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Abstract

As an alternative to planning, an approach to high-level agent control based on concurrent program
execution is considered. A formal definition in the situation calculus of such a programming language
is presented and illustrated with some examples. The language includes facilities for prioritizing the
execution of concurrent processes, interrupting the execution when certain conditions become true,
and dealing with exogenous actions. The language differs from other procedural formalisms for
concurrency in that the initial state can be incompletely specified and the primitive actions can be
user-defined by axioms in the situation calculus. Some mathematical properties of the language are
proven, for instance, that the proposed semantics is equivalent to that given earlier for the portion of
the language without concurrency.2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

When it comes to providing high-level control for robots or other agents in dynamic
and incompletely known worlds, approaches based on plan synthesis may end up being
too demanding computationally in all but simple settings. An alternative approach that is
showing promise is that diigh-level program executiof20]. The idea, roughly, is that
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instead of searching for a sequence of actions that would take the agent from an initial
state to some goal state, the task is to find a sequence of actions that constitutes a legal
execution of some high-level nondeterministic program. As in planning, to find a sequence
that constitutes a legal execution of a high-level program, it is necessary to reason about
the preconditions and effects of the actions within the body of the program. However,

if the program happens to be almost deterministic, very little searching is required; as
more and more nondeterminism is included, the search task begins to resemble traditional
planning. Thus, in formulating a high-level program, the user gets to control the search
effort required.

The hope is that in many domains, what an agent needs to do can be conveniently
expressed using a suitably rich high-level programming language, and that at the same
time finding a legal execution of that program will be more feasible computationally than
the corresponding planning task. Previous work on@®udog language [20] considered
how to reason about actions in programs containing conditionals, iteration, recursion, and
nondeterministic operators, where the primitive actions and fluents where characterized
by axioms of the situation calculus. In this paper, we explore how to execute programs
incorporating a rich account @oncurrency The execution task remains the same; what
changes is that the programming language, which we CatliGolog(for Concurrent
Golog [6], becomes considerably more expressive. One of the nice features of this
language is that it allows us to conveniently formulate agent controllers that pursue
goal-oriented tasks while concurrently monitoring and reacting to conditions in their
environment, all defined precisely in the language of the situation calculus. But this
kind of expressiveness requires considerable mathematical machinery: we need to encode
ConGologprograms as terms in the situation calculus (which, among other things, requires
encoding certain formulas as terms), and we also need to use second-order quantification
to deal with iteration and recursive procedures. It is not at all obvious that such complex
definitions are well-behaved or even consistent.

Of course ours is not the first formal model of concurrency. In fact, well developed
approaches are available [4,17,2538%nd our work inherits many of the intuitions
behind them. However, it is distinguished from these in at least two fundamental ways.
First, it allows incomplete information about the environment surrounding the program. In
contrast to typical computer programs, the initial state GomGologprogram need only
be partially specified by a collection of axioms. Second, it allows the primitive actions
(elementary instructions) to affect the environment in a complex way and such changes to
the environment can affect the execution of the remainder of the program. In contrast to
typical computer programs whose elementary instructions are simple predefined statements
(e.g., variable assignments), the primitive actions GomGologprogram are determined
by a separate domain-dependent action theory, which specifies the action preconditions
and effects, and deals with the frame problem. Finally, it might also be noted that the
interaction between prioritized concurrency and recursive procedures presents a level of
procedural complexity which, as far as we know, has not been dealt with in any previous
formal model.

1in [5,28] a direct use of such approaches to model concurrent (complex) actions in Al is investigated.
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The rest of the paper is organized as follows: in Section 2 we briefly review the situation
calculus and how it can be used to formulate the planning task. In Section 3, we review
the Gologprogramming language and in the following section, we present a variant of the
original specification of the high-level execution task. In Section 5, we explain informally
the sort of concurrency we are concerned with, as well as related notions of priorities
and interrupts. The section concludes with changes tdableg specification required
to handle concurrency. In Section 6, we illustrate the us€afiGologby going over
several example programs. Then, in Section 7, we extend such a specification to handle
procedures and recursion. Handling the interaction between the very general form of
prioritized concurrency allowed i@onGologand recursive procedures will require a quite
sophisticated approach. In Section 8 we will show general sufficient conditions that allow
us to use a much simplified semantics without loss of generality. In Section 9, we present a
Prolog interpreter fo€ConGologand prove its correctness. In Section 10, we conclude by
discussing some of the properties@bnGolog its implementation, and topics for future
research.

2. The situation calculus

As mentioned earlier, our high-level programs contain primitive actions and tests that are
domain dependent. An interpreter for such programs must reason about the preconditions
and effects of actions in the program to find legal executions. So we need a language to
specify such domain theories. For this, we use gheation calculug24], a first-order
language (with some second-order features) for representing dynamic domains. In this
formalism, all changes to the world are the result of naraetions A possible world
history, which is simply a sequence of actions, is represented by a first-order term called
a situation The constanfSp is used to denote the initial situation, namely that situation
in which no actions have yet occurred. There is a distinguished binary function symbol
do and the terndo(a, s) denotes the situation resulting from actierbeing performed
in situations. Actions may be parameterized. For examplat(x, y) might stand for the
action of putting object on objecty, in which casalo(put(A, B), s) denotes that situation
resulting from puttingd on B when the world is in situation. Notice that in the situation
calculus, actions are denoted by function symbols, and situations (world histories) are also
first-order terms. For example,

do(putDowr(A), do(walk(P), do(pickUp(A), So)))
is a situation denoting the world history consisting of the sequence of actions
[pickUp(A), walk(P), putDown(A)].

Relations whose truth values vary from situation to situation, cadi&tional fluents
are denoted by predicate symbols taking a situation term as their last argument. For
example Holding(r, x, s) might mean that a robaetis holding an objeck in situations.
Functions whose denotations vary from situation to situation are daifedional fluents
They are denoted by function symbols with an additional situation argument, as in
positionr, s), i.e., the position of robot in situations.
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The actions in a domain are specified by providing certain types of axioms. First, one
must state the conditions under which it is physically possible to perform an action by
providing aaction precondition axiomFor this, we use the special predicéessa, s)
which represents the fact that primitive actiois physically possible (i.e., executable) in
situations. So, for example,

Posgpickupx),s) = Vx.—Holding(x, s) A NextTdx, s) A —Heavy(x)

says that the actiopickup(x), i.e., the agent picking up an objectis possible in situation
s if and only if the agent is not already holding something in situati@md is positioned
nexttox in s andx is not heavy.

Secondly, one must specify how the action affects the state of the world; this is done by
providingeffect axiomsFor example,

Fragile(x, s) D Broker(x, do(drop(x, s)))

says that dropping an objectcauses it to become broken provided tha fragile. Effect
axioms provide the “causal laws” for the domain of application.

These types of axioms are usually insufficient if one wants to reason about change.
One must addrame axiomghat specify when fluents remain unchanged by actions. For
example, dropping an object does not affect the color of things:

colour(y, s) = ¢ D colour(y, do(drop(x, 5))) = c.

The frame problem arises because the number of these frame axioms is very large, in
general, of the order of R A x F, whereA is the number of actions anl the number of
fluents. This complicates the task of axiomatizing a domain and can make theorem proving
extremely inefficient.

To deal with the frame problem, we use an approach due to Reiter [31]. The basic idea
behind this is to collect all effect axioms about a given fluent and make a completeness
assumption, i.e., assume that they specify all of the ways that the value of the fluent may
change. A syntactic transformation can then be applied to obtsirteessor state axiom
for the fluent, for example:

Broken(x, do(a, s)) =
a = drop(x) A Fragile(x, s) v
3b.(a = explodeéb) A NextTdb, x, s)) V
Broken(x, s) A a # repair(x).

This says that an objegtis broken in the situation resulting from actiefeing performed
in s if and only if a is droppingx andx is fragile, ora involves a bomb exploding next
to x, or x was already broken in situationprior to the action and: is not the action
of repairingx. This approach yields a solution to the frame problem—a parsimonious
representation for the effects of actions. Note that it relies on quantification over actions.
This discussion ignores the ramification and qualification problems; a treatment compatible
with the approach described has been proposed by Lin and Reiter [21].

So following this approach, a domain of application will be specified by a theory of the
following form:
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Axioms describing the initial situatiorsp.
Action precondition axioms, one for each primitive actigrharacterizingfossa, s).
Successor state axioms, one for each fluéptstating under what conditions
F(x,do(a, 5)) holds as function of what holds in situatien

e Unique names axioms for the primitive actions.

e Some foundational, domain independent axioms.
The latter foundational axioms include unique names axioms for situations, and an
induction axiom. They also introduce the relatienover situationss < s’ holds if and
only if s’ is the result of some sequence of actions being performed where each
action in the sequence is possible in the situation in which it is performe&d’ stands
for s < s’ v s =s’. Since the foundational axioms play no special role in this paper, we
omit them. For details, and for some of their metamathematical properties, see Lin and
Reiter [21] and Reiter [32].

