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Abstract

Imagine a robot that is executing a program
on-line, and, insofar as it is reasonable to do
so, 1t wishes to continue with this on-line
program execution, no matter what exoge-
nous events occur in the world. FEzecution
monitoring is the robot’s process of observ-
ing the world for discrepancies between the
actual world and its internal representation
of it, and recovering from such discrepancies.

We provide a situation calculus-based ac-
count of such on-line program executions,
with monitoring. This account relies on a
specification for a single-step interpreter for
the logic programming language Golog . The
theory is supported by an implementation
that is illustrated by a standard blocks world
in which a robot is executing a Golog pro-
gram to build a suitable tower. The moni-
tor makes use of a simple kind of planner for
recovering from malicious exogenous actions
performed by another agent. After perform-
ing the sequence of actions generated by the
recovery procedure, the robot eliminates the
discrepancy and resumes executing its tower-
building program.

We also indicate how, within the formalism,
one can formulate various correctness prop-
erties for monitored systems.

1 Introduction and motivation.

Imagine a robot that is executing a program on-line,
and, insofar as it is reasonable to do so, it wishes to
continue with this on-line program execution, no mat-
ter what exogenous events occur in the world. An ex-
ample of this setting, which we treat in this paper, is
a robot executing a program to build certain towers
of blocks in an environment inhabited by a (some-
times) malicious agent who might arbitrarily move
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some block when the robot is not looking. The robot
i1s equipped with sensors, so it can observe when the
world fails to conform to its internal representation of
what the world would be like in the absence of ma-
licious agents. What could the robot do when it ob-
serves such a discrepancy between the actual world
and its model of the world? There are (at least) three
possibilities:

1. It can give up trying to complete the execution of
its program.

2. Tt can call on its programmer to give it a more so-
phisticated program, one that anticipates all pos-
sible discrepancies between the actual world and
its internal model, and that additionally instructs
it what to do to recover from such failures.

3. It can have available to it a repertoire of gen-
eral failure recovery methods, and invoke these
as needed. One such recovery technique involves
planning; whenever it detects a discrepancy, the
robot computes a plan that, when executed, will
restore the state of the world to what it would
have been had the exogenous action not occurred.
Then it executes the plan, after which 1t resumes
execution of its program.

FErecution monitoring is the robot’s process of observ-
ing the world for discrepancies between “physical re-
ality”, and its “mental reality”, and recovering from
such perceived discrepancies. The approach to execu-
tion monitoring that we take in this paper is option 3
above. While option 2 certainly is valuable and impor-
tant, we believe that it will be difficult to write pro-
grams that take into account all possible exceptional
cases. It will be easier (especially for inexperienced
programmers) to write simple programs in a language
like Golog , and have a sophisticated execution monitor
(written by a different, presumably more experienced
programmer) keep the robot on track in its actual ex-
ecution of its program.

In general, we have the following picture: The robot is
executing a program on-line. By this, we mean that it
is physically performing actions in sequence, as these



are specified by the program.! After each execution of
a primitive action or of a program test action, the exe-
cution monitor observes whether an exogenous action
has occurred. If so, the monitor determines whether
the exogenous action can affect the successful outcome
of its on-line execution. If not, it simply continues with
this execution. Otherwise, there is a serious discrep-
ancy between what the robot sensed and its internal
world model. Because this discrepancy will interfere
with the further execution of the robot’s program, the
monitor needs to determine corrective action in the
form of another program that the robot should con-
tinue executing on-line instead of its original program.
So we will understand an execution monitor as a mech-
anism that gets output from sensors, compares sensor
measurements with its internal model and, if neces-
sary, produces a new program whose on-line execution
will make things right again.

Our purpose in this paper i1s to provide a situation
calculus-based account of such on-line program execu-
tions, with monitoring. To illustrate the theory and
implementation, we consider a standard blocks world
as an environment in which a robot is executing a
Golog program to build a suitable tower. The mon-
itor makes use of a simple kind of planner for recov-
ering from malicious exogenous actions performed by
another agent. After the robot performs the sequence
of actions generated by the recovery procedure, the
discrepancy 1s eliminated and the robot can resume
building its goal tower.

2 The Situation Calculus and Golog

The version of the situation calculus that we use here
has been described in [18], [22], and elsewhere. The
situation calculus is a second order language specifi-
cally designed for representing dynamically changing
worlds. All changes to the world are the result of
named actions. A possible world history, which is sim-
ply a sequence of actions, is represented by a first order
term called a situation. The constant Sy is used to de-
note the nitial situation, namely the empty history.
Non-empty histories are constructed using a distin-
guished binary function symbol do; do(«, s) denotes
the successor situation to s resulting from performing
the action «. Actions may be parameterized. For ex-
ample, put(x,y) might stand for the action of putting
object # on object y, in which case do(put(A, B),s)
denotes that situation resulting from placing A on B
when the history is s. In the situation calculus, ac-
tions are denoted by first order terms, and situations
(world histories) are also first order terms. For exam-
ple, do(putdown(A), do(walk(L), do(pickup(A), So)))

is the situation denoting the world history consisting

'"We allow nondeterministic programs, so that, even by
itself, this idea of an on-line execution of a program is
problematic. See Section 3 below.

of the sequence of actions [pickup(A), walk(L), put-
down(A)]. Notice that the sequence of actions in a his-
tory, in the order in which they occur, is obtained from
a situation term by reading off the actions from right
to left.

