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Abstract

Imagine a robot that is executing a program
on�line� and� insofar as it is reasonable to do
so� it wishes to continue with this on�line
program execution� no matter what exoge�
nous events occur in the world� Execution
monitoring is the robot�s process of observ�
ing the world for discrepancies between the
actual world and its internal representation
of it� and recovering from such discrepancies�
We provide a situation calculus�based ac�
count of such on�line program executions�
with monitoring� This account relies on a
speci�cation for a single�step interpreter for
the logic programming language Golog � The
theory is supported by an implementation
that is illustrated by a standard blocks world
in which a robot is executing a Golog pro�
gram to build a suitable tower� The moni�
tor makes use of a simple kind of planner for
recovering from malicious exogenous actions
performed by another agent� After perform�
ing the sequence of actions generated by the
recovery procedure� the robot eliminates the
discrepancy and resumes executing its tower�
building program�
We also indicate how� within the formalism�
one can formulate various correctness prop�
erties for monitored systems�

� Introduction and motivation�

Imagine a robot that is executing a program on�line�
and� insofar as it is reasonable to do so� it wishes to
continue with this on�line program execution� no mat�
ter what exogenous events occur in the world� An ex�
ample of this setting� which we treat in this paper� is
a robot executing a program to build certain towers
of blocks in an environment inhabited by a �some�
times� malicious agent who might arbitrarily move
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some block when the robot is not looking� The robot
is equipped with sensors� so it can observe when the
world fails to conform to its internal representation of
what the world would be like in the absence of ma�
licious agents� What could the robot do when it ob�
serves such a discrepancy between the actual world
and its model of the world� There are �at least� three
possibilities�

	� It can give up trying to complete the execution of
its program�

�� It can call on its programmer to give it a more so�
phisticated program� one that anticipates all pos�
sible discrepancies between the actual world and
its internal model� and that additionally instructs
it what to do to recover from such failures�


� It can have available to it a repertoire of gen�
eral failure recovery methods� and invoke these
as needed� One such recovery technique involves
planning� whenever it detects a discrepancy� the
robot computes a plan that� when executed� will
restore the state of the world to what it would
have been had the exogenous action not occurred�
Then it executes the plan� after which it resumes
execution of its program�

Execution monitoring is the robot�s process of observ�
ing the world for discrepancies between �physical re�
ality�� and its �mental reality�� and recovering from
such perceived discrepancies� The approach to execu�
tion monitoring that we take in this paper is option 

above� While option � certainly is valuable and impor�
tant� we believe that it will be di�cult to write pro�
grams that take into account all possible exceptional
cases� It will be easier �especially for inexperienced
programmers� to write simple programs in a language
likeGolog � and have a sophisticated execution monitor
�written by a di�erent� presumably more experienced
programmer� keep the robot on track in its actual ex�
ecution of its program�

In general� we have the following picture� The robot is
executing a program on�line� By this� we mean that it
is physically performing actions in sequence� as these



are speci�ed by the program�� After each execution of
a primitive action or of a program test action� the exe�
cution monitor observes whether an exogenous action
has occurred� If so� the monitor determines whether
the exogenous action can a�ect the successful outcome
of its on�line execution� If not� it simply continues with
this execution� Otherwise� there is a serious discrep�
ancy between what the robot sensed and its internal
world model� Because this discrepancy will interfere
with the further execution of the robot�s program� the
monitor needs to determine corrective action in the
form of another program that the robot should con�
tinue executing on�line instead of its original program�
So we will understand an execution monitor as a mech�
anism that gets output from sensors� compares sensor
measurements with its internal model and� if neces�
sary� produces a new program whose on�line execution
will make things right again�

Our purpose in this paper is to provide a situation
calculus�based account of such on�line program execu�
tions� with monitoring� To illustrate the theory and
implementation� we consider a standard blocks world
as an environment in which a robot is executing a
Golog program to build a suitable tower� The mon�
itor makes use of a simple kind of planner for recov�
ering from malicious exogenous actions performed by
another agent� After the robot performs the sequence
of actions generated by the recovery procedure� the
discrepancy is eliminated and the robot can resume
building its goal tower�

� The Situation Calculus and Golog

The version of the situation calculus that we use here
has been described in �	��� ����� and elsewhere� The
situation calculus is a second order language speci��
cally designed for representing dynamically changing
worlds� All changes to the world are the result of
named actions� A possible world history� which is sim�
ply a sequence of actions� is represented by a �rst order
term called a situation� The constant S� is used to de�
note the initial situation� namely the empty history�
Non�empty histories are constructed using a distin�
guished binary function symbol do� do��� s� denotes
the successor situation to s resulting from performing
the action �� Actions may be parameterized� For ex�
ample� put�x� y� might stand for the action of putting
object x on object y� in which case do�put�A�B�� s�
denotes that situation resulting from placing A on B
when the history is s� In the situation calculus� ac�
tions are denoted by �rst order terms� and situations
�world histories� are also �rst order terms� For exam�
ple� do�putdown�A�� do�walk�L�� do�pickup�A�� S����
is the situation denoting the world history consisting

�We allow nondeterministic programs� so that� even by
itself� this idea of an on�line execution of a program is
problematic� See Section � below�

of the sequence of actions �pickup�A�� walk�L�� put�
down�A��� Notice that the sequence of actions in a his�
tory� in the order in which they occur� is obtained from
a situation term by reading o� the actions from right
to left�

Relations whose truth values vary from situation to
situation are called relational �uents� They are de�
noted by predicate symbols taking a situation term as
their last argument� Similarly� functions whose values
vary from situation to situation are called functional
�uents� and are denoted by function symbols taking
a situation term as their last argument� For exam�
ple� isCarrying�robot� p� s�� meaning that a robot is
carrying package p in situation s� is a relational �u�
ent� location�robot� s�� denoting the location of robot
in situation s� is a functional �uent� For simplicity� we
shall not treat functional �uents in this paper�

To axiomatize the primitive actions and �uents of a
domain of application� one must provide the following
axioms�

	� Action precondition axioms� one for each primi�
tive action A��x�� having the syntactic form

Poss�A��x�� s� � �A��x� s��

where �A��x� s� is a formula with free variables
among �x� s� and whose only situation term is s�
Action precondition axioms characterize �via the
formula �A��x� s�� the conditions under which it
is possible to execute action A��x� in situation s�
In addition to these� one must provide suitable
unique names axioms for actions�

�� Successor state axioms� one for each �uent F � hav�
ing the syntactic form

F ��x� do�a� s�� � �F ��x� a� s��

where �F ��x� a� s� is a formula with free variables
among �x� a� s� and whose only situation term is
s� Successor state axioms embody the solution to
the frame problem of Reiter ��	��


� Axioms describing the initial situation � what is
true initially� before any actions have occurred�
This is any �nite set of sentences that mention
only the situation term S�� or that are situation
independent�

��� Golog

The �traditional� approach to high�level robotic con�
trol is to provide suitable goals� derive plans for achiev�
ing these goals� then have the robot execute these
plans� Planning� however� is known to be compu�
tationally intractable in general� and in any case� is
out of the question for deriving complex behaviors in�
volving many hundreds� and possibly thousands of ac�
tions� The perspective being pursued by the Cogni�
tive Robotics Group at the University of Toronto is
to reduce the reliance on planning for eliciting inter�



esting robot behaviors� and instead provide the robot
with programs written in a suitable high�level language
�	��� in our case� Golog or ConGolog� As presented in
�	 � and extended in ���� Golog is a logic�programming
language whose primitive actions are those of a back�
ground domain theory� Typically Golog programs are
intended to be executed o��line� and then the sequence
of actions returned by this o��line computation is ex�
ecuted on�line� Here we consider a variant of Golog
that is intended to be executed entirely on�line �
�� It
includes the following constructs�

nil� empty program
a� primitive action
��� test the truth of condition �
���� ���� sequence
��� j ���� nondeterministic choice of two

actions
�v��� nondeterministic choice of argument

to an action
��� nondeterministic iteration
proc P ��v� 	 end� procedure with formal

parameters �v and body 	�

In contrast to straight line or partially ordered plans
a Golog program can be arbitrary complex� includ�
ing loops� recursive procedures and nondeterministic
choice�

Example ��� The following is a blocks world Golog
program that nondeterministically builds a tower of
blocks spelling �paris� or �rome�� In turn� the proce�
dure for building a Rome tower nondeterministically
determines a block with the letter �e� that is clear
and on the table� then nondeterministically selects a
block with letter �m� and moves it onto the �e� block�
etc� There is a similar procedure for makeParis� nei�
ther procedure has any parameters�

proc tower makeParis j makeRome endProc�
proc makeRome
� b���e�b�� � ontable�b�� � clear�b���� �
� b��m�b��� �move�b�� b�� �
� b��o�b��� �move�b�� b�� �
� b��r�b��� �move�b�� b��

endProc

proc makeParis
� b���s�b�� � ontable�b�� � clear�b���� �
� b��i�b��� �move�b�� b�� �
� b��r�b��� �move�b�� b�� �
� b��a�b��� �move�b�� b��
� b��p�b��� �move�b�� b��

endProc

As in ���� we associate to programs a transition seman�
tics� i�e� a semantics based on single steps of program
execution� Informally� this semantics declares that as
a program proceeds� a program counter moves from

the very beginning of the program along its interme�
diate states� A con�guration is a pair consisting of a
program state �the part of the original program that
is left to perform� and a situation�

To specify this semantics� we introduce two predicates
Trans and Final�

� Trans��� s� ��� s��� given a program � and a situa�
tion s� tells us which is a possible next step in the
computation� returning the resulting situation s�

and the program �� that remains to be executed�
In other words� Trans��� s� ��� s�� denotes a transi�
tion relation between con�gurations�

� Final��� s� tells us whether a con�guration ��� s�
can be considered �nal� that is whether the com�
putation is completed �no program remains to
be executed�� We have Final�nil� s�� but also
Final���� s� since �� requires � or more repetitions
of � and so it is possible not to execute � at all�
completing the program immediately�

Trans

The predicate Trans is characterized by the following
axioms�

	� Empty program�

Trans�nil� s� ��� s�� � False

�� Primitive actions�

Trans�a� s� ��� s�� � Poss�a� s� � �� ! nil
� s� ! do�a� s�


� Test actions��

Trans���� s� ��� s�� � ��s�� �� ! nil � s� ! s

�� Sequence�

Trans���� ��� s� �
�� s�� � �
�Trans���� s� 
� s�� �

�� ! 
� �� � Final���� s� �Trans���� s� ��� s��

�� Nondeterministic choice�

Trans��� j ��� s� ��� s�� �
Trans���� s� ��� s�� � Trans���� s� ��� s��

�� Pick�

Trans��v��� s� ��� s�� � �x�Trans��vx� s� ��� s�� �

 � Iteration�

Trans���� s� ��� s�� � �
�Trans��� s� 
� s����� ! 
� ��

�We write � to denote a term representing a situation
calculus formula with suppressed situational argument and
��s� to denote the formula with the restored argument� We
assume any standard way of encoding �rst�order situation
calculus formulas�

�Here� �v
x
is the program resulting from substituting x

for v uniformly in ��



The assertions above characterize when a con�gura�
tion ��� s� can evolve �in a single step� to a con�gura�
tion ���� s��� Intuitively they can be read as follows�

	� �nil� s� cannot evolve to any con�guration�

�� �a� s� evolves to �nil� do�a� s��� provided it is pos�
sible to execute a in s� Notice that after having
performed a� nothing remains to be performed�


� ���� s� evolves to �nil� s�� provided that ��s� holds�
Otherwise� it cannot proceed� Notice that in any
case the situation remains unchanged�

�� ���� ��� s� can evolve to ���
�
� ��� s��� provided that

���� s� can evolve to ����� s
��� Otherwise� it can

evolve to ���
�
� s��� provided that ���� s� is a �nal

con�guration and ���� s� can evolve to ���
�
� s���

�� ���j��� s� can evolve to ���� s��� provided that ei�
ther ���� s� or ���� s� can do so�

�� ��v��� s� can evolve to ���� s��� provided that there
exists an x such that ��vx� s� can evolve to ���� s���

 � ���� s� can evolve to ���� ��� s�� provided that ��� s�
can evolve to ���� s��� Observe that ���� s� can
also not evolve at all� because ���� s� is �nal by
de�nition �see below��

To simplify the discussion� we have omitted axioms
for procedures� These can be found in the extended
version of ����

Final

The predicate Final is characterized by the following
axioms�

	� Empty program�

Final�nil� s� � True

�� Primitive action�

Final�a� s� � False


� Test action�

Final���� s� � False

�� Sequence�

Final���� ��� s� � Final���� s� � Final���� s�

�� Nondeterministic choice�

Final��� j ��� s� � Final���� s� � Final���� s�

�� Pick�

Final��v��� s� � �x�Final��vx� s�
 � Iteration�

Final���� s� � True

Trans� and Do

The possible con�gurations that can be reached by a
program � starting in a situation s are those obtained
by following repeatedly the transition relation denoted
by Trans starting from ��� s�� i�e� those in the re�exive
transitive closure of the transition relation� Such a
relation� denoted by Trans�� is de�ned as the �second�
order� situation calculus formula�

Trans���� s� ��� s�� � �T �� � � � T ��� s� ��� s���

where � � � stands for the conjunction of the universal
closure of the following two sentences�

T ��� s� �� s�
Trans��� s� ���� s��� � T ����� s��� ��� s�� � T ��� s� ��� s��

Using Trans� and Final we can give a new de�nition
of the Do relation of �	 � as�

Do��� s� s�� � ����Trans���� s� ��� s�� � Final���� s���

In other words� Do��� s� s�� holds i� it is possible to
repeatedly single�step the program �� obtaining a pro�
gram �� and a situation s� such that �� can legally
terminate in s��

� On vs� O��Line Golog Interpreters

Before describing our approach to execution monitor�
ing� we must �rst distinguish carefully between on�
line and o��line Golog interpreters�� The relation
Do�
� s� s�� means that s� is a terminating situation
resulting from an execution of program 
 beginning
with situation s� This relation has a natural Prolog
implementation in terms of the one�step interpreter
trans�

offline�Prog�S��Sf� 	
 final�Prog�S��� S� � Sf �
trans�Prog�S��Prog��S���
offline�Prog��S��Sf��

A Brave On�Line Interpreter

The di�erence between on� and o��line interpretation
of a Golog program is that the former must select a
�rst action from its program� commit to it �or� in the
physical world� do it�� then repeat with the rest of the
program� The following is such an interpreter�

online�Prog�S��Sf� 	
 final�Prog�S��� S� � Sf �
trans�Prog�S��Prog��S��� 
� Select a first

action of Prog� �

�� 
� Commit to this action� �

online�Prog��S��Sf��

�An on�line interpreter based on Trans and Final was
originally proposed in �	� to give an account of Golog 
Con�
Golog programs with sensing actions� Here we make use
of a simpli�ed on�line interpreter that does not deal with
sensing actions� but is suitable for coupling with an execu�
tion monitor�



The on and o��line interpreters di�er only in the lat�
ter�s use of the Prolog cut �"� to prevent backtracking
to trans to select an alternative �rst action of Prog��

The e�ect is to commit to the �rst action selected by
trans� We need this because a robot cannot undo any
actions that it has actually performed in the physical
world� It is this commitment that quali�es the clause
to be understood as on�line interpreter� We refer to it
as brave because it may well reach a dead�end� even if
the program it is interpreting has a terminating situ�
ation�

A Cautious On�Line Interpreter

To avoid the possibility of following dead�end paths�
one can de�ne a cautious on�line interpreter as follows�

online�Prog�S��Sf� 	
 final�Prog�S��� S� � Sf �
trans�Prog�S��Prog��S��� 
� Select a first

action of Prog� �

offline�Prog��S��S��� 
� Make sure the rest

of Prog terminates� �

�� 
� Commit to this action� �

online�Prog��S��Sf��

This is much more cautious than its brave counter�
part� it commits to a �rst action only if that action is
guaranteed to lead to a successful o��line termination
of the program� Provided this program has a termi�
nating situation� a cautious on�line interpreter never
reaches a dead�end�

A cautious on�line interpreter appeals to the o��
line execution of the robot�s program �in the process
of guaranteeing that after committing to a program
action� the remainder of the program terminates��
Therefore� this requirement precludes cautious inter�
pretation of robot programs that appeal to sensing
actions �	��� since such actions cannot be performed
o��line�� Because the brave interpreter never looks
ahead� it is suitable for programs with sense actions�
The price it pays for this is a greater risk of following
dead�end paths�

Committing to an action is an intrinsically procedural
notion� and so it is highly desirable� in any logical ap�
proach to modeling dynamical systems� to very tightly
delimit where in the theory and implementation this
nonlogical notion appears� In our case� we can point
to the Prolog cut operator in the above on�line in�
terpreters as the exact point at which the procedural
notion of commitment is realized�

The above interpreters are implemented in Prolog� and
are lifted directly from Final� Trans� and Do intro�
duced above� Such interpreters require that the do�
main speci�c action precondition and successor state

�Keep in mind that Golog programs may be
nondeterministic�

�However� one could imagine a cautious interpreter that
veri�es o��line that the program terminates for all possible
outcomes of its sensing actions� Even better� perhaps the
programmer has already proved this�

axioms� and axioms about the initial situation� be ex�
pressible as Prolog clauses� Therefore� our implemen�
tation inherits Prolog�s Closed World Assumption� but
this is a limitation of the implementation� not the gen�
eral theory� The full version of the cautious on�line
interpreter can be found in �	���

� Execution Monitoring of Golog
Programs

In this section we give a situation calculus speci�ca�
tion for the behavior of a Golog program under the
in�uence of an execution monitor� We �rst provide
a very general framework� without committing to any
particular details of the monitor� Then we describe
one speci�c monitor that forms the basis for the im�
plementation of Section � below�

��� The General Framework

Here we discuss how on�line interpretation of Golog
programs can be combined with a monitor� We imag�
ine that after executing a primitive action or evaluat�
ing a test condition� a robot compares its mental world
model with reality� We assume that all discrepancies
between the robot�s mental world and reality are the
result of exogenous actions� and moreover� that the
robot observes all such actions�� It will be the ex�
ecution monitor that observes whether an exogenous
action has changed the values of one or several �u�
ents and� if necessary� recovers from this unanticipated
event� This cycle of on�line interpreting� sensing and
recovering �if necessary� repeats until the program ter�
minates�

Just as we speci�ed a semantics� via Trans� for Golog
programs in Section ��	� we want now to specify such

�A similar idealization about the observability of all ex�
ogenous events is a common assumption in discrete event
control theory �e�g� �
�� ���� On the face of it� this idealiza�
tion seems dubious in practice� One can argue convincingly
that agents never observe action occurrences � Fido ate the
sandwich � only their e�ects � The sandwich is no longer
on the table� One can reconcile both points of view by sup�
posing that instead of directly sensing exogenous actions�
the robot can sense only the truth values of certain �uents�
One can then introduce a set of new �ctitious actions� one
for each such �uent� whose e�ects are to alter their cor�
responding �uents� truth values� The robot can compute�
from its successor state axioms� what �uents hold in its
mental world� Now� when the robot observes the values of
some its �uents in the physical world� it compares them
with their values in its mental world� all discrepancies� if
any� can be determined directly� Then� it can determine
which �ctitious actions must have �occurred� to account
for the observed discrepancies between the physical world
and the robot�s mental world� It is these �inferred� �cti�
tious actions that assume the role of the observable exoge�
nous actions mentioned above�



a semantics for Golog programs with execution mon�
itoring� Our de�nition will parallel that of Section
��	� This closed�loop system �online interpreter and
execution monitor� is characterized formally by a new
predicate symbol TransEM ��� s� ��� s��� describing a
one�step transition consisting of a single Trans step of
program interpretation� followed by a process� called
Monitor� of execution monitoring� The role of the ex�
ecution monitor is to get new sensory input in the form
of an exogenous action and �if necessary� to generate
a program to counter�balance any perceived discrep�
ancy� As a result of all this� the system passes from
con�guration ��� s� to con�guration ���� s�� speci�ed as
follows�

TransEM ��� s� ��� s�� � ����� s���T rans��� s� ���� s��� �
Monitor����� s��� ��� s���

This is a brave version of TransEM � Its cautious
counterpart is�

TransEM ��� s� ��� s�� � ����� s���T rans��� s� ���� s��� �
�s����Do����� s��� s���� �Monitor����� s��� ��� s���

The possible con�gurations that can be reached by
a program � from a situation s with execution mon�
itoring are those obtained by repeatedly following
TransEM transitions� i�e� those in the re�exive tran�
sitive closure of this relation�

As we did for implementing on�line Golog interpreters
�Section 
�� we can now describe brave and cautious
versions of on�line Golog interpreters with execution
monitoring�

Brave On�Line Execution Monitor

onlineEM�Prog�S��Sf� 	
 final�Prog�S��� S� � Sf �
trans�Prog�S��Prog��S���
��
monitor�Prog��S��Prog��S��� ��
onlineEM�Prog��S��Sf��

Cautious On�Line Execution Monitor

onlineEM�Prog�S��Sf� 	
 final�Prog�S��� S� � Sf �
trans�Prog�S��Prog��S���
offline�Prog��S��S��
��
monitor�Prog��S��Prog��S��� ��
onlineEM�Prog��S��Sf��

Next� we focus on the monitor� Let exo be an exoge�
nous event� which might be as simple as a primitive
action� or as complex as an arbitrary Golog program�
We specify the behavior of our generic monitor by�

Monitor��� s� ��� s�� � �exo�Do�exo� s� s�� �
��Relevant��� s� s�� � �� ! � �
Relevant��� s� s�� �Recover��� s� s�� �����

Here� Relevant��� s� s�� is a predicate that speci�es
whether the discrepancy between s and s� is relevant
in the current state � of the program� If this discrep�
ancy does not matter � �Relevant��� s� s�� � then the

execution monitor takes no action � �� ! �� Other�
wise� the monitor should recover from the exogenous
action� The predicate Recover��� s� s�� ��� provides for
this by determining a new program� ��� whose execu�
tion in situation s� is intended to achieve an outcome
equivalent �in a sense left open for the moment� to that
of program �� had the exogenous event not occurred�

A wide range of monitors can be achieved by de�ning
Relevant and Recover in di�erent ways� In the next
section we elaborate on one such choice� one that will
form the basis of the implementation of Section ��

��� A Speci�c Monitor

Now we develop a simple realization of the above
general framework� by �xing on particular predicates
Relevant and Recover�

We begin by assuming that for each application do�
main a programmer provides�

	� The speci�cation of all primitive actions �robot�s
and exogenous� and their e�ects� together with
an axiomatization of the initial situation� as de�
scribed in Section ��

�� A Golog program that may or may not take into
account exogenous actions occurring when the
robot executes the program� We shall assume that
this program has a particular form� one that takes
into account the programmer�s goal in writing it�
Speci�cally� we assume that along with her pro�
gram� the programmer provides a �rst order sen�
tence describing the program�s goal� or what pro�
grammers call a program postcondition� We as�
sume further that this postcondition is post�xed
to the program� In other words� if � is the original
program� and goal is its postcondition� then the
programwe shall be dealing with in this paper will
be � � goal�� This may seem a useless thing to do
whenever � is known to satisfy its postconditions�
but as we shall see below� our approach to execu�
tion monitoring will change �� and we shall need
a guarantee that whenever the modi�ed program
terminates� it does so in a situation satisfying the
original postcondition�

Next�
we take Relevant��� s� s�� to be ��s��Do��� s�� s���� so
that the de�nition ���� of Monitor becomes�

Monitor��� s� ��� s�� � �exo�Do�exo� s� s�� �
��s��Do��� s�� s��� � �� ! � �

��s��Do��� s�� s��� �Recover��� s� s�� �����

Monitor checks for the existence of an exogenous pro�
gram� determines the situation s� reached by this pro�
gram� and if the monitored program � terminates o��
line� the monitor returns �� else it invokes a recovery
mechanism to determine a new program ��� Therefore�
Monitor appeals to Recover only as a last resort� it



prefers to let the monitored program keep control� so
long as this is guaranteed to terminate o��line in a
situation where the program�s goal holds� �Remem�
ber that this goal has been post�xed to the original
program� as described in � above��

It only remains to specify the
predicate Recover��� s� s�� ��� that is true whenever �
is the current state of the program being monitored� s
is the situation prior to the occurrence of the exoge�
nous program� s� is the situation after the exogenous
event� and �� is a new program to be executed on�line
in place of �� beginning in situation s�� We adopt the
following speci�cations of Recover� it forms the basis
of the implementation to be described later�

Recover��� s� s� � ��� �
�p�straightLineProg�p� �
�s���Do�p � �� s�� s��� � �� ! p � � �
��p�� s���straightLineProg�p���Do�p� � �� s�� s��� �

length�p� 	 length�p����

Here� the recovery mechanism is conceptually quite
simple� it determines a shortest straight�line program
p such that� when pre�xed onto the program �� yields
a program that terminates o��line� This is quite easy
to implement� in its simplest form� simply generate all
length one pre�xes� test whether they yield a terminat�
ing o��line computation� then all length two pre�xes�
etc� until one succeeds� or some complexity bound
is exceeded�	 Notice that here we are appealing to
the assumption � above that all monitored programs
are post�xed with their goal conditions� We need
something like this because the recovery mechanism
changes the program being monitored� by adding a
pre�x to it� The resulting program may well termi�
nate� but in doing so� it may behave in ways unin�
tended by the programmer� But so long as the goal
condition has been post�xed to the original program�
all terminating executions of the altered program will
still satisfy the programmer�s intentions�

One disadvantage of the above recovery mechanism is
that it will not recognize instances of exogenous events
that happen to help in achieving the goal condition�
In the extreme case of this� an exogenous event might
create a situation that actually satis�es the goal� The
above recovery procedure� being blind to such possi�
bilities� will unthinkingly modify the current program
state by pre�xing to it a suitable plan� and execute
the result� despite the fact that in reality� it is already
where it wants to be� In e�ect� the recovery procedure
has a built�in assumption that all exogenous events�
if not neutral with respect to achieving the goal� are
malicious�

�One can imagine much more sophisticated realizations
of this simple idea that make use of the actions performed
by exo� but we do not pursue this topic here�

	 An Implementation

The above theory of execution monitoring is supported
by an implementation� in Prolog� that we demonstrate
here for the blocks world program of Example ��	�
We use the cautious on�line monitor of Section ��	�
and a straightforward implementation ofMonitor and
straightLineProg�p�� The Prolog code is provided in
�	���

	�� A Blocks World Example

In this section� the blocks world is axiomatized with
successor state and action precondition axioms� We
use the following function and predicate constants�

Actions

� move�x� y�� Move block x onto block y� provided
both are clear�

� moveToTable�x�� Move block x onto the table�
provided x is clear and is not on the table�

Fluents

� On�x� y� s�� Block x is on block y� in situation s�

� Clear�x� s�� Block x has no other blocks on top
of it� in situation s�

� Ontable�x� s�� Block x is on the table in s�

Other predicate constants

The predicates R�b�� O�b�� M �b�� E�b�� P �b�� A�b��
I�b�� S�b� are true when their arguments are blocks
with the corresponding letters on them�

Successor state axioms

On�x� y� do�a� s�� � a ! move�x� y� �On�x� y� s��
a 
! moveToTable�x� � ���z�a ! move�x� z��

Ontable�x� do�a� s�� � a ! moveToTable�x��
Ontable�x� s� � ���y�a ! move�x� y��

Clear�x� do�a� s�� � ��y� z��� a ! move�y� z��
a ! moveToTable�y�� � �On�y� x� s��

Clear�x� s� � ���w�a ! move�w� x��

Action precondition axioms

Poss�move�x� y�� s� � Clear�x� s��
Clear�y� s� � x 
! y�

Poss�moveToTable�x�� s� � Clear�x� s��
�Ontable�x� s��

Unique names axioms for actions

move�x� y� 
! moveToTable�x�

move�x� y� ! move�x�� y�� � x ! x� � y ! y�

moveToTable�x� ! moveToTable�x�� � x ! x�



In our example� the initial situation is such that all
blocks are on the table and clear �see Figure 	�� There
is no block with the letter �p�
� but there are several
blocks with letters for spelling �aris� and �rome�� as
well as blocks with letters �n� and �f� �which are irrel�
evant to building a tower spelling �rome� or �paris���

r o m e a i s n f ����

Figure 	� Part of the initial situation�

The program goal is�

Goal�s� � SpellsParis�s� � SpellsRome�s��

SpellsRome�s� � ��b�� b�� b�� b���
R�b�� �O�b�� �M �b�� �E�b�� �

Ontable�b�� s� �On�b�� b�� s� �
On�b�� b�� s� �On�b�� b�� s� �Clear�b�� s��

SpellsParis�s� � ��b�� b�� b�� b�� b���
P �b�� �A�b�� �R�b�� � I�b�� � S�b�� �

Ontable�b�� s� �On�b�� b�� s� �On�b�� b�� s� �
On�b�� b�� s� �On�b�� b�� s� � clear�b�� s��

r�

o�

m�

e�

Figure �� A goal arrangement of blocks�

Figure � represents an arrangement of blocks that sat�
is�es the program goal�

An implementation� in Eclipse Prolog� is provided in
�	���

	�� An Execution Trace

The original procedure tower is very simple and was
not designed to respond to external disturbances of
any kind� However� as the trace demonstrates� the ex�
ecution monitor is able to produce fairly sophisticated
behavior in response to unforeseen exogenous events�

In Golog� tests do not change the situation� but all
other primitive actions do� Each time the program
performs a primitive action or evaluates a test� an ex�
ogenous program may occur� In the example below�
any sequence of actions that is possible in the current
situation can be performed by an external agent� This

	We selected this arrangement intentionally to illustrate
the di�erence between cautious and brave interpreters�

is realized in the implementation by interactively ask�
ing the user to provide exogenous events after each
elementary program operation �test or primitive ac�
tion��

The following is an annotated trace of the �rst several
steps of our implementation for this blocks world set�
ting� We use this font for the actual output of the
program and italics for states of the Golog program
tower of Example ��	� The symbol ��� in the Prolog
implementation of the interpreter corresponds to se�
quential composition ��� in Golog and Prolog�s term
�pi� corresponds to � in Golog� etc�

�eclipse� onlineEM��tower 	 ��goal��� s�� S��

Program state � �nil	 pi�b����m�b��� 	 move�b��e��	
pi�b����o�b��� 	 move�b��b�� 	 pi�b����r�b��� 	

move�b��b������ 	 ��goal�
Current situation	 s�

The cautious interpreter �rst tried to execute
makeParis o��line� This failed because there is no
�p� block� It then proceeded with makeRome��� Ac�
cording to the implementation of a cautious on�line
interpreter �see section 
�� Trans does the �rst step of
makeRome�

� b���e�b�� � ontable�b�� � clear�b���� �

by determining that the block e� will be the base of a
goal tower� The remainder of the program �the �pro�
gram state� in the output above� is the following�

nil �
� b��m�b��� �move�b�� e	� �

� b��o�b��� �move�b�� b�� �
� b��r�b��� �move�b�� b�� � �goal��

where nil results after the �rst step �see axioms of
Trans for �v�� and ����

�Enter	 an exogenous program or noOp if none occurs�
move�n�m�� 	 move�f�n� 	 move�i��o���

No recovery necessary� Proceeding with the next
step of program�

Program state � �nil 	 move�m�� e�� 	
pi�b�� ��o�b��� 	 move�b�� m�� 	

pi�b�� ��r�b��� 	 move�b�� b����� 	 ��goal�
Current situation	 do�move�i�� o��� do�move�f� n��

do�move�n� m��� s����

The �rst exogenous program covered blocks m�� n and
o� �see Fig� 
�� but the remaining program

nil �
move�m� � e�� �

p

�
A brave interpreter would have eventually failed� with�
out even trying makeRome�



� b��o�b��� �move�b��m�� �
� b��r�b��� �move�b�� b�� � ��goal�

can still be successfully completed because there re�
main enough uncovered blocks of the right kind to
construct �rome�� so it continues�

�Enter	 an exogenous program or noOp if none occurs�
move�i��o�� 	 move�r��o���

Start recovering���

New program � moveToTable�r�� 	
�nil 	 move�m��e�� 	 pi�b����o�b��� 	

move�b��m�� 	 pi�b����r�b��� 	
move�b��b����� 	 ��goal�

Current situation	 do�move�r��o���do�move�i��o���
do�move�i��o��� do�move�f�n��

do�move�n�m���s������

After the second exogenous program move�i��o�� �
move�r	�o	�� all three blocks with letter �o� are cov�
ered �see Figure ���

Because it is not possible to move blocks o�� o�� o�
�by the precondition axiom for move�x� y��� the re�
maining program cannot be completed� Hence� the
Monitor gives control to Recover that� with the
help of the planner straightLineProg�p�� determines
a shortest corrective sequence p of actions �namely
moveToTable�r	�� in order to allow the program to
resume� and pre�xes this action to the previous pro�
gram state�

moveToTable�r�� � nil �
move�m�� e�� �
� b��o�b��� �move�b��m�� �
� b��r�b��� �move�b�� b�� � ��goal�

From this point on� the on�line evaluation continues
by doing one step of the new program� If after that�
no exogenous disturbances occur during the next two
steps of the execution of this new program� it will reach
the following program state�

nil �
move�o��m�� �
� b��r�b��� �move�b�� o�� � ��goal�

�	�

�

r� r� o� o� o� m�m� e� e�

n

f

i�

����

Figure 
� The �rst exogenous disturbance occurred
when the program was ready to movem� on top of e��

�

r�

r�

o� o� o� m�m� e� e�

n

f

i�i�

����

Figure �� The second exogenous disturbance�
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f
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Figure �� The pile of blocks covers the block o��

Let assume that at this point a third exogenous pro�
gram occurs �see Figure ���

�Enter	 an exogenous program or noOp if none occurs�
move�a��o�� 	 move�r��a�� 	 move�r��r���

Start recovering���
New program � �moveToTable�r�� 	

moveToTable�r�� 	 moveToTable�a��� 	
�nil 	 move�o�� m�� 	 pi�b�� ��r�b��� 	

move�b�� o���� 	 ��goal�

Program state � �nil 	 moveToTable�r�� 	
moveToTable�a��� 	 �nil 	 move�o�� m�� 	

pi�b�� ��r�b��� 	 move�b�� o���� 	 ��goal�

Current situation	 do�moveToTable�r���
do�move�r�� r��� do�move�r�� a���
do�move�a�� o��� do�move�m�� e���
do�moveToTable�r��� do�move�r�� o���
do�move�i�� o��� do�move�i�� o���
do�move�f�n�� do�move�n�m��� s������������

The recovery procedure determined that the se�
quence of three corrective actions moveToTable�r	��
moveToTable�r��� moveToTable�a�� will lead to a
situation where the program �	� can be resumed� and
moreover� this is a shortest such correction� If no other
exogenous actions happen� the program will eventu�
ally successfully terminate� having built a tower for
�rome��


 Correctness Properties for
Execution Monitors

With de�nitions for TransEM and Monitor� as in
Section ��	� it becomes possible to formulate� and ulti�
mately prove� various correctness properties for execu�
tion monitors� These properties are intended to cap�
ture suitable concepts of controllability following the



intuition behind similar concepts introduced for dis�
crete event systems ����� Informally� controllability is
the property that characterizes a closed�loop system
�a Golog program coupled with the execution moni�
tor�� this is the ability of a monitored program to be�
have correctly even if exogenous actions occur during
the robot�s execution of the program� There are many
possible de�nitions� with varying degrees of generality�
of what counts as correct behavior of a monitored sys�
tem� We focus here on various correctness properties
one might want to prove of the monitor�

Recall that the general execution monitor� as speci�ed
by ����� is the relation Monitor��� s� s�� ���� meaning
that whenever � is the state of monitored program in
situation s� and s� is a situation resulting from an ex�
ogenous event occurrence at s� then the on�line exe�
cution should resume in s� with the new program ���
Then� by analogy with Floyd�Hoare style correctness
and termination properties� we can formulate a variety
of veri�cation tasks� some examples of which we now
describe� These are parameterized by two predicates�

	� P �s�� a desirable property that a terminating sit�
uation s must satisfy� For example� P might de�
scribe a postcondition of the program being mon�
itored�

�� Q��� s� s��� a relationship between the current pro�
gram state � and s� the current situation� and s��
the situation resulting from an exogenous event
occurring in s� For example�Qmight express that
� terminates o��line when executed in s and also
when executed in s��

Weak Termination and Correctness

���� s� s���Q��� s� s�� �
Monitor��� s� s�� ��� � ��s����Do���� s�� s��� � P �s����

The task here is to verify that� under condition Q�
whenever Monitor determines a new program with
which to resume the system computation after an ex�
ogenous event occurrence� that program has a termi�
nating �o��line� computation resulting in a �nal situ�
ation in which P holds�

Strong Termination and Correctness

���� s� s���Q��� s� s�� � ������Monitor��� s� s�� ��� �
��s����Do���� s�� s��� � P �s����

Under condition Q� Monitor always determines a new
program with which to resume the system computa�
tion after an exogenous event occurrence� and that pro�
gram has a terminating �o��line� computation result�
ing in a �nal situation in which P holds�

Even Stronger Termination and Correctness

���� s� s���Q��� s� s�� �
������Monitor��� s� s�� ��� � ��s����Do���� s�� s��� �

��s����Do���� s�� s��� � P �s����

Here� the correctness property is that under condition

Q� Monitor always determines a new program that
terminates o��line� and all these terminating situations
satisfy P �

It is also possible to formulate various correctness
properties for the entire monitored system� for exam�
ple� the weak property that provided the monitored
program terminates� then it does so in a desirable sit�
uation�

���� s� s���T ransEM���� s� nil� s�� � P �s���

where TransEM� is the transitive closure of
TransEM �

Other variations on the above themes are possible� but
our purpose here is not to pursue these issues in depth�
but simply to point out that correctness properties for
monitored systems are easily formulated within our
framework� Moreover� because this framework is en�
tirely within the situation calculus� such correctness
proofs can be constructed totally within a classical
logic�

� Discussion

There are several systems designed to interleave mon�
itoring with plan execution� PLANEX � �� IPEM �	��
ROGUE �	
�� SPEEDY �
�� We di�er from these and
similar proposals� �rst by the formal neatness of our
approach� secondly by the fact that ours is a story
for monitoring arbitrary programs� not simply straight
line or partially ordered plans� Moreover� we do not
assume that the monitored plan is generated automati�
cally from scratch� but rather that it has been provided
by a programmer�

In a sequence of papers ���� ��� � � Schoppers pro�
poses and defends the idea of �universal plans�� which
�address the tension between reasoned behavior and
timely response by caching reactions for classes of pos�
sible situations�� From our point of view� the notion
of a universal plan is closely related to the notion of
controllable languages developed for discrete event sys�
tems control ����� There� a language �a set of linear
plans� is controllable i� the e�ects of all possible un�
controllable events do not lead outside the set of plans
that this language contains� In other words� just as
for Schoppers� all required system reactions to pos�
sible contingencies are compiled into the controllable
language� Our framework is di�erent� but complemen�
tary� it favors the on�line generation of appropriate
reactions to exogenous events� as opposed to precom�
piling them into the Golog program� ConGolog ��� 
�
is a much richer version of Golog that supports con�
currency� prioritized interrupts and exogenous actions�
Reactive behaviors are easily representable by Con�
Golog�s interrupt mechanism� so that a combination of
reactive behaviors with �deliberative� execution moni�
toring is possible� This would allow one to experiment
with di�erent mixtures of execution monitoring and



reactivity� with the advantage of preserving the uni�
fying formal framework of the situation calculus� but
this remains an open research problem�

The theory of embedded planning ��
� 	�� 
�� intro�
duces notions of planning with failure and has motiva�
tions very similar to ours� The authors propose several
formal languages that� like Golog� include constructs
for sequence� conditionals� loops and recursion� The
emphasis is on reactive programs� but their proposal
does provide for replanning during execution�

Several authors rely on formal theories of actions for
the purposes of characterizing appropriate notions of
action failures ��� ���� but they do not consider execu�
tion monitoring per se�

Perhaps the most sophisticated existing plan execution
monitor is the XFRM system of Beetz and McDermott
��� ��� This provides for the continual modi�cation of
robot plans �programs� during their execution� using a
rich collection of failure models and plan repair strate�
gies� Nothing in our proposal so far can rival the func�
tionality of the XFRM system� The primary objective
of our approach is to provide compact� declarative rep�
resentations for the entire process of execution� mon�
itoring and recovery from failure� and this paper has
presented our framework for this research program� It
remains to see whether the logical purity of our ap�
proach will pay o� with clear� analyzable speci�cations
that lead to implementations rivaling that of XFRM�

� Conclusions and Future Work

We have presented a very general� situation calculus�
based account of execution monitoring for high�level
robot programs� and illustrated the theory with an im�
plementation �in simulation mode� of a speci�c mon�
itor� The approach has the advantage of being com�
pletely formal� and therefore is suitable for formulat�
ing� and ultimately proving� correctness properties for
monitored systems�

Plans for ongoing and future work include the follow�
ing issues�

	� Draw closer parallels with the concept of con�
trollable systems in discrete event control theory
���� �� 	���

�� Explore realizations of execution monitors di�er�
ent than that presented in Section ��� �����


� Investigate techniques for proving correctness
properties of various monitors and monitored sys�
tems�

�� Investigate the concept of execution monitoring
for non�terminating Golog programs �		��

�� Extend these ideas to temporal domains� for ex�
ample� monitoring robot control programs written
in sequential� temporal Golog ��
��

�� Implement these ideas on the Cognitive Robotics
Group�s RWI B�	 autonomous robot at the Uni�
versity of Toronto�
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