For any domain theory of the sort just described, we have a very clean specification of
the planning task, which dates back to the work of Green [13]:

Classical Planning. Given a domain theor as above, and a goal formuds) with a
single free-variable, the planning task is to find a sequence of acti@ssich that:

D = Legald, So) A ¢ (do(a, So)),
wheredo([azy, ..., ax], s) is an abbreviation for
do(a,, do(a,_1, ...,do(ay, s)...)),
and wherd_egak([az, ..., a,], s) stands for
Possa1, s) A --- AP0SSa,, do([ax, ..., an_1],5)).
In other words, the task is to find a sequence of actions that is executable (each action

is executed in a context where its precondition is satisfied) and that achieves the goal (the
goal formulag holds in the final state that results from performing the actions in sequence).

3. Golog

As presented in [20]Gologis a logic-programming language whose primitive actions
are those of a background domain theory. It includes the following constdygisgsibly
subscripted, ranges ov&iologprograms):

a, primitive action
®?, wait for a conditiod

(815 62), sequence
(811 682), nondeterministic choice between actions
V.8, nondeterministic choice of arguments

2Because there are no exogenous actions or concurrent proce§saiegnwaiting for ¢ amounts to testing
that¢ holds in the current state.
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5*, nondeterministic iteration
{proc P1(v1) 81 end; ...proc P,(v,) 8, end; 8}, procedures.

In the first line,a stands for a situation calculus action where the special situation constant
now may be used to refer to the current situation (i.e., that wheiseto be executed).
Similarly, in the line belowg stands for a situation calculus formula wherew may
be used to refer to the current situation, for exanpleTablgblock now). als] (¢[s])
will denote the action (formula) obtained by substituting the situation variabier
all occurrences ohow in functional fluents appearing in (functional and predicate
fluents appearing inp). Moreover when no confusion can arise, we often leave out
the now argument from fluents altogether; for example, wi@aTablgblock) instead
of OnTablgblock now). In such cases, the situation suppressed version of the action or
formula should be understood as an abbreviation for the versiomwith

Let's examine a simple example to see some of the features of the language. Here’s a
Gologprogram to clear the table in a blocks world:

{proc removeAblock
b.[OnTabléb, now)?; pickUp(b); putAwayb)]
end;
removeAblock
—3b.OnTabléb, now?}.

Here we first define a procedure to remove a block from the table using the nondeter-
ministic choice of argument operatar. 7x.[5(x)] is executed by nondeterministically
picking an individualx, and for thatx, performing the programi(x). The wait action
OnTabléb, now)? succeeds only if the individual chosénjs a block that is on the table
in the current situation. The main part of the program uses the nondeterministic iteration
operator; it simply says to executamoveAblockzero or more times until the table is clear.
Note thatGologs other nondeterministic construcs, | 52), allows a choice between two
actions; a program of this form can be executed by performing eithers,.

In its most basic form, the high-level program execution task is a special case of the
above planning task:

Program Execution. Given a domain theor as above, and a prograimthe execution
task is to find a sequence of actiansuch that:

D k= Do(é, So, do(a, So)),

whereDo(8, s, s’) means that programwhen executed starting in situatierhass’ as a
legal terminating situation.

Note that sinceGolog programs can be nondeterministic, there may be several
terminating situations for the same program and starting situation.

In [20], Do(s, s, s") was simply viewed as an abbreviation for a formula of the situation
calculus. The following inductive definition @o was provided:

(1) Primitive actions:

Do(a, s, s") def Possa[s], s) A s’ = do(als], s).
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(2) Wait/test actions:

Do($2,5.5") = pls]As=s.
(8) Sequence:

DO(S1: 82, 5.5") = 35”. Do(51. 5.5") A D082, 5", 5').

(4) Nondeterministic branch:

DO(51 | 82, 5.5") = Do(51,s.s") v DO(S2, 5, ).

(5) Nondeterministic choice of argument:

Do(mx.8(x).s.s) 2 3x.Do(s(x). s.s).
(6) Nondeterministic iteration:

f
Do(6*,5.5") = VP {Vs1. P(s1.51) A

Vs1, 52, 53.[P(s1, 52) A DO(S, 52, 53) D P(s1, 53)]
} O P(s,s).

In other words, doing actiof zero or more times takes you franto s’ if and only
if (s,s’) is in every set (and therefore, the smallest set) such that:
(@) (s1,s1) isin the set for all situations;.
(b) Whenevelsi, s2) is in the set, and doin§in situations, takes you to situation
s3, then(s1, s3) is in the set.
The above definition of nondeterministic iteration is the standard second-order way
of expressing this set. Some appeal to second-order logic appears necessary here
because transitive closure is not first-order definable, and nondeterministic iteration
appeals to this closure.
We have left out the expansion for procedures, which is somewhat more complex; see [20]
for the detalils.

4. A transition semantics

By using Do, programs are assigned a semantics in terms of a relation, denoted by
the formulasDo(3, s, s”), that given a program and a situatiors, returns a situation’
resulting from executing the program starting in the situatio®emantics of this form
are sometimes calledvaluation semanticésee [15,26]), since they are based on the
(complete) evaluation the program.

When concurrency is taken into account it is more convenient to adopt semantics of a
different form: the so-callettansition semanticer computation semantics (see again [15,
26]). Transition semantics are based on defimimgle step®f computation in contrast to
directly defining complete computations.

In the present case, we are going to define a relation, denoted by the predicate
Trangé, s, 8, s’), that associates to a given progranand situations, a new situation
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s’ that results from executing a primitive action or test action amé\a programs’ that
represents whaemains of the programafter having performed such an action. In other
words, Trans denotes dransition relation betweerconfigurations A configurationis a

pair formed by a program (the part of the initial program that is left to perform) and the a
situation (representing the current situation).

We are also going to introduce a predic&teal(s, s), meaning that the configuration
(6,s) is afinal one, that is, where the computation can be considered completed (no
program remains to be executed). The final situations reached after a finite number
of transitions from a starting situation coincide with those satisfying Dioerelation.
Complete computations are thus defined by repeatedly composing single transitions until
a final configuration is reached.

It worth noting that if a program does not terminate, then no final situation will satisfy
theDo relation (indeed evaluation semantics are typically used for terminating programs),
while we can still keep track of the various transitions performed by mearisaois
Indeed, nonterminating programs do not need any special treatment within transition
semantics, while they typically remain undefined in evaluation semantics.

In general, both evaluation semantics and transition semantics belong to the family of
structural operational semantiastroduced by Plotkin in [27]. Both of these forms of
semantics are operational since they do not assign a meaning directly to the programs (as
denotational semantics), but instead see programs simply as specifications of computations
(or better as syntactic objects that specify the control flow of the computation). They are
abstract semantics since, in contrastdocrete operational semantidhey do not define a
specific machine on which the operations are performed, but instead only define an abstract
relation (such a®o or Trang which denotes the possible computations (either complete
computations for evaluation semantics, or single steps of computations for transition
semantics). In addition, both such form of semantics are structural since are are defined
on thestructureof the programs.

4.1. Encoding programs as first-order terms

In the simple semantics usinQo, it was possible to avoid introducing programs
explicitly into the logical language, sincd®o(s, s, s”) was only an abbreviation for a
formula @ (s, s") that did not mention the program(or any other programs). This was
possible essentially because it was not necessary to quantify over programs.

Basing the semantics dfranshowever does require quantification over programs. To
allow for this, we develop an encoding of programs as first-order terms in the logical
language (observe that programs as such, cannot in general be first-order terms, since on
one hand, they mention formulas in tests, and on the other, the operatorx.5 is a
quantifier).

Encoding programs as first-order terms, although it requires some care (e.g., introducing
constants denoting variables and defining substitution explicitly in the language), does not
pose any major problerf. In the following we abstract from the details of the encoding

3 Observe that, we assume that formulas that occur in tests never mention programs, so it is impossible to build
self-referential sentences.
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as much as possible, and essentially use programs within formulas as if they were already
first-order terms. The full encoding is given in Appendix A.

4.2. Trans and Final

Let us formally definelransandFinal, which intuitively specify what are the possible
transitionsbetween configurationsl{ang, and when a configuration can be considered
final (Final).

It is convenient to introduce a special prograih called theempty programto denote
the fact that nothing remains to be performed (legal termination). For example, consider a
program consisting solely of a primitive actianlf it can be executed (i.e., if the action is
possible in the current situation), then after the execution of the actiathing remains of
the program. In this case, we say that the program remaining after the execution of action
a isnil.

Trangé, s, 8, s’) holds if and only if there is a transition from the configurati@ns)
to the the configuratiof®’, s”), that is, if by running prograr starting in situatiors, one
can get to situatios’ in one elementary step with the prograhmemaining to be executed.

As mentioned, every such elementary step will either be the execution of an atomic action
(which changes the current situation) or the execution of a test (which does not). As well,

if the program is nondeterministic, there may be several transitions that are possible in a
configuration. To simplify the discussion, we postpone the introduction of procedures to

Section 7.

The predicatdransfor programs without procedures is characterized by the following
set of axiomd (here as in the rest of the paper, free variables are assumed to be universally
gquantified):

(1) Empty program:

Trangnil,s,§’,s’) = False
(2) Primitive actions:

Tranga,s,d8’,s") =
Possa[s], s) A8 =nil A s’ =do(a[s], s).