Relations whose truth values vary from situation to
situation are called relational fluents. They are de-
noted by predicate symbols taking a situation term as
their last argument. Similarly, functions whose values
vary from situation to situation are called functional
fluents, and are denoted by function symbols taking
a situation term as their last argument. For exam-
ple, isCarrying(robot, p, s), meaning that a robot is
carrying package p in situation s, is a relational flu-
ent; location(robot, s), denoting the location of robot
in situation s, 1s a functional fluent. For simplicity, we
shall not treat functional fluents in this paper.

To axiomatize the primitive actions and fluents of a
domain of application, one must provide the following
axioms:

1. Action precondition axioms, one for each primi-
tive action A(Z), having the syntactic form

Poss(A(Z),s) =4 (Z, s),

where T4 (%, s) is a formula with free variables
among ¥, s, and whose only situation term is s.
Action precondition axioms characterize (via the
formula TI4(Z, s)) the conditions under which it
is possible to execute action A(Z) in situation s.
In addition to these, one must provide suitable
unique names axioms for actions.

2. Successor state axioms, one for each fluent F', hav-
ing the syntactic form

F(Z,do(a,s)) = ®p(Z,a,s),

where ®p(Z, a,s) is a formula with free variables
among Z,a, s, and whose only situation term is
s. Successor state axioms embody the solution to
the frame problem of Reiter [21].

3. Axioms describing the initial situation — what is
true initially, before any actions have occurred.
This 1s any finite set of sentences that mention
only the situation term Sy, or that are situation
independent.

2.1 Golog

The “traditional” approach to high-level robotic con-
trol 1s to provide suitable goals, derive plans for achiev-
ing these goals, then have the robot execute these
plans. Planning, however, is known to be compu-
tationally intractable in general, and in any case, is
out of the question for deriving complex behaviors in-
volving many hundreds, and possibly thousands of ac-
tions. The perspective being pursued by the Cogni-
tive Robotics Group at the University of Toronto is
to reduce the reliance on planning for eliciting inter-



esting robot behaviors, and instead provide the robot
with programs written in a suitable high-level language
[16], in our case, Golog or ConGolog. As presented in
[17] and extended in [8], Golog is a logic-programming
language whose primitive actions are those of a back-
ground domain theory. Typically Golog programs are
intended to be executed off-line, and then the sequence
of actions returned by this off-line computation is ex-
ecuted on-line. Here we consider a variant of Golog
that is intended to be executed entirely on-line [9]. Tt
includes the following constructs:

nil, empty program
a, primitive action
@7, test the truth of condition ¢
(015 62), sequence
(01 | d2), nondeterministic choice of two

actions
mv.d, nondeterministic choice of argument

to an action
nondeterministic iteration
procedure with formal
parameters ¥ and body 5.

3,
proc P(¥) 3 end,

In contrast to straight line or partially ordered plans
a Golog program can be arbitrary complex, includ-
ing loops, recursive procedures and nondeterministic
choice.

Example 2.1 The following is a blocks world Golog
program that nondeterministically builds a tower of
blocks spelling “paris” or “rome”. In turn, the proce-
dure for building a Rome tower nondeterministically
determines a block with the letter “e¢” that is clear
and on the table, then nondeterministically selects a
block with letter “m” and moves it onto the “e” block,
etc. There is a similar procedure for makeParis; nei-
ther procedure has any parameters.
proc tower makeParis | makeRome endProc.
proc makeRome
mbo.[e(bo) A ontable(bo) A clear(bg)]?;
mby.m(by)?; move(by, bg);
mba.o(bs)?; move(ba, by) ;
7 b3.r(b3)?; move(bs, ba)
endProc

proc makeParis
mbo.[s(bo) A ontable(bg) A clear(bo)]?;
mby.i(b1)?; move(by, bo) ;
7 ba.r(b)?; move(ba, by) ;
mbs.a(bs)? ; move(bs, ba)
mba.p(ba)?; move(by, bs)
endProc

As in [8], we associate to programs a transition seman-
tics, 1.e. a semantics based on single steps of program
execution. Informally, this semantics declares that as
a program proceeds; a program counter moves from

the very beginning of the program along its interme-
diate states. A configuration is a pair consisting of a
program state (the part of the original program that
is left to perform) and a situation.

To specify this semantics, we introduce two predicates
Trans and Final.

o Trans(d,s,d',s'), given a program J and a situa-
tion s, tells us which is a possible next step in the
computation, returning the resulting situation s’
and the program ¢’ that remains to be executed.
In other words, Trans(d,s,d’,s’) denotes a transi-
tion relation between configurations.

e Final(d,s) tells us whether a configuration (4, s)
can be considered final, that is whether the com-
putation is completed (no program remains to
be executed). We have Final(nil,s), but also
Final(*, s) since §* requires 0 or more repetitions
of 6 and so it is possible not to execute ¢ at all,
completing the program immediately.

