxes are (linearly) reducible one into the other,
and satisfiability of CZ FR-concepts is a subcase of both of them. We show that
there exists a one-to-one mapping from CZFR-TBoxes K to CZF-TBoxes K’
such that K is satisfiable if and only if K’ is satisfiable. To define this mapping
we make use of an auxiliary mapping ¢.

The mapping ¢ is defined inductively, in the obvious way for the common
constructs, and as follows, for the new ones:

tR[U]) = [ 1 (PR[ 0] is a new atomic role)

t(R[ ]) R[U] o PRy

(S 1RUD)=( 1 )

t(VR[ 1T :Chyo T Cy) = VPR .EIPR[TI].t(Cl) mn...n EIPR[Tm].t(C'm)
(

]
i E'R[ ] Cl, .. .,Tm : Cm) = ElP:[_{[U]HPR[Tl]t(Cl) Mm...MN ElPR[Tm]t(Cm)

Inclusion assertions Cy E Cy are mapped to ¢(C1) C t(Ca).
Let us call ¢(K) the TBox thus obtained. From ¢(K) we obtain £’ by adding
to it the following inclusion assertions:

1. TE(L 1 PR[U]) for all roles PR[U]'
2. EIPR[U].T C ElPR[Ul]'T mn...n ElPR[Un]'T where U € rol(R) and rol(R) =
{U1,...,Us}, for all roles PR[U]'

The inclusion assertions (1) constrain the models of X’ so that each PR[U]
is (globally) functional. The inclusion assertions (2) constrain the models of K
so that if an individual has a link that is an instance of PR then it also has
links that are instance of PR[U,] (for all U; € rol(R)). Indeed, (1) and (2) allow
us to represent a n-ary relation R by the concept ElPR[Ul]'T m...n ElPR[Un]'T’
1.e., the tuples of R are represented by instances of ElPR[Ul]'T m...n ElPR[Un]'T'
Observe that this representation is accurate only in the models Z of KX’ where
tuples of R corresponds to a single individual, otherwise, in 7 there would be
two individuals representing the same tuple. However, we can show that if X’
admits a model, then it admits a model satisfying the above condition. Formally,
the following lemma holds.



Lemmab. The CIF-TBox K' obtained by the above construction is satisfiable
of and only if 1t has a model T satisfying the constraint:

d,d' € (3PRy, - TN...N3PRy, ;. T =

=((d, dv) € (PR )" AN, dv) € (PRyy
A dn) € (PRyp, ) A dn) €

o=
=4
)
3
-
T
p—

)
for every n-ary relation R with rol(R) = {Uy,...,Uy}.
Now, we are ready to state the desired result.

Theorem 6. A CIFR-TBox K is satisfiable if and only if the CLF-TBox K’

defined as above is satisfiable.

Considering that K’ is polynomially bounded to K, the decidability and the
complexity of reasoning in CZFR are an immediate consequence of the results
in the previous section.

Corollary 7. Satisfiability of CZFR-TBozes, logical implication for CLFR-TBozes,
satisfiability of CLFR-concepts, are EXPTIME-complete problems.

5 Discussion and Conclusion

By exploiting the correspondence between DLs and PDLs, we have analyzed the
decidability and the complexity of a very expressive DL, CZF, which includes
functional restrictions on both atomic roles and their inverse. On top of CZF
we have been able to design constructs involving n-ary relations, thus presenting
a DL, CIFR, whose characteristics are quite unusual in the context of Frame
Based Languages, and more typical of other class-based formalisms such as Se-
mantics Data Models or Object-Oriented Data Models.

It is possible to show that our results on functional restrictions extend to full
qualified number restrictions (generalizations of functional restrictions stating
the minimum and the maximum number of links between instances of classes
and instances of another concept through a specified role or relation), by which
general cardinality constrains on components of relations can be expressed.

We conclude remarking that, the issues presented in this paper can be rele-
vant also in the setting of Modal Mu-Calculus, a logic of programs which includes
explicit constructs for least and greatest fixpoints of formulae (PDL is a fragment
of it), that has been recently used to model, in a single framework, terminologi-
cal cycles interpreted according to Least Fixpoint Semantics, Greatest Fixpoint
Semantics, and Descriptive Semantics (see [23, 27, 11]).
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