(3) Wait/test actions:
Trang¢?,s5,8",s)) = ¢ls]A8 =nilAs' =s.
(4) Sequence:

Trans8y; 82,5,8’,s") =
Ay.8' = (y: 82) ATrangés, s, y,s") v
Final(81, s) A Trangéy, s, 8’, s').

(5) Nondeterministic branch:

Trang81 | 82, 5,8",s") =
Trans(81, s, 8, s') v Trang8, s, 8', s').



118 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109-169

(6) Nondeterministic choice of argument:
Trangnv.8,s,8",s") = 3x.Trangs!,s, s, s").
(7) lteration:

Trangs*,s,8',s") =
Jy.(8' =y; 8% ATrangs, s, y, s).

The assertions above characterize when a configur&lion can evolve (in a single

step) to a configuratiot®’, s”). Intuitively they can be read as follows:

(1) (nil, s) cannot evolve to any configuration.

(2) (a,s) evolves to(nil, do(a[s], s)), provided that:[s] is possible ins. After having
performedz, nothing remains to be performed and hendds returned. Note that
in Tranga, s, 8, s’), a stands for the program term encoding the corresponding
situation calculus action, whilPossand do take the latter as argument; we take
the function-[-] as mapping the program terminto the corresponding situation
calculus actioru[s], as well as replacingowby the situatiors. The details of how
this function is defined are in Appendix A.

(3) (¢?,s) evolves to(nil, s), provided thatp[s] holds, otherwise it cannot proceed.
Note that the situation remains unchanged. Analogously to the previous case,
we take the function[-] as mapping the program term for conditigninto the
corresponding situation calculus formulass], as well as replacingow by the
situations (see Appendix A for details).

(4) (81; 82, s) can evolve to(8’; 82,s”), provided that(s1,s) can evolve to(s/, s’).
Moreover it can also evolve t@5, s'), provided that(éy, s) is a final configuration
and(d», s) can evolve tas,, s”).

(5) (81]82, s) can evolve taé’, s"), provided that eithe(s1, s) or (82, s) can do so.

(6) (rv.8,s) can evolve ta§’, s’), provided that there exists ansuch that(é?, s) can
evolve to(&', s"). Heres? is the program resulting frodby substitutingy with the
variablex. 4

(7) (8*,s) can evolve ta(§’; 8*, s") provided that(s, s) can evolve ta8’, s"). Observe
that(8*, s) can also not evolve at all§*, s) being final by definition (see below).

Final(é, s) tells us whether a prograsncan be considered to be already ifireal state

(legally terminated) in the situation Obviously we havé&inal(nil, s), but alsoFinal(5*, s)
sinces™* requires 0 or more repetitions &fand so it is possible to not executat all, the
program completing immediately.

The predicateFinal for programs without procedures is characterized by the set of

axiomsF:

(1) Empty program:

Final(nil,s) = True
(2) Primitive action:
Final(a,s) = False

4To be more precise; is substituted by a term of the formameOf(x), wherenameOf is used to convert
situation calculus objects/actions into program terms of the corresponding sort (see Appendix A).
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(3) Wait/test action:
Final(¢?,s) = False
(4) Sequence:

Final(81; 82,5) =
Final(81, s) A Final(82, s).

(5) Nondeterministic branch:

Final(§1 | 82,5) =
Final(81, s) v Final(82, s).

(6) Nondeterministic choice of argument:
Final(wrv.,s) = 3x.Final(sy,s).
(7) Ilteration:
Final(*,s) = True

The assertions above can be read as follows:
() (nil, s) is a final configuration.
(2) (a,s) is not final, indeed the program consisting of the primitive acti@mannot be
considered completed until it has performed
(3) (¢, 5) is not final, indeed the program consisting of the test agfi@rcannot be
considered completed until it has performed the ¢&st
(4) (81; 82, s) can be considered completed if b@th, s) and(s2, s) are final.
(5) (81162, s) can be considered completed if eitliér, s) or (82, s) is final.
(6) (rv.8,s) can be considered completed, provided that there exists such that
(87, s) is final, wheres? is obtained fron$ by substitutingy with x.
(7) (8*,s) is afinal configuration, since by} is allowed to execute 0 times.
In the following we denote by be the set of axioms fdrransandFinal plus those needed
for the encoding of programs as first-order terms.

4.3. Tran$ and Do

The possible configurations that can be reached by a pro§starting in a situation
are those obtained by repeatedly following the transition relation denotéhhgstarting
from (8, s), i.e., those in the reflexive transitive closure of the transition relation. Such a
relation, denoted byrans, is defined as the (second-order) situation calculus formula:

f
Trans(s.s.8'.s") = VI[..5TG.s.8.5)],

where. .. stands for the conjunction of the universal closure of the following implications:

True> T(8,s,6,s),
Transs, s, 8", s"YAT(S",s",8',sYDT@,s,8,s).
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Using Trans® andFinal we can give a new definition @o as:

DO, s,s") = 35" Trans'(s,s. 8, s") A Final(s', ).
In other wordsDo(3, s, s”) holds if it is possible to repeatedly single-step the progéam
obtaining a progran¥’ and a situation’ such that’ can legally terminate in'.
For Golog programs such a definition fddo coincides with the one given in [20].
Formally, we can state the the following result:

Theorem 1. Let Do, be the original definition of Do ifi20], presented in Sectiody and
Doy the new one given above. Then for each Golog progtam

CEVs,s'.D01(8,s,s') = Dox(s,s,s’).
Proof. See Appendix B. O

The theorem also holds f@ologprograms involving procedures when the treatment in
Section 7 is used.

Let us note that @ransstep which brings the state of a computation from one configura-
tion (8, s) to anotherd’, s") need not change the situation part of the configuration, i.e., we
may haves = s’. In particular, test actions have this property. If we want to abstract from
such computation steps that only change the state of the program, we can easily define a
new relation,TransSit that skips transitions that do not change the situation:

TransSits, s. 8. s) = VI'.[...5T'(.s.8. )]

where. .. stands for the conjunction of the universal closure of the following implications:

Trangs,s, 8, sYAs' #£sDT'(S,s,8,5),
Transs, s, 8", s) AT (8",s,8',s" )Y DT'(8,s,8,s).

5. Concurrency

We are now ready to defireonGolog an extended version @ologthat incorporates
a rich account of concurrency. We say ‘rich’ because it handles:

e concurrent processes with possibly different priorities,

e high-level interrupts,

e arbitrary exogenous actions.
As is commonly done in other areas of computer science, we model concurrent processes as
interleavingsof the primitive actions in the component processes. A concurrent execution
of two processes is one where the primitive actions in both processes occur, interleaved in
some fashion. So in fact, we never have more than one primitive action happening at any
given time. This assumption might appear problematic when the domain involves actions
with extended duration (e.qg., filling a bathtub). In Section 6.4, we return to this issue and
argue that in fact, there is a straightforward way to handle such cases.
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An important concept in understanding concurrent execution is that of a process
becomingblocked If a deterministic process is executing, and reaches a point where
it is about to do a primitive action in a situations but wherePosga, s) is false (or a
wait actiong?, wherep[s] is false), then the overall execution need not fail aGalog In
ConGolog the current interleaving can continue successfully provided that a process other
thans executes next. The net effect is tldat suspended or blocked, and execution must
continue elsewhere.

The ConGologlanguage is exactly lik&solog except with the following additional
constructs:

if ¢ then §1 elses,, synchronized conditional
while ¢ do §, synchronized loop
(51 || 82), concurrent execution
(81)) 82), concurrency with different priorities
sl concurrent iteration
(¢ — 8), interrupt.

The constructsf ¢ then §1 elsed2 andwhile ¢ do § are the synchronized versions of
the usual if-then-else and while-loop. They are synchronized in the sense that testing the
conditiong does not involve a transition per se: the evaluation of the condition and the first
action of the branch chosen are executed as an atomic unit. So these constructs behave in a
similar way to the test-and-set atomic instructions used to build semaphores in concurrent
programming [1]®

The construct(éy || §2) denotes the concurrent execution of the actiénsand §,.
(81 )) 82) denotes the concurrent execution of the acti®nands, with 1 having higher
priority thané,. This restricts the possible interleavings of the two processesxecutes
only whens; is either done or blocked. The next construdt, is like nondeterministic
iteration, but where the instancesdére executed concurrently rather than in sequence.
Just ass* executes with respect o like nil | § | (8;8) | (5;8;8) | ..., the programs!
executes with respect o like nil |8 | (S [|8) | (511811 8)].... See Section 6.3 for an
example of its use.

Finally, (¢ — §) is an interrupt. It has two parts: a trigger conditiorand a bodys.
The idea is that the body will execute some number of times. ¢f never becomes true,
8 will not execute at all. If the interrupt gets control from higher priority processes when
¢ is true, thens will execute. Once it has completed its execution, the interrupt is ready
to be triggered again. This means that a high priority interrupt can take complete control
of the execution. For exampléTrue — ringBell) at the highest priority would ring a bell
and do nothing else. With interrupts, we can easily write controllers that can stop whatever

5 Just as actions iGolog are external (e.g., there is no internal variable assignmen@oirGolog blocking
and unblocking also happen externally, Hlassand wait actions. Internal synchronization primitives are easily
added.