Trans

The predicate Trans is characterized by the following
axioms:

1. Empty program:
Trans(nil, s, 8’ s') = False

2. Primitive actions:
Trans(a, s,d',s") = Poss(a,s) A = nil
As' =do(a,s)

3. Test actions:?

Trans(¢?,s,8',s") = ¢[s]A8 = nilAs' =s

4. Sequence:
Trans(dy;d2,8,0",s") = Fy.Trans(d1,s,7v,8") A
d' =5;02 V Final(dy1,s) A Trans(dq,s,d,s")

5. Nondeterministic choice:
Trans(dy | d2,s,0",s") =
Trans(d1,s,0’,s") V Trans(d2,s,d',s')
6. Pick:
Trans(rv.6,s,8',s') = Jx.Trans(6y,s,6' ') 3
7. Tteration:

Trans(8*,s,48',s") = 3y. Trans(d, s, v, s') A" = ~;6*

2We write ¢ to denote a term representing a situation
calculus formula with suppressed situational argument and
¢[s] to denote the formula with the restored argument. We
assume any standard way of encoding first-order situation
calculus formulas.

Here, 82 is the program resulting from substituting =
for v uniformly in é.



The assertions above characterize when a configura-
tion (4, s) can evolve (in a single step) to a configura-
tion (6’ s"). Intuitively they can be read as follows:

1. (nil, s) cannot evolve to any configuration.

2. (a,s) evolves to (nil, do(a, s)), provided it is pos-
sible to execute a in s. Notice that after having
performed a, nothing remains to be performed.

3. (¢7, s) evolves to (nil, s), provided that ¢[s] holds.
Otherwise, 1t cannot proceed. Notice that in any
case the situation remains unchanged.

4. (61;02, s) can evolve to (§1;02,s"), provided that
(01,8) can evolve to (81,s"). Otherwise, it can
evolve to (d%,s'), provided that (61,s) is a final
configuration and (d2, s) can evolve to (5, s').

5. (81|02, s) can evolve to (§’,s’), provided that ei-
ther (1, s) or (42, s) can do so.

6. (wv.d, s) can evolve to (¢, s'), provided that there
exists an x such that (3%, s) can evolve to (8, s').

7. (6%, s) can evolve to (§'; 0%, s') provided that (J, s)
can evolve to (¢’,s'). Observe that (§*,s) can
also not evolve at all, because (6*,s) is final by
definition (see below).

To simplify the discussion, we have omitted axioms

for procedures. These can be found in the extended
version of [8].

Final

The predicate Final is characterized by the following
axioms:

1. Empty program:

Final(nil, s) True
2. Primitive action:

Final(a,s) = False
3. Test action:

Final(¢?,s) = False

4. Sequence:
Final(d1;d2,8) = Final(dy, s) A Final(d2, s)
5. Nondeterministic choice:
Final(dy | d2,8) = Final(d1,s) V Final(dz,s)
6. Pick:
Final(rv.d,s) = Jx.Find(d;,s)
7. Iteration:

Final(6*,s) =

True

Trans* and Do

The possible configurations that can be reached by a
program § starting in a situation s are those obtained
by following repeatedly the transition relation denoted
by Trans starting from (4, s), i.e. those in the reflexive
transitive closure of the transition relation. Such a
relation, denoted by Trans®, is defined as the (second-
order) situation calculus formula:

Trans*(8,5,8',s') = VT[... D T(8,5,8,5)]

where ... stands for the conjunction of the universal
closure of the following two sentences:

T(d,5,9,s)

Trans(d, s, 8", 8"y ANT(8",s",8',s") D T(d,s,6',5)

Using Trans” and Final we can give a new definition
of the Do relation of [17] as:

Do(d,s,s") = 38".Trans"(d,s,d',s') A Final(d’,s").

In other words, Do(d,s,s’) holds iff it is possible to
repeatedly single-step the program §, obtaining a pro-
gram ¢’ and a situation s’ such that ¢’ can legally
terminate in s’

3 On vs. Off-Line Golog Interpreters

Before describing our approach to execution monitor-
ing, we must first distinguish carefully between on-
line and off-line Golog interpreters.* The relation
Do(y,s,s') means that s’ is a terminating situation
resulting from an execution of program 5 beginning
with situation s. This relation has a natural Prolog
implementation in terms of the one-step interpreter
trans:
offline(Prog,50,8f) :- final (Prog,S80), SO = Sf ;
trans (Prog,S0,Progl,S1),
offline(Progl,S1,5f).

A Brave On-Line Interpreter

The difference between on- and off-line interpretation
of a Golog program is that the former must select a
first action from its program, commit to it (or, in the
physical world, do it), then repeat with the rest of the
program. The following is such an interpreter:

online (Prog,S0,Sf)
trans (Prog,S0,Progl,S1),

:- final(Prog,80), SO = Sf ;
/* Select a first
action of Prog. */
', /% Commit to this action. */
online(Progl,51,8f).

*An on-line interpreter based on Trans and Final was
originally proposed in [9] to give an account of Golog /Con-
Golog programs with sensing actions. Here we make use
of a simplified on-line interpreter that does not deal with
sensing actions, but is suitable for coupling with an execu-
tion monitor.



The on and off-line interpreters differ only in the lat-
ter’s use of the Prolog cut (1) to prevent backtracking
to trans to select an alternative first action of Prog.?
The effect is to commit to the first action selected by
trans. We need this because a robot cannot undo any
actions that it has actually performed in the physical
world. It is this commitment that qualifies the clause
to be understood as on-line interpreter. We refer to it
as brave because 1t may well reach a dead-end, even if
the program it is interpreting has a terminating situ-
ation.

A Cautious On-Line Interpreter

To avoid the possibility of following dead-end paths,
one can define a cautious on-line interpreter as follows:

online (Prog,S0,Sf)
trans (Prog,S0,Progl,S1),

:- final(Prog,80), SO = Sf ;
/* Select a first
action of Prog. */
/* Make sure the rest
of Prog terminates. */
', /% Commit to this action. */
online(Progl,51,8f).

offline(Progl,81,582),

This is much more cautious than its brave counter-
part; it commits to a first action only if that action is
guaranteed to lead to a successful off-line termination
of the program. Provided this program has a termi-
nating situation, a cautious on-line interpreter never
reaches a dead-end.

A cautious on-line interpreter appeals to the off-
line execution of the robot’s program (in the process
of guaranteeing that after committing to a program
action, the remainder of the program terminates).
Therefore, this requirement precludes cautious inter-
pretation of robot programs that appeal to sensing
actions [15], since such actions cannot be performed
off-line.® Because the brave interpreter never looks
ahead, it is suitable for programs with sense actions.
The price it pays for this is a greater risk of following
dead-end paths.

Committing to an action is an intrinsically procedural
notion, and so it is highly desirable, in any logical ap-
proach to modeling dynamical systems, to very tightly
delimit where in the theory and implementation this
nonlogical notion appears. In our case, we can point
to the Prolog cut operator in the above on-line in-
terpreters as the exact point at which the procedural
notion of commitment is realized.

The above interpreters are implemented in Prolog, and
are lifted directly from Final, Trans, and Do intro-
duced above. Such interpreters require that the do-
main specific action precondition and successor state

Keep in mind that Golog programs may be
nondeterministic.

SHowever, one could imagine a cautious interpreter that
verifies off-line that the program terminates for all possible
outcomes of its sensing actions. Even better, perhaps the
programmer has already proved this.

axioms, and axioms about the initial situation, be ex-
pressible as Prolog clauses. Therefore, our implemen-
tation inherits Prolog’s Closed World Assumption, but
this is a limitation of the implementation, not the gen-
eral theory. The full version of the cautious on-line
interpreter can be found in [10].

4 Execution Monitoring of Golog
Programs

In this section we give a situation calculus specifica-
tion for the behavior of a Golog program under the
influence of an execution monitor. We first provide
a very general framework, without committing to any
particular details of the monitor. Then we describe
one specific monitor that forms the basis for the im-
plementation of Section 5 below.

4.1 The General Framework

Here we discuss how on-line interpretation of Golog
programs can be combined with a monitor. We imag-
ine that after executing a primitive action or evaluat-
ing a test condition, a robot compares its mental world
model with reality. We assume that all discrepancies
between the robot’s mental world and reality are the
result of exogenous actions, and moreover, that the
robot observes all such actions.” It will be the ex-
ecution monitor that observes whether an exogenous
action has changed the values of one or several flu-
ents and, if necessary, recovers from this unanticipated
event. This cycle of on-line interpreting, sensing and
recovering (if necessary) repeats until the program ter-
minates.

Just as we specified a semantics, via Trans, for Golog
programs in Section 2.1, we want now to specify such

"A similar idealization about the observability of all ex-
ogenous events 1s a common assumption in discrete event
control theory (e.g. [20, 6]). On the face of it, this idealiza-
tion seems dubious in practice. One can argue convincingly
that agents never observe action occurrences— Fido ate the
sandwich — only their effects — The sandwich is no longer
on the table. One can reconcile both points of view by sup-
posing that instead of directly sensing exogenous actions,
the robot can sense only the truth values of certain fluents.
One can then introduce a set of new fictitious actions, one
for each such fluent, whose effects are to alter their cor-
responding fluents’ truth values. The robot can compute,
from its successor state axioms, what fluents hold in its
mental world. Now, when the robot observes the values of
some its fluents in the physical world, it compares them
with their values in its mental world; all discrepancies, if
any, can be determined directly. Then, it can determine
which fictitious actions must have “occurred” to account
for the observed discrepancies between the physical world
and the robot’s mental world. It is these (inferred) ficti-
tious actions that assume the role of the observable exoge-
nous actions mentioned above.



a semantics for Golog programs with execution mon-
itoring. Our definition will parallel that of Section
2.1. This closed-loop system (online interpreter and
execution monitor) is characterized formally by a new
predicate symbol TransEM(d,s,8’,s’), describing a
one-step transition consisting of a single T'rans step of
program interpretation, followed by a process, called
Monitor, of execution monitoring. The role of the ex-
ecution monitor is to get new sensory input in the form
of an exogenous action and (if necessary) to generate
a program to counter-balance any perceived discrep-
ancy. As a result of all this, the system passes from
configuration (4, s) to configuration (§’,s') specified as
follows:
TransEM (8,s,0",s") = 36", s Trans(d, s, 6", s") A
Monitor(§",s",4d',s").

This 1s a brave version of TransEM. Its cautious

counterpart is:

TransEM (8,s,0",s") = 36", s Trans(d, s, 6", s") A
3s"".Do(d",s", ") A Monitor(d”,s",§,s).

The possible configurations that can be reached by
a program J from a situation s with execution mon-
itoring are those obtained by repeatedly following
TranskE M transitions, 1.e. those in the reflexive tran-
sitive closure of this relation.

As we did for implementing on-line Golog interpreters
(Section 3), we can now describe brave and cautious
versions of on-line Golog interpreters with execution
monitoring.

Brave On-Line Execution Monitor

onlineEM(Prog,S0,8f) :- final(Prog,50), S0

trans (Prog,S0,Progl,S1),

[}
s

St

monitor (Progl,S51,Prog2,52), !,
onlineEM (Prog2,52,8f).