6in [20], nonsynchronized versions of if-then-else and while-loops are introduced by defining:
if ¢ then §1 elsedy d:ef [(#?:81) | (—¢? §2)] andwhile ¢ do § d:'Ef [(¢?: 8)*; =¢7?]. The synchronized
versions of these constructs introduced here behave essentially as the nonsynchronized ones in absence of con-
currency. However the difference is striking when concurrency is allowed.
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task they are doing to handle various concerns as they arise. They are, dare we say, more
reactive.

We now show howlransandFinal need to be extended to handle these constructs. (We

handle interrupts separately belowrans and Final for synchronized conditionals and
loops are defined as follows:

Trangif ¢ then 8, elseds, s, 8", s’) =

ols] A Trang81, s, 8, s") vV =¢[s] A Trang 8z, s, 8, s'),
Trangwhile ¢ do s, 5,8, s") =

Jy.(8' = y; while ¢ do 8) A ¢[s] A Trangs, s, v, s'),

Final(if ¢ then §1 elseda, s) =
o[s] AFinal(81, s) v —¢[s] A Final(82, s),

Final(while ¢ do d,s) =
—¢[s] Vv Final(é, s).

That is (if ¢ then §; elsedy, s) can evolve ta§’, s'), if either ¢[s] holds and(s1, s) can
do so, or—¢[s] holds and(s2, s) can do so. Similarly(while ¢ do §,s) can evolve to
(8"; while ¢ do 8, s'), if ¢[s] holds ands, s) can evolve tas’, s'). (if ¢ then§; elseds, s)

can be considered completed, if eitlggs] holds ands1, s) is final, or if =¢[s] holds and

(82, 5) is final. Similarly, (while ¢ do §,s) can be considered completed if eithep[s]
holds or(8, s) is final.

For the constructs for concurrency the extensioRioél is straightforward:
Final(81 || 82,5) = Final(81,s) A Final(82, s),
Final(81)) 82,s) = Final(d1,s) A Final(s2, s),
Finals!,s) = True

Observe that the last clause says that it is legal to executeith# zero times. Folrans
we have the following:

Trang(8y || 82,s,8",s") =

3y.8 = (y || 82) A Trang8y, s, y,s') V

y.8'= (11l y) A Trandsz, s, v, s"),
Trang8y ) 82,5,8,s") =

3y.8 = (y ) 82) A Trand81, s, y,8") V

Jy.8 = (1) ¥) A Trand8z, s, v, 8" ) A =3¢, s”. Trang81, s, ¢, 5”),
Trangs!, s, 8',s") =

3y.8' = (y || 8 A Trangs, s, y, s').

In other words, you single ste@1 || §2) by single stepping eithef; or 52 and leaving
the other process unchanged. The)) §2) construct is identical, except that you are only
allowed to single step, if there is no legal step fo31. This ensures thak will execute
as long as it is possible for it to do so. Finally, you single stepy single stepping, and
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what is left is the remainder éfas well ass! itself. This allows an unbounded number of
instances 08 to be running.

Observe that with(§1 || 82), if both 61 and 2 are always able to execute, the amount
of interleaving between them is left completely open. It is legal to execute one of them
completely before even starting the other, and it also legal to switch back and forth after
each primitive or wait action. It is not hard to define, however, new concurrency constructs
Imin @and ||max that require the amount of interleaving to be minimized or maximized
respectively. We omit the details.

Regarding interrupts, it turns out that these can be explained using other constructs of
ConGolog

(¢ — 8) oef while Interrupts runningdo
if ¢ then$ elseFalse?

To see how this works, first assume that the special flutatrupts runningis identically

True. When an interrupt¢ — 8) gets control, it repeatedly executgsintil ¢ becomes
false, at which point it blocks, releasing control to anyone else able to execute. Note
that according to the above definition ©fans no transition occurs between the test
condition in a while-loop or an if-then-else and the body. In effectj tbecomes false,

the process blocks right at the beginning of the loop, until some other action rpakes
true and resumes the loop. To actually terminate the loop, we use a special primitive
action stop interrupts whose only effect is to makkterrupts running false. Thus, we
imagine that to execute a prograincontaining interrupts, we would actually execute
the program{start interrupts; (8 )) stop interruptg} which has the effect of stopping all
blocked interrupt loops ié at the lowest priority, i.e., when there are no more actiorss in
that can be executed.

Finally, let us consider exogenous actions. These are primitive actions that may occur
without being part of a user-specified program. We assume that in the background theory,
the user declares, using a predicata, which actions can occur exogenously. We define
a special program for exogenous events:

Sexo = (7 a. Exda)? a)*.

Executing this program involves performing zero, one, or more nondeterministically
chosen exogenous everlftsThen we make the user-specified progr&min concurrently
with Sexo:

§ |l dexo
In this way we allow exogenous actions whose preconditions are satisfied to asynchro-

nously occur (outside the control &f during the execution of.

7 Observe the use of: the program nondeterministically chooses an acdtiptests that thia is an exogenous
event, and executes it.
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5.1. Formal properties of Trans and Final without procedures

We are going to show that the axioms fasansandFinal for the whole ofConGologare
definitional, in the sense that they completely charactéfraeasandFinal for programs
without procedures.

Lemma 1. For any ConGolog program terni(x) containing only variablest of sort
object or action, there exist two formulds(x, s, 8, s") and ¥ (%, s), wherex, s, §’, s and

X, s are the only free variables i and in¥ respectively, that do not mention Final and
Trans, and are such that

CE=VX,s, 8, s . Trangs(x),s,8,s") = @(,s,8,s), (1)
CleVi,s Final(s(®).s) = W(&.s). )

Proof. For both (1) and (2), the proof is similar; it is done by induction on the program
structure considering as base cases programs of therfibyma, and¢?. Base cases: the
thesis is an immediate consequence of the axionisarfsandFinal since the right-hand
side of the equivalences does not menflomnsandFinal. Inductive cases: by inspection,

all the axioms have on the right-hand side simpler program terms, which contain only
variables of sort object or action, as the first argumefirémsandFinal, hence the thesis

is a straightforward consequence of the inductive hypothesis.

It follows from the lemma that the axioms i andF, together with the axioms for
encoding of programs as first-order terms, completely determine the interpretation of the
predicate§ransandFinal on the basis of the interpretation of the other predicates. That is
7T andF implicitly definethe predicate$ransandFinal. Formally, we have the following
theorem:

Theorem 2. There are no pair of models &f that differ only in the interpretation of the
predicates Trans and Final.

Proof. By contradiction. Suppose that there are two modé{sand M» of C that agree

in the interpretation of all nonlogical symbols (constant, function, predicates) other than
either Trans or Final. Let's say that they disagree dfrans i.e., there is a tuple of
domain valuess, §,4’, §) such that(s, §,4’,§) € Trand’t and (8, 5, 8', §') ¢ Trand’2.
Considering the structure of the s@rograms(see Appendix A), we have that for every
value of the domain of sofrograms$ there is a program termi(x), containing only
variablesx of sort object or action, such that for some assignmetatx, §M1:0 = §M2.0 —

5. Now let us consider three variables’, s’ and an assignment such that’(¥) = o (¥),

o'(s) =35, 0'(8") =48, ando’(s’) = §'. By Lemma 1, there exists a formuéa such that
neitherTransnor Final occurs in@ and:

M;, o’ =Trangé,s,8',s") iff M;, o' =®(X,s,8,s) i=1,2

Since,M1,0’ = ®(x,s,8,s) iff M2, 0’ =@ (X,s,8,s’), we get a contradiction. O
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6. Some examples
6.1. Two robots lifting a table

Our first example involves a simple case of concurrency: two robots that jointly lift a
table. Test actions are used to synchronize the robots’ actions so that the table does not tip
so much that objects on it fall off. Two instances of the same program are used to control
the robots.

e Objects:

Two agentsyr.Robotr) = r =Rob v r =Rob.
Two table endsYe. TableEnde) = e=End; v e=End.

e Primitive actions:

grab(rob, end),
releasérob, end,
vmoverob, z) move robot arm up or down kyunits

e Primitive fluents:

Holding(rob, end s),
vpogend s) =z height of the table end

Initial state:

Vr, e. —=Holding(r, e, So),
Ve.vposge, So) = 0.

e Precondition axioms:

Posggral(r, e),s) = Vr'.—Holding(r', e, s) A Ye'. =Holding(r, ¢, 5),
Possreleasér, ¢), s) = Holding(r, e, s),
Posgvmoveér, z),s) = True

e Successor state axioms:

Holding(r, e, do(a, s)) =
a = grab(r, e) v Holding(r, e, s) A a # releasér, e),

vpose, do(a,s))=p =
3r, z.(a = vmovér, z) A Holding(r, e, s) A p =Vvpoge, s) +z) vV
dr.a =releasér,e) A p=0v
p =Vpoge, s) A —3r, z.(a = vmovér, z) A Holding(r, e, s)) A
—3r.a =releasér, e).
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The goal here is to get the table up, but to keep it sufficiently level so that nothing falls off.
We can define these as follows:

TableUgs) def VPosSENdy, s) > H A VPOSENd, s) > H
(both ends of the table are higher than some threshg|d

Levels) def |[VPOSENdy, s) — vPoSENd, s)| < Tol
(both ends are at the same height to within a thresfold

So the goal is

Goal(s) def TableUps) A Vs'.s’" <s D Levels)

and the claim is that this goal can be achieved by haRaly andRoky each concurrently
execute the same proceduatd defined as:

proc ctrl(rob)
mwe.[TableEnde)?; grab(rob, e)];
while —=TableUgnow) do
SafeToLiftrob, now)?;
vmovérob, Amounj
end,

whereAmountis some constant such thakOAmount< Tol, andSafeToLifiis defined by

SafeToLiftrob, s) def Je,e’. e # ¢’ A TableEnde) A TableEnde') A
Holding(rob, e, s) A vpose) < vposge') + Tol — Amount

Here, we use procedures simply for convenience and the reader can take them as
abbreviations. A formal treatment for procedures will be provided in Section 7.
So formally, the claim is®

CUD k= Vs.Do(ctrl(Rohy) ||ctrl (Rob), So, s) D Goal(s).

Here is an informal sketch of a proddo holds if and only if there is a finite sequence
of transitions from the initial configuratio¢ctrl (Rohy) ||ctrl(Rokp), Sp) to a configuration
that is Final. A program involving two concurrent processes can only get teinal
configuration by reaching a configuration thafisal for both processes. The processes
in our program involve while-loops, which only reach a final configuration when the loop
condition becomes is false. So the table must be high enough in the final situation.

It remains to be shown that the table stayed level. betstand for the action
vmovérob;, Amounj. Suppose to the contrary that the table went too higlcod; held
by Roly, and consider the first configuration where this became true. This situation in this
configuration is of the forndo(vy, s) where

VvpogENdy, do(v1, 5)) > vpoSEndy, do(vy, s)) + Tol.

8Actually, proper termination of the program is also guaranteed. However, stating this condition formally, in
the case of concurrency, requires additional machinery, sin€o(ctrl(Roby)|ctrl(Roby), S, s) is too weak.
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However, at some earlier configuration, we had to h&aéeToLiftRoh, s") with no
intervening actions byrohy, otherwise the last; would not have been executed. This
means that we have

VvposSENdy, s') < vpoSEnd, s’) 4+ Tol — Amount
However, if all the actions betweshands are byRoky, sinceRoly can only increase the
value ofvpogEnd), it follows that

vposENnd, s) < vpoSEnd, s) 4+ Tol — Amount

that is, thatSafeToLiftwas also true just before the fingd action. This contradicts the
assumption that; only addsAmountto the value ovpoSEndy).

6.2. A reactive multi-elevator controller

Our next example involves a reactive controller for a bank of elevators; it illustrates the
use of interrupts and prioritized concurrency. The example will use the following terms
(wheree stands for an elevator):

e Ordinary primitive actions:

goDowrte) move elevator down one floor
goUp(e) move elevator up one floor
buttonResé&t) turn off call button of floom
toggleFarte) change the state of elevator fan
ringAlarm ring the smoke alarm.

e Exogenous primitive actions:
regElevatotn) call button on floow is pushed
changeTem(e) the elevator temperature changes
detectSmoke the smoke detector first senses smoke
resetAlarm the smoke alarm is reset.

e Primitive fluents:

floor(e,s) =n the elevatoris on floot, 1<n <6
tempe, s) =t the elevator temperaturess
FanOn(e, s) the elevator fan is on
ButtonOrin, s) call button on floom is on
Smokeés) smoke has been detected.

e Defined fluents:
TooHote, s) gef tempe, s) > 1,
TooColde, s) def tempe, s) < —1.

We begin with the following basic action theory for the above primitive actions and fluents:
e Initial state:

floor(e, So) =1, —FanOnSy), tempe, So) =0,
ButtonOn3, Sp), ButtonOri6, Sp).
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e Exogenous actions:

VYa.Exdla) = a = detectSmoke a = resetAlarmv
a = changeTem@) Vv dn.a = reqElevato(n).

e Precondition axioms:

PosggoDowri{e),s) = floor(e,s) # 1,

PosggoUp(e),s) = floor(e,s) # 6,
PosgbuttonResét), s) = True

PosstoggleFarie),s) = True

PosgringAlarm) = True,

PosgreqElevato(n),s) = (1<n <6) A —=ButtonOnin, s),
PosgchangeTemp) = True

PosgdetectSmoke) = —Smokés),

PosgresetAlarms) = Smokeés).

e Successor state axioms:

floor(e,do(a, s)) =n =
(a =goDowr(e) A n =floor(e,s) — 1) v
(a =goUp(e) An =floor(e,s) + 1) v
(n =floor(e, s) A a #goDowr(e) A a # goUp(e)),

tempe, do(a, s)) =t =
(a =changeTemfe) A FanOrt(e, s) A t =tempe,s) — 1) v
(a =changeTemf) A —FanOne, s) A t =tempe, s) + 1) v
(t =tempe, s) A a # changeTem)),

FanOn(e,do(a, s)) =
(a =toggleFarie) A =FanOne, s)) v
(FanOre, s) A a # toggleFarte)),

ButtonOrin, do(a, s)) =
a = reqElevatorfn) v
(ButtonOrin, s) A a # buttonReséh)),

Smokédo(a, s)) =
a = detectSmoke
(Smokés) A a # resetAlarm.

Note that many fluents are affected by both exogenous and programmed actions. For
instance, the fluenButtonOnis made true by the exogenous acti@yElevator (i.e.,
someone calls for an elevator) and made false by the programmed lgtionReseti.e.,

when an elevator serves a floor).
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Now we are ready to consider a basic elevator controller for an elewatbmight be
defined by something like:

while 3n.ButtonOrn) do
mn.{BestButton)?; serveFloore, n)};
while floor(e) £ 1 do goDowrte).

The fluentBestButtonwould be defined to select among all buttons that are currently
on, the one that will be served next. For example, it might choose the button that has
been on the longest. For our purposes, we can take it to b&aitgnOn The procedure
serveFloore, n) would consist of the actions the elevator would take to serve the request
from floorn. For our purposes, we can use:

proc serveFloofe, n)
while floor(e) < n do goUp(e);
while floor(e) > n do goDowr{e);
buttonReséh)

end.

We have not bothered formalizing the opening and closing of doors, or other nasty
complications like passengers.

As with Golog we try to prove an existential and look at the bindings forsh&hey
will be of the formdo(a, So) wherea are the actions to perform. In particular, using this
controller progrand, we would get execution traces like

CUD E=Do(S || Sexo, So, do([u, u, b3, u,u,u,be,d,d,d,d,d], So)),
CUD =Do($ || Sexo, So, do([u, ra, u, bz, u, ba,u,u,rz,be,d,d,d,d, by, d], So)),

whereu = goUp(e), d = goDowne), b,, = buttonResé&t), r, = reqElevatofn), andD is
the basic action theory specified above. In the first run there were no exogenous actions,
while in the second, two elevator requests were made.

This controller does have a big drawback, however: if no buttons are on, the first loop
terminates, the elevator returns to the first floor and stops, even if buttons are pushed on its
way down. It would be better to structure it as two interrupts:

(3n.ButtonOrin) —
wn.{BestButtom)?; serveFloore, n)}),

(floor(e) # 1 — goDowrte))

with the second at lower priority. So if no buttons are on, and you're not on the first floor,
go down a floor, and reconsider; if at any point buttons are pushed exogenously, pick one
and serve that floor, before checking again. Thus, the elevator only quits when it is on the
first floor with no buttons on.
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With this scheme, it is easy to handle emergency or high-priority requests. We would
add

(3dn.EButtonOrin) —
wn.{EButtonOrin)?; serveEFloote, n)})

as an interrupt with a higher priority than the other two (assuming suitable additional
actions and fluents).
To deal with the fan, we can add two new interrupts:

(TooHote) A —=FanOrn(e) — toggleFarie)),
(TooColde) A FanOr(e) — toggleFarie)).

These should both be executed at the ighestpriority. In that case, while serving a
floor, whatever that amounts to, if the temperature ever becomes too hot, the fan will be
turned on before continuing, and similarly if it ever becomes too cold. Note that if we
did not check for the state of the fan, this interrupt would loop repeatedly, never releasing
control to lower priority processes.

Finally, imagine that we would like to ring a bell if smoke is detected, and disrupt normal
service until the smoke alarm is reset exogenously. To do so, we add the interrupt:

(Smoke— ringAlarm)

with a priority that is less than the emergency button, but higher than normal service. Once
this interrupt is triggered, the elevator will stop and ring the bell repeatedly. It will handle
the fan and serve emergency requests, however.