Cautious On-Line Execution Monitor

onlineEM(Prog,S0,8f) :- final(Prog,50), S0
trans (Prog,S0,Progl,S1),

offline(Prog1,S1,8),

[}
s

monitor (Progl,S51,Prog2,52), !,
onlineEM (Prog2,52,8f).

St

Next, we focus on the monitor. Let exo be an exoge-
nous event, which might be as simple as a primitive
action, or as complex as an arbitrary Golog program.
We specify the behavior of our generic monitor by:

Monitor(d,s,¢',s'") = Jexo.Do(exo, s,s") A
[ Relevant(6,s,s'Y A& =6V
Relevant(d,s,s’) A Recover(d,s,s’,d')].

Here, Relevant(d,s,s’) is a predicate that specifies
whether the discrepancy between s and s’ is relevant
in the current state é of the program. If this discrep-
ancy does not matter — wRelevant(d, s, s') — then the

execution monitor takes no action — ¢’ = 4. Other-
wise, the monitor should recover from the exogenous
action. The predicate Recover(d,s,s’,d') provides for
this by determining a new program, ', whose execu-
tion in situation s’ is intended to achieve an outcome
equivalent (in a sense left open for the moment) to that
of program 4, had the exogenous event not occurred.

A wide range of monitors can be achieved by defining
Relevant and Recover in different ways. In the next
section we elaborate on one such choice, one that will
form the basis of the implementation of Section 5.

4.2 A Specific Monitor

Now we develop a simple realization of the above
general framework, by fixing on particular predicates
Relevant and Recover.

We begin by assuming that for each application do-
main a programmer provides:

1. The specification of all primitive actions (robot’s
and exogenous) and their effects, together with
an axiomatization of the initial situation, as de-
scribed in Section 2.

2. A Golog program that may or may not take into
account exogenous actions occurring when the
robot executes the program. We shall assume that
this program has a particular form, one that takes
into account the programmer’s goal in writing it.
Specifically, we assume that along with her pro-
gram, the programmer provides a first order sen-
tence describing the program’s goal, or what pro-
grammers call a program postcondition. We as-
sume further that this postcondition is postfixed
to the program. In other words, if 4 is the original
program, and goal is its postcondition, then the
program we shall be dealing with in this paper will
be §; goal?. This may seem a useless thing to do
whenever ¢ is known to satisfy its postconditions,
but as we shall see below, our approach to execu-
tion monitoring will change §, and we shall need
a guarantee that whenever the modified program
terminates, it does so in a situation satisfying the
original postcondition.

Next,
we take Relevant(d,s,s’) to be =3s”" Do(d,s',s"), so
that the definition (?7?) of Monitor becomes:

Monitor(8,s,d',s') = Jexo.Do(exo, s,s") A
[3s"Do(6,s',s") NG =6 v
—3s""Do(8,s',8") A Recover(d, s, s',§')].

M onitor checks for the existence of an exogenous pro-
gram, determines the situation s’ reached by this pro-
gram, and if the monitored program J terminates off-
line, the monitor returns J, else it invokes a recovery
mechanism to determine a new program ¢’. Therefore,
Monitor appeals to Recover only as a last resort; it



prefers to let the monitored program keep control, so
long as this is guaranteed to terminate off-line in a
situation where the program’s goal holds. (Remem-
ber that this goal has been postfixed to the original
program, as described in 2 above.)

It only remains to specify the
predicate Recover(d, s,s’,d') that is true whenever ¢
is the current state of the program being monitored, s
is the situation prior to the occurrence of the exoge-
nous program, s’ is the situation after the exogenous
event, and ¢’ is a new program to be executed on-line
in place of J, beginning in situation s’. We adopt the
following specifications of Recover; it forms the basis
of the implementation to be described later:

Recover(d,s,s',d') =
dp.straight Line Prog(p) A
3s”.Do(p;d,s,s"YANS =p;6A
[Vp', s .straight Line Prog(p' YADo(p' ; 6,8, ") D
length(p) < length(p)].

Here, the recovery mechanism is conceptually quite
simple; it determines a shortest straight-line program
p such that, when prefixed onto the program 4, yields
a program that terminates off-line. This is quite easy
to implement; in its simplest form, simply generate all
length one prefixes, test whether they yield a terminat-
ing off-line computation, then all length two prefixes,
etc, until one succeeds, or some complexity bound
is exceeded.® Notice that here we are appealing to
the assumption 2 above that all monitored programs
are postfixed with their goal conditions. We need
something like this because the recovery mechanism
changes the program being monitored, by adding a
prefix to it. The resulting program may well termi-
nate, but in doing so, it may behave in ways unin-
tended by the programmer. But so long as the goal
condition has been postfixed to the original program,
all terminating executions of the altered program will
still satisfy the programmer’s intentions.

One disadvantage of the above recovery mechanism is
that it will not recognize instances of exogenous events
that happen to help in achieving the goal condition.
In the extreme case of this, an exogenous event might
create a situation that actually satisfies the goal. The
above recovery procedure, being blind to such possi-
bilities, will unthinkingly modify the current program
state by prefixing to it a suitable plan, and execute
the result, despite the fact that in reality, it is already
where it wants to be. In effect, the recovery procedure
has a built-in assumption that all exogenous events,
if not neutral with respect to achieving the goal, are
malicious.

80ne can imagine much more sophisticated realizations
of this simple idea that make use of the actions performed
by exo, but we do not pursue this topic here.

5 An Implementation

The above theory of execution monitoring is supported
by an implementation, in Prolog, that we demonstrate
here for the blocks world program of Example 2.1.
We use the cautious on-line monitor of Section 4.1,
and a straightforward implementation of M onitor and
straight Line Prog(p). The Prolog code is provided in
[10].

5.1 A Blocks World Example

In this section, the blocks world is axiomatized with
successor state and action precondition axioms. We
use the following function and predicate constants.

Actions

e move(z,y): Move block # onto block y, provided
both are clear.

o moveToTable(x): Move block z onto the table,
provided x is clear and is not on the table.

Fluents

e On(z,y,s): Block # is on block y, in situation s.

e Clear(z,s): Block x has no other blocks on top
of 1t, in situation s.

e Ontable(x, s): Block # is on the table in s.

Other predicate constants

The predicates R(b), O(b), M(b), E(b), P(b), A(b),
I(b), S(b) are true when their arguments are blocks
with the corresponding letters on them.

Successor state axioms
On(z,y,do(a,s)) = a = move(x,y) V On(z,y, s)A
a # moveToTable(x) A —~(32)a = move(x, z).

Ontable(z,do(a, s)) = a = moveT oTable(x)V
Ontable(z, s) A —=(Jy)a = move(x, y).

Clear(x,do(a, s)) = (y, z).[a = move(y, z)V
a = moveToTable(y))] A On(y, x, s)V
Clear(x, s) A =(Jw)a = move(w, ).

Action precondition axioms
Poss(move(x,y),s) = Clear(x, s)A
Clear(y,s) Nz # y.

Poss(moveToTable(x),s) = Clear(x, s)A
—Ontable(z, s).

Unique names axioms for actions
move(xz,y) # moveToTable(x)
move(z,y) = move(z', ) Dex=a' Ay =1y

moveToTable(x) = moveToTable(x') D w = o



In our example, the initial situation i1s such that all
blocks are on the table and clear (see Figure 1). There
is no block with the letter “p”?, but there are several
blocks with letters for spelling “aris” and “rome”, as
well as blocks with letters “n” and “f” (which are irrel-
evant to building a tower spelling “rome” or “paris”).

Figure 1: Part of the initial situation.

The program goal is:
Goal(s) = SpellsParis(s) V Spells Rome(s),

SpellsRome(s) = (3bo, b1, ba, b3).
R(bg) A O(bz) A M(bl) A E(bo) A
Ontable(by, s) A On(by, bg, s) A
On(ba, by, s) A On(bs, ba, s) A Clear(bs, s).

SpellsParis(s) = (3bo, by, ba, b3, ba).
Pba) A A(bs) A R(b2) A T(b1) A S(bo) A
Ontable(by, s) A On(by, by, s) AOn(ba, by, s) A
On(bs, ba, s) A On(ba, bz, s) A clear(by, s).

1

02
my

€2

Figure 2: A goal arrangement of blocks.

Figure 2 represents an arrangement of blocks that sat-
isfies the program goal.

An implementation, in Eclipse Prolog, 1s provided in

[10].

5.2 An Execution Trace

The original procedure tower is very simple and was
not designed to respond to external disturbances of
any kind. However, as the trace demonstrates, the ex-
ecution monitor is able to produce fairly sophisticated
behavior in response to unforeseen exogenous events.

In Golog, tests do not change the situation, but all
other primitive actions do. Each time the program
performs a primitive action or evaluates a test, an ex-
ogenous program may occur. In the example below,
any sequence of actions that i1s possible in the current
situation can be performed by an external agent. This

?We selected this arrangement intentionally to illustrate
the difference between cautious and brave interpreters.

is realized in the implementation by interactively ask-
ing the user to provide exogenous events after each
elementary program operation (test or primitive ac-
tion).

The following is an annotated trace of the first several
steps of our implementation for this blocks world set-
ting. We use this font for the actual output of the
program and italics for states of the Golog program
tower of Example 2.1. The symbol “” in the Prolog
implementation of the interpreter corresponds to se-
quential composition “;” in Golog and Prolog’s term
“p1” corresponds to w in Golog, etc.

by

[eclipse] onlineEM((tower : 7(goal)), s0, S).

Program state = (nil: pi(b1,?(m(b1)) : move(bl,el):
pi(b2,7(0(b2)) : move(b2,bl) : pi(b3,7(r(b3)) :

move (b3,b2))))) : ?(goal)
Current situation: s0
The cautious interpreter first tried to execute

makeParis off-line. This failed because there is no
“p” block. It then proceeded with makeRome.'® Ac-
cording to the implementation of a cautious on-line
interpreter (see section 3), Trans does the first step of
make Rome:

mby.[e(bo) A ontable(bg) A clear(bo)]?;

by determining that the block e; will be the base of a
goal tower. The remainder of the program (the “pro-
gram state” in the output above) is the following:

nil ;
mby.m(by)?; move(by, el);
7 ba.o(bs)?; move(ba, by) ;
mbs.r(b3)?; move(bs, ba) ; (goal)?

where nil results after the first step (see axioms of
Trans for mv.d and ¢7).

>Enter: an exogenous program or noOp if none occurs.
move(n,ml) : move(f,n) : move(i2,03).

No recovery necessary. Proceeding with the next
step of program.