Putting all this together, we get the following controller:

({TooHote) A —=FanOn(e) — toggleFarie)) ||
(TooColde) A FanOne) — toggleFarie))) ))

(3n.EButtonOrin) —

wn.{EBuUttonOrin)?; serveEFloofe, n)}) ))
(Smoke— ringAlarm) )
(3n.ButtonOrin) —

mn.{BestButton)?; serveFloore, n)}) ))
(floor(e) # 1 — goDowrte)).

Using this controlles,, we would get execution traces like
CUD E=Do(6, || Sexo, So, do([u, u, b3, u,u,u,bs,d,d,d,d,rs,u,u,u,bs, d,d,d,
dl, So)),
CUD E=Do(s, || exo, So, do([u, u, b3, u,z,a,a,a,a,h,u,u,be, d,d,d,d,d],
S0)).
CUD = Do, || Sexo, So, do([u, t,u, b3, u,t, fyu,t,t,u,t,be,d,t, f,d, t,d,d,
dl, So)),
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where 7z = detectSmokea = ringAlarm, & = resetAlarm ¢+ = changeTempand f =
toggleFan In the first run, we see that this controller does handle requests that come in
while the elevator is on its way to retire on the bottom floor. The second run illustrates how
the controller reacts to smoke being detected by ringing the alarm. The third run shows
how the controller reacts immediately to temperature changes while it is serving floors.
Note that this elevator controller uses 5 different levels of priority. It could have been
programmed irGologwithout interrupts, but the code would have been a lot messier.

Now let us suppose that we would like to write a controller that handles two independent
elevators. InConGolog this can be done very elegantly usit® || §2), whereés is the
above program witle replaced byElevator andss is the same program withreplaced
by Elevatop. This allows the two processes to work completely independently (in terms
of priorities).® Forn elevators, we would us@s || - - - || 8,).

6.3. A client—server system

In some applications, it is useful to havewmboundediumber of instances of a process
running concurrently. For example in an FTP server, we may want an instance of a manager
process for each active FTP session. This can be programmed usidl ¢bacurrent
iteration construct.

Let us give a high-level sketch of how this might be done. Suppose that there is
an exogenous actionewClientcid) that occurs when a new client with the IEid
first requests service. Also assume that a proceseregcid) has been defined, which
implements the behavior required for the server for a given client. To set up the system, we
run the program:

[ cid. acquirgcid); servecid)]!:
—3cid. (ClientWaitingcid))?

Here, we assume that when the exogenous actemClientcid) occurs, it makes the
fluent ClientWaitingcid) true. Then, the only way the computation can be completed is
by generating a new process that first acquires the client by daqugirgcid), and then
serves it. We formalize this as follows:

Posgacquirgcid),s) = ClientWaitingcid),

ClientWaitingcid, do(a, s)) =
a = newClientcid) v ClientWaitingcid, s) A a # acquirgcid)].

Then, only a single process can acquire a given client, siigggiireis only possible
when ClientWaitingcid) is true and performing it makes this fluent false. The whole
program can only reach a final configuration if it forks exactly the right number of server
processes: at least one for each client because a server can only acquire one client, and no
more than one for each client because servers can be activated only if they can acquire a
client.

9 Of course, when an elevator is requested on some floor, both elevators may decide to serve it. It is easy to
program a better strategy that coordinates the elevators: when an elevator decides to serve a floor, it immediately
makes a fluent true for that floor, and the other elevator will not serve a floor for which that fluent is already true.



132 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109-169

6.4. Actions with extended duration

One possible criticism of our approach to concurrency is that it does not work when
we consider actions that have extended duration. Consider singing while filling the bathtub
with water, for example. If one of the actions involved is “filling the bathtub”, and the other

actions are “singing do”, “singing re”, and “singing mi”, say, then there are exactly four
possible interleavings,

[filling ; do; re; mi],
[do; filling ; re; mi],
[do; re; filling ; mi],
[do; re; mi; filling],

but none of them capture the idea of singing and filling the tub at the same time. Moreover,
the prospect of replacing the filling action by a large number of component actions (that
could be interleaved with the singing ones) is even less appealing.

To deal with this type of case, we recommend the following approach (see [33] for a
detailed presentation): instead of thinking of filling the bathtub aaction or group of
actions, think of it as atatethat an agent could be in, extending possibly over many
situations. The idea is that the agent can be in many such states simultaneously, including
listening to the radio, walking, and chewing gum. For each such state, we need two
primitive actions and a fluent; for the bathtub, they st&rtFilling, which puts the agent
into the state, andndFilling, which terminates it, as well as the fludfilingTub, which
holds in those situations where the agent is filling the tub. Formally, we would express this
with a successor state axiom as follows:

FillingTub(do(a, s)) =
a = startFilling v FillingTub(s) A a # endFilling.

Since thestartFilling and endFilling actions can be taken to be instantaneous, the
interleaving account is once again plausible. If we define a complex action

FilTheTub €' [startFilling ; endFilling],

and run it concurrently with the singing, then we get these possible interleavings:

[startFilling ; endFilling; do; re; mi],
[startFilling ; do; endFilling; re; mi],
[startFilling ; do; re; endFilling; mi],
[startFilling ; do; re; mi; endFilling],
[do; startFilling ; endFilling; re; mi],
[do; startFilling ; re; endFilling; mi],

[do; startFilling ; re; mi; endFilling],
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[do; re; startFilling ; endFilling; mi],
[do; re; startFilling ; mi; endFilling],

[do; re; mi; startFilling ; endFilling].

A better model would be something like

FilTheTub &' [startFilling ; (waterLevel H)?; endFilling],

which would rule out interleavings where the filling stops too soon. The most natural way
of modeling the water level is as a continuous function of time:Lo+ R x t, whereLg is

the initial level, R is the rate of filling (taken to be constant), anid the elapsed time. One
simple way to accommodate this idea within the situation calculus is to assume that every
action has a duratiodur(a) (which we could also make dependent on the situation the
action is performed in). Actions such srtFilling can have duration 0, but there must be
some action, if only aimePasseswith a non-0 duration. We then describe thaterLevel
functional fluent by:

waterLeveldo(a, s)) = waterLevels) + waterRatés) x dur(a),
waterRatédo(a, s)) = if FillingTub(s) then R else0.

So as long as a situation is in a filling-the-tub state, the water level rises according to the
above equation. In terms of concurrency, the result is that the only allowable interleavings
would be those where enough actions of sufficient duration occur betwestattilling
andstopFilling.

Of course, this model of the continuous process of water entering the bathtub does not
allow us to predict the eventual outcome, for example, the water overflowing if a tap is not
turned off, etc. A more complex program, typically involving interrupts, would be required,
so that suitable “trajectory altering” actions are triggered under the appropriate conditions.

7. Extending the transition semantics to procedures

We now extend the transition semantics introduced above to deal with procedures.
Because a recursive procedure may do an arbitrary number of procedure calls before it
performs a primitive action or test, and such procedure calls are not viewed as transitions,
we must use a second-order definitionTednsand Final. In doing so, great care has to
be put in understanding the interaction between recursive procedures and the very general
form of prioritized concurrency allowed i@onGolog

Let proc P1(v1)81€end; .. .; proc P,(v,)8, endbe a collection of procedure definitions.

We call such a collection aenvironmentind denote it byenv. In a procedure definition
proc P;(v;)8; end, P; is the name of théth procedure ifEny; v; are its formal parameters;
and g; is the procedure body, which is @onGologprogram, possibly including both
procedure callsand new procedure definitions. We usall-by-valueas the parameter
passing mechanism, afekical (or static) scopeas the scoping rule.
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Formally we introduce three program constructs:

e P(7) whereP is a procedure name andctual parameters associated to the procedure
P; as usual we replace the situation argument in the terms constitutiygnow.
P(7) denotes a procedure call, which invokes procedtan the actual parameters
evaluated in the current situation.

e {Env; §}, whereEnvis an environment anél is a program extended with procedures
calls.{Env, §} binds procedures calls ihto the definitions given ifenv. The usual
notion of free and bound apply, so for, e.g..{pproc P1() a end; P2(); P1()}, P1 is
bound but?; is free.

e [Env: P(r)], where Env is an environmentP a procedure name and actual
parameters associated to the procedRirgEnv: P(r)] denotes a procedure call that
has been contextualized: the environment in which the definitigh isfto be looked
foris Env.

We define the semantics @bnGologprograms with procedures by defining bdifans

andFinal by a second-order formula (instead of a set of axiof¥s)iransis defined as
follows:

Trangsé,s,8’,s’) = VT.[...DT(@,s,8,s)],
where. .. stands for the conjunction &F™@"S—i.e., the set of axiom§™ modulo textual
substitution ofTranswith 7—and (the universal closure of) the following two assertions:

/o _ P (1) /o
T{Env 8},s,8",s") = T(S[Envpi(;)],s,S,s),

T(Env: P(D],s,8,s") = T({Env 5P§[’;]}, 5,8,s"),
P;(7)

[EnvP; (7)) -
replaced by their contextualized version (this gives us the lexical scope), and&)ﬁl’;igfe
denotes the body of the proceduPein Envwith formal parameters substituted by the

actual parametersevaluated in the current situation.
Similarly, Final is defined as follows:

where$ denotes the progradwith all procedures bound blnvand free ins

Final(s,s) = VF.[...D F(,s)],
where. .. stands for the conjunction cﬂ“ﬁ‘“a'—i.e., the set of axiomg modulo textual
substitution ofFinal with F—and (the universal closure of) the following assertions:

_ P (1)
F({Env, §},s) = F((S[Envpi(?)]’s)’

F(EV: P()].s5) = F({Envopll }.s).
Note that no assertions for (uncontextualized) procedure calls are present in the definitions

of Trans and Final. Indeed a procedure call which cannot be bound to a procedure
definition neither can do transitions nor can be considered successfully completed.