Program state = (nil : move(m2, el) :
pi(b2, 7(o(b2)) : move(b2, m2) :
pi(b3, 7(r(b3)) : move(b3, b2)))) : 7(goal)
Current situation: do(move(i2, 03), do(move(f, n),
do(move(n, m1), s0)))

The first exogenous program covered blocks mi, n and
o3 (see Fig. 3), but the remaining program

nil ;

move(ma, 1) ; V4

10 A brave interpreter would have eventually failed, with-
out even trying make Rome.



mba.0(b2)? s move(ba, ma) ;
7 b3.r(b3)?; move(bs, ba) ; ?(goal)

can still be successfully completed because there re-
main enough uncovered blocks of the right kind to
construct “rome”, so it continues.

>Enter: an exogenous program or noOp if none occurs.
move(il,ol) : move(r2,02).
Start recovering...

New program = moveToTable (r2)
(nil : move(m2,el) : pi(b2,7(o(b2)) :
move (b2,m2) : pi(b3,7(r(b3)) :
move (b3,b2)))) : 7(goal)

Current situation: do(move(r2,02),do(move(il,ol),
do(move(i2,03), do(move(f,n),
do (move(n,m1),s0)))))

After the second exogenous program move(il,ol)
move(r2,02), all three blocks with letter “o0” are cov-
ered (see Figure 4).

Because 1t is not possible to move blocks o1, 09, 03
(by the precondition axiom for move(z,y)), the re-
maining program cannot be completed. Hence, the
Monitor gives control to Recover that, with the
help of the planner straightLineProg(p), determines
a shortest corrective sequence p of actions (namely
moveToTable(r2)) in order to allow the program to
resume, and prefixes this action to the previous pro-
gram state:

moveToTable(r2); nil ;
move(ma, e1);
mba.0(b2)? s move(ba, ma) ;
7 b3.r(b3)?; move(bs, ba) ; ?(goal)

From this point on, the on-line evaluation continues
by doing one step of the new program. If after that,
no exogenous disturbances occur during the next two
steps of the execution of this new program, it will reach
the following program state:

nail ;
move (02, m2);

7 b3.r(b3)7 ; move(bs, 02) ; 7(goal)

(1)

f
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Figure 3: The first exogenous disturbance occurred
when the program was ready to move msy on top of e;.
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Figure 4: The second exogenous disturbance.

ry

r{ f
if{|ag][iz| [ n mo
o1|los|| 03| |m4| e1lleo

Figure 5: The pile of blocks covers the block os.

Let assume that at this point a third exogenous pro-
gram occurs (see Figure 5):

>Enter: an exogenous program or noOp if none occurs.
move(al,o2) : move(ri,al) : move(r2,rl).
Start recovering...
New program = (moveToTable(r2)
moveToTable(rl) : moveToTable(al))

(nil : move(02, m2) : pi(b3, 7(r(b3)) :
move (b3, 02))) : 7(goal)
Program state = (nil : moveToTable(rl)

moveToTable(al)) :
pi(p3, ?(r(b3))

(nil : move(o2, m2) :
: move (b3, 02))) : 7(goal)

Current situation: do(moveToTable(r2),
do(move(r2, r1), do(move(ri, al),
do(move(al, 02), do(move(m2, el),
do (moveToTable(r2), do(move(r2, o2),
do(move(il, o1), do(move(i2, 03),
do(move (f,n), do(move(n,mi), £0)))))))))))

The recovery procedure determined that the se-
quence of three corrective actions moveToTable(r2),
moveToTable(rl), moveToTable(al) will lead to a
situation where the program (1) can be resumed, and
moreover, this is a shortest such correction. If no other
exogenous actions happen, the program will eventu-
ally successfully terminate, having built a tower for
“rome”.

6 Correctness Properties for
Execution Monitors

With definitions for TransEM and Monitor, as in
Section 4.1, it becomes possible to formulate, and ulti-
mately prove, various correctness properties for execu-
tion monitors. These properties are intended to cap-
ture suitable concepts of controllability following the



intuition behind similar concepts introduced for dis-
crete event systems [20]. Informally, controllability is
the property that characterizes a closed-loop system
(a Golog program coupled with the execution moni-
tor): this is the ability of a monitored program to be-
have correctly even if exogenous actions occur during
the robot’s execution of the program. There are many
possible definitions, with varying degrees of generality,
of what counts as correct behavior of a monitored sys-
tem. We focus here on various correctness properties
one might want to prove of the monitor.

Recall that the general execution monitor, as specified
by (??), is the relation Monitor(d,s,s’,d’), meaning
that whenever 4 is the state of monitored program in
situation s, and s’ is a situation resulting from an ex-
ogenous event occurrence at s, then the on-line exe-
cution should resume in s’ with the new program 4.
Then, by analogy with Floyd-Hoare style correctness
and termination properties, we can formulate a variety
of verification tasks, some examples of which we now
describe. These are parameterized by two predicates:

1. P(s), a desirable property that a terminating sit-
uation s must satisfy. For example, P might de-
scribe a postcondition of the program being mon-
itored.

2. Q(4,s,s"), arelationship between the current pro-
gram state J and s, the current situation, and s’,
the situation resulting from an exogenous event
occurring in s. For example, () might express that
4 terminates off-line when executed in s and also
when executed in s'.

Weak Termination and Correctness

(Vé,s,8").Q(8,s,8) D
Monitor(8,s,s',d") D (3s”).Do(d', s, s") A P(s").

The task here is to verify that, under condition @,
whenever Monitor determines a new program with
which to resume the system computation after an ex-
ogenous event occurrence, that program has a termi-
nating (off-line) computation resulting in a final situ-
ation in which P holds.

Strong Termination and Correctness

(V6,s,5").Q(0,s,s") D (3').Monitor(d,s, s, d") A
(3s").Do(d', s, ") A P(s"),

Under condition @, Monitor always determines a new
program with which to resume the system computa-
tion after an exogenous event occurrence, and that pro-
gram has a terminating (off-line) computation result-
ing in a final situation in which P holds.

Even Stronger Termination and Correctness
(Vé,s,8").Q(8,s,8) D
(36"). Monitor(d,s,s',8) A(3s").Do(d', s, ") A
(Vs").Do(d',s',s") D P(s").

Here, the correctness property is that under condition

@, Monitor always determines a new program that
terminates off-line, and all these terminating situations
satisfy P.

It i1s also possible to formulate various correctness
properties for the entire monitored system, for exam-
ple, the weak property that provided the monitored
program terminates, then it does so in a desirable sit-
uation:

(Vé,s,8"Y. TransEM*(d,s,nil,s") D P(s'),

where TransEM* 1s the
TransEM .

transitive closure of

Other variations on the above themes are possible; but
our purpose here is not to pursue these issues in depth,
but simply to point out that correctness properties for
monitored systems are easily formulated within our
framework. Moreover, because this framework 1s en-
tirely within the situation calculus, such correctness
proofs can be constructed totally within a classical
logic.

7 Discussion

There are several systems designed to interleave mon-
itoring with plan execution: PLANEX [7], IPEM [1],
ROGUE [13], SPEEDY [3]. We differ from these and
similar proposals, first by the formal neatness of our
approach, secondly by the fact that ours is a story
for monitoring arbitrary programs, not simply straight
line or partially ordered plans. Moreover, we do not
assume that the monitored plan is generated automati-
cally from scratch, but rather that it has been provided
by a programmer.

In a sequence of papers [25, 26, 27] Schoppers pro-
poses and defends the idea of “universal plans”, which
“address the tension between reasoned behavior and
timely response by caching reactions for classes of pos-
sible situations”. From our point of view, the notion
of a universal plan is closely related to the notion of
controllable languages developed for discrete event sys-
tems control [20]. There, a language (a set of linear
plans) is controllable iff the effects of all possible un-
controllable events do not lead outside the set of plans
that this language contains. In other words, just as
for Schoppers, all required system reactions to pos-
sible contingencies are compiled into the controllable
language. Our framework is different, but complemen-
tary; it favors the on-line generation of appropriate
reactions to exogenous events, as opposed to precom-
piling them into the Golog program. ConGolog [8, 9]
i1s a much richer version of Golog that supports con-
currency, prioritized interrupts and exogenous actions.
Reactive behaviors are easily representable by Con-
Golog’s interrupt mechanism, so that a combination of
reactive behaviors with “deliberative” execution moni-
toring 1s possible. This would allow one to experiment
with different mixtures of execution monitoring and



reactivity, with the advantage of preserving the uni-
fying formal framework of the situation calculus, but
this remains an open research problem.

The theory of embedded planning [29, 12, 30] intro-
duces notions of planning with failure and has motiva-
tions very similar to ours. The authors propose several
formal languages that, like Golog, include constructs
for sequence, conditionals, loops and recursion. The
emphasis is on reactive programs, but their proposal
does provide for replanning during execution.

Several authors rely on formal theories of actions for
the purposes of characterizing appropriate notions of
action failures [2, 24], but they do not consider execu-
tion monitoring per se.

Perhaps the most sophisticated existing plan execution
monitor is the XFRM system of Beetz and McDermott
[4, 5]. This provides for the continual modification of
robot plans (programs) during their execution, using a
rich collection of failure models and plan repair strate-
gies. Nothing in our proposal so far can rival the func-
tionality of the XFRM system. The primary objective
of our approach 1s to provide compact, declarative rep-
resentations for the entire process of execution, mon-
itoring and recovery from failure, and this paper has
presented our framework for this research program. It
remains to see whether the logical purity of our ap-
proach will pay off with clear, analyzable specifications
that lead to implementations rivaling that of XFRM.

8 Conclusions and Future Work

We have presented a very general, situation calculus-
based account of execution monitoring for high-level
robot programs, and illustrated the theory with an im-
plementation (in simulation mode) of a specific mon-
itor. The approach has the advantage of being com-
pletely formal, and therefore is suitable for formulat-
ing, and ultimately proving, correctness properties for
monitored systems.

Plans for ongoing and future work include the follow-
ing issues:

1. Draw closer parallels with the concept of con-
trollable systems in discrete event control theory
[20, 6, 14].

2. Explore realizations of execution monitors differ-
ent than that presented in Section 4.2 [28].

3. Investigate techniques for proving correctness
properties of various monitors and monitored sys-
tems.

4. Investigate the concept of execution monitoring
for non-terminating Golog programs [11].

5. Extend these ideas to temporal domains, for ex-
ample, monitoring robot control programs written
in sequential, temporal Golog [23].

6. Implement these ideas on the Cognitive Robotics
Group’s RWI B21 autonomous robot at the Uni-
versity of Toronto.
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