10For compatibility with the formalization in Section 4, we tréatinsandFinal as predicates, although it is
clear that they could be understood as abbreviations for the second-order formulas.
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Observe also the two uses of substitution to deal with procedure calls. When a program
with an associated environment is executed, for all procedure calls bourEnyy
we simultaneously substitute the corresponding procedure calls, contextualized by the
environment of the procedura order to deal with further procedure calls according to
the static scopeules. Then when a (contextualized) procedure is actually executed, the
actual parameters are first evaluated in the current situation, and then are substituted for
the formal parameters in the procedure boditshus yieldingcall-by-valueparameter
passing.

The following example programktscillustratesConGologs static scoping:

{proc P1()
a

end;
proc P2()

P10
end;
proc P3()

{proc P1()
b

end;
P2(); P10)
}

end;
P3()
1.

One can show that for this program, the sequence of atomic actions performed will be
followed by b (assuming that both andb are always possible):

Vs.[Possa, s) A Posgb, s)] D

Vs, s’ [D0(8stsg 5, s') = 5" = do(b, do(a, s))].
To see this consider the following. Let

Env def proc P1() a end;

proc P2() P1() end;
proc P3() {Enw; P2(); P1()} end,

Enw def proc P1() b end.
Then it is easy to see that:

Trang8stse s, 68', s')
= Trang{Enw; P3()},s,8",s")

1170 be more precise, every formal parametés substituted by a term of the fornameOf(¢[s]), where again
nameOf is used to convert situation calculus objects/actions into program terms of the corresponding sort (see
Appendix A).
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Trang[Env : P30)],s,8,s")

Trang{Envi; {Enw; P2(); P10}}, 5,8, s")
Trans{Enw; [Envi : P20)]; P10}, 5.8, s)
Trans[Enwv : PoO]; [Enw : P10)],s, 8, s)
Trans({Envi; PO} [Env: P10, s, 8", s")
Trang[Env : P1O]; [Enw: P10],s,8',s)

Tranga; [Enw : P10], 5,8, s)

Possa, s) A s’ =do(a, s) A8 = (nil; [Env : PLO)]).

Similarly, one can show thatTrang[Enw : P1()], do(a, s), nil, do(b, do(a, s))) and
Final(nil, do(b, do(a, 5))), which yields the thesis.
Our next example illustrateéSonGologs call-by-value parameter passing:

{ proc P(n)
if (n=1) thennil
elsegoDown P(n — 1)
end,
P(floor)
}.

Intuitively, this program is intended to bring an elevator down to the bottom floor of a
building. If we run the program starting in situatiS, the procedure calp (floor) invokes

P with the value of the functional fluefiborin Sp, i.e., P is called withfloor[ Sg], the floor

the elevator is on irfp, as actual parameter. GonGologused call-by-name parameter
passing,P would be invoked with the termffoor” as actual parameter, and the elevator
would only go halfway to the bottom floor. Indeed at each iteration of the procedure the
call P(n — 1) would be evaluated by textually replacindy floor, which at that moment

has already decreased by 1.

As mentioned earlier, the need for a second-order definitiohrafiss, s, 8’, s’) and
Final(s, s) when procedures are introduced comes from recursive procedures. The second-
order definition allows us to assign a formal semantics to every such procedure, including
viciously circular ones. The definition ofrans disallows the execution of such ill-
formed procedures. At the same time the definitioriofal considers them not to have
completed (nonfinal). For example, the progrgmoc P() P() end; P()} does not have
any transitions, but it is not final for any situatien'?

7.1. Formal properties of Trans and Final with procedures

We observe that the second-order definition¥ransandFinal can easily be putin the
following form:

Trangs, s, §',s’) =
VT.[V81, 51,62, 52. D1randT, 81, 51, 62, 52) = T (81, 51, 62, 52)]
OT(,s,8,s"),

12 Note that botlGologandConGologdo not allow for Boolean procedures to be used in tests. Introducing such
kind of procedures requires particular care to avoid counterintuitive implications.
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Final(s,s,8’,s") =
VF.[V81, s1. PFinal(F, 81, s1) = F (81, 51)]
D F(,s),

where ®1rans and @fingl are obtained by rewriting each of the assertions in the definition
of TransandFinal so that only variables appear in the left-hand part of the equations, i.e.:
T@,s,8,s) = ¢:(T,8,s,8,5), F(8,s) = ¢s(F,8,s),

and then getting the disjunction of all right-hand sides, which are mutually exclusive since
each of them deals with programs of a specific form.

From such definitions, natural “induction principles” emerge (cf. the discussion on
extracting induction principles from inductive definitions in [34]). These are principles
saying that to prove that a proper® holds for instances ofransandFinal, it suffices
to prove that the property is closed under the assertions in the definitiom@nsand
Final, i.e.:

Prrand( P, 81, 51, 82,52) = P(31, 51, 82, 52),
@rinal(P, 81,51) = P(31,51).
Formally we can state the following theorem:

Theorem 3. The following sentences are consequences of the second-order definitions of
Trans and Final respectively

VP.[V81, 51,082, 52. PTrans( P, 81, 51, 82, s2) = P (81, 51, 82, 52)] D
vs,s,8, s . Trang$, s, 8, s') D P(6,s,8,s)),

VP.[V81, s1. PFinal(P, 61, 51) = P(61,51)] D
Vs, s. Final(s, s, 8, s') D P(5, s).

Proof. We prove only the first sentence. The proof of the second sentence is analogous.
By definition we have:

vs8,s, 8, s’ . Trangs, s, 8',s’) =
VP.[V81, 51,02, 2. PTrand( P, 81, 51, 82, 52) = P (81, 51, 82, 52)]
O P(S,s,8,8).
By considering the only-if part of the above equivalence, we get:
vs8,s, 8, s’ . Trangs, s, 8',s') A
VP.[V81, 51,82, 2. PTrans( P, 81, 51, 82, 52) = P (31, 51, 62, 52)]
D P@G,s, 8, s).
So moving the quantifiers around we get:
VP.[Vé1, 51,82, 52. PTrans( P, 81, 51, 82, 52) = P(31, 51, 62, 52)| A

vs,s, 8, s . Trangs, s, 8, s")
D P(S,s,8,s),

and hence the thesis.O
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These induction principles allow us to prove tfiaans and Final for programs with
procedures can be considered an extension of those for programs without procedures.

Theorem 4. With respect tocConGologprograms without procedures, Trans and Final
introduced above arequivalento the versions introduced in Sectidn

Proof. Let us denotdransdefined by the second-order sentencd@nssoL and Trans
implicitly defined through axioms in Section 4 dsango.. Since procedures are not
considered we can drop, without loss of generality, the assertior{&for§} and[Env:
P(1)] in the definition ofTranssoL. Then:

e Transsou(8,s,8’,s’) D TrangoL(8,s,d’,s’), is proven simply by noting that
Trang-oL satisfies (is closed under) the assertions in the definitiofraris o, and
then using Theorem 3.

e TrangoL(8,s,8’,s") D Transou(s, s, 8, s’), is proven by induction on the structure
of § considering as base cases, a, and ¢?, and then applying the induction
argument.

Similarly for Final. O

It is interesting to examine wheth@&ransandFinal introduced above are themselves
closed under the assertions in their definitions. Foral a positive answer can be
established:

Theorem 5. The following sentence is a consequence of the second-order definition of
Final:
DEinal(Final(é8, s),8,s) = Final(s, s).

Proof. Observe tha®gina is monotonicl3 i.e.:
VZla ZZ'[V(Sv S'Zl((sv S) D 22(87 S)] D [VS, S'®Final(zlv 87 S) D ¢F|nal(225 85 S)]'

Hence the thesis is a direct consequence of the Tarski—Knaster fixpoint theoremf40].

For Transan analogous result does not hold in general. Indeed consider the following
programg,:

{ proc Q0
00 ) a
end,
00
}.

Observe that the definition dfansimplies thafTrangs,, s, 8, s") = False Hence ifTrans
was closed undebrrans then we would hav@rangs, )) a,s,d’,s’) = Tranda, s, 8', s"),
which would imply thafTrangs,, s, 8, s') = Tranda, s, 8, s"). Contradiction.

131 fact syntactically monotonic.
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Obviously there are several classe€ohGologprograms that are closed undefrans
For instance, if we disallow prioritized concurrency in procedures we get one such class.
Another such class is that obtained by allowing prioritized concurrency to appear only in
nonrecursive procedures. Yet another quite general class is immediately obtainable from
what is discussed next.

8. First-order Transand Final for procedures

In this section we investigate conditions that allow us to replace the second-order
definitions of TransandFinal for programs with procedures by the first-order definitions,
as in the case where procedures are not allowed.

8.1. Guarded configurations

We define a quite general condition on configurations (pairs of programs and situations)
that guarantees the possibility of using first-order axioms Tmans and Final for
procedures as well. To this end we introduce a notion of “configuration rank”. Intuitively, a
configuration is of rank if and only if makes at most (recursive) procedure calls before
trying to make an actual program step (either an atomic action or a test).

We define the rank of a configuration inductively. A configuration is of ramenoted
by Rankn, é, s) if and only if:

Rankn, nil,s) = True

Rankn,a,s) = True

Rankn, ¢?,s) = Trug

Rankn, §1; 82,s) = RanKn, 81, s) A (Final(81, s) D Rankn, 82, 5)),
Rankn, 81 ]682,5) = Rankn,81,s) A Rankn, 82, s),

Rankn, 7v.8,s) = Vx.Rankn,s},s),

Rankn, §*,s) = Rankn,$,s),

Rankn, if ¢ then 81 elseés,s) = ¢[s] ARankn,d1,s) Vv
—¢[s] ARankn, 82, s),

Rankn, while ¢ do s,s) = ¢[s] D Rankn,3d,s),
Rankn, 81 || 82,s) = Rankn, é1,s) A Rankn, 82, s),

Rankn, 81 )) 82,s) = Rankn,d1,s) A
((—387, s".Trang81, s, 81, s")) D Rankn, 82, 5)),

Ranl(n,é”,s) = Rankun,$,s),

_ P;(1)
Rankn, {Env §},s) = Ranl(n,S[EnvPi(;)],s),

Rankn, [Env: P(1)],s) = Rankn—1,{Env, (Sp;[’;]}, 5).
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A configuration(s, s) is guardedif and only if it is of rankn for somen:
Guardeds, s) & dn.Rankn, §, s).
8.2. First-order Trans and Final for procedures

For guarded configurations, we do not need to use the second-order definitivaa®f
and Final when dealing with procedures. Instead we can use the first-order axioms in
Section 4 together with the following?

I P; (1) a;
Trang{Env; 8},s5,8",s") = Trans(S[EMi(;)],s,a .s),

Trans([Env: P()],s,8,s") = Trang{Env 5P§[§]}, 5,8,s"),

: - Pi (1)
Final({Env 8},s) = Fmal(S[EmPi(f)],s),

Final(Env: P()],5) = Final({Env 853" 1 5).
Let us callTrangoL andFinalgoL the predicates determined by the first-order axioms

and TranssoL and FinalsoL the original predicates determined by the second-order
definition for procedures. We can prove the following result:

Theorem 6.

Guardeds, s) D

Vs’ s’ Transsol($, s, 8, s') = TransoL (8, s, 8, s),
Guardeds, s) D

Finalso(8, s) = FinalroL (8, s).

Proof (Outling). By induction on the rank of the configuratio s). For rank O the thesis
is trivial. For rankn + 1, we assume that the thesis holds for all configurations of sank
and show the thesis by induction on the structure of the program consiaeringe? and
[Env: P(7)] as base cases.

A configuration(s, s) has aguarded evolutionif and only if:

GuardedEvadl, s) def

Ve, s" Trangso (8, s,8', s") D Guardeds’, s”).
For configurations with guarded evolution we have the following easy consequences:

GuardedEvdp, s) D
Vs, s Trango (8, s,8', s") = Trangtg (8,5, 8", s7),

GuardedEvdl, s) D
Vs’ .DosoL(8, s, s") = DopoL (8, s, s).

14The form of these axioms is exactly that of the conditions on the predicate vari@laled F in the second-
order definitions.
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8.3. Sufficient condition for guarded evolutions

Theorem 7. If all proceduresP with environment Env in a progragare such that
V7, s.Guarded[Env: P(1)], s),

then we have
Vs.GuardedEvals, s).

Proof (Outling). By induction on the number of transitions. For 0 transitions, we get the
thesis by induction on the structure of the program (consideriing, ¢? and[Env: P(7)]

as base cases). For+ 1 transitions, we assume the thesis holdsidransitions, and

we prove by induction on the structure of the program (again considering, ¢? and
[Env: P(7)] as base cases) that making a further transition from the program resulting
from thek transitions still preserves the thesisa

Itis easy to verify that nonrecursive procedures, as well as procedures whose body starts
with an atomic action or a wait action, trivially satisfy the hypothesis of the theorem.
Observe also that all procedures in [20] satisfy such hypothesis, except for the procedure
d at p. 9 whose definition is reported belowi§ a natural number):

proc d(n) (n=07? | d(n — 1); goDownend.
However, the variants
proc d(n) (n=07? | goDown d(n — 1)end
procd(n) (n=07? | (n > 0)? d(n — 1); goDownend
proc d(n) if (n = 0) thennil else(d(n — 1); goDown end
do satisfy the hypothesis.

9. Implementation

Despite the fact that in defining the semanticsCainGologwe resorted to first- and
second-orderlogic, itis possible to come up with a simple implementation 6fdh&olog
language in Prolog.

In this section, we presentGonGologinterpreter in Prolog which is lifted directly from
the definition ofFinal, Trans andDo introduced above?® This interpreter requires that
the program’s precondition axioms, successor state axioms, and axioms about the initial
situation be expressible as Prolog clauses. In particular, the cissald world assumption
(CWA) is made on the initial situation. Note that this is a limitation of this particular
implementation, not the theory.

15 Exogenous actions can be generated by simulating them probabilistically, by asking the user at runtime when
they should occur, or by monitoring the environment in which the program is running.
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Prolog terms representir@onGologprograms are as follows:

e nil , empty program.

e act (a), atomic action, wherer is an action term with the situation arguments
replaced by the constanow.

test (c), wait/test, where is a condition described below.

seq (p1, p2), sequence.

choice (p1, p2), nondeterministic branch.

pick (v, p), nondeterministic choice of argument, wharels a Prolog constant
(atom), standing for £&onGologvariable, andgy» a program-term that uses

iter (p), nondeterministic iteration.

if (c, p1, p2), if-then-else, withp1 the then-branch angy the else-branch.

while (¢, p), while-do.

conc (p1, p2), concurrency.

prconc (p1, p2), prioritized concurrency.

iterconc  (p), iterated concurrency.

e pcall (pArgs, procedure call, witlpArgsthe procedure name and arguments.

A condition¢ in the above is either a Prolog-term representing an atomic formula/fluent
with the situation arguments replaced tgw or an expression of the foriend (c1, ¢2),

or (c1, c2), neg(c), all (v, c), or some(v, ¢), with the obvious intended meaning. In
all (v,c) andsome(v, ¢), v is an Prolog constant, standing for a logical variable, and
¢ a condition using.

The Prolog predicaterans /4, final /2, trans /4 anddo/3 implement respec-
tively the predicatdrans Final, Trans* andDo.

The Prolog predicatkolds /2 is used to evaluate conditions in tests, while-loops and
if-then-else’s inConGologprograms. As well, the Prolog predicaigb /4 implements the
substitution so thagub (x, y, ¢, ') means that’ = . The definition of these two Prolog
predicates is taken from [20,34]. )

The following is the Prolog code.

*kkk *kkk *kkk *kkk * *kkkkkkkkk * x/

[* Trans-based ConGolog Interpreter */

/ *kkk *kkk *kkk *kkk * *kkkkkkkkk * x/

[* trans(Prog,Sit,Prog_r,Sit_r) */
trans(act(A),S,nil,do(AS,S)) :- sub(now,S,A AS), poss(AS,S).
trans(test(C),S,nil,S) :- holds(C,S).

trans(seq(P1,P2),S,P2r,Sr) :- final(P1,S)trans(P2,S,P2r,Sr).
trans(seq(P1,P2),S,seq(P1r,P2),Sr) :- trans(P1,S,P1r,Sr).

trans(choice(P1,P2),S,Pr,Sr) :-
trans(P1,S,Pr,Sr) ; trans(P2,S,Pr,Sr).

trans(pick(V,P),S,Pr,Sr) :- sub(V,_,P,PP), trans(PP,S,Pr,Sr).
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trans(iter(P),S,seq(PP,iter(P)),Sr) :- trans(P,S,PP,Sr).
trans(if(C,P1,P2),S,Pr,Sr) :-

holds(C,S), trans(P1,S,Pr,Sr) ;

holds(neg(C),S), trans(P2,S,Pr,Sr).

trans(while(C,P),S,seq(PP,while(C,P)),Sr) :-
holds(C,S), trans(P,S,PP,Sr).

trans(conc(P1,P2),S,conc(P1r,P2),Sr) :- trans(P1,S,P1r,Sr).
trans(conc(P1,P2),S,conc(P1,P2r),Sr) :- trans(P2,S,P2r,Sr).

trans(prconc(P1,P2),S,prconc(P1r,P2),Sr) :-
trans(P1,S,P1r,Sr).

trans(prconc(P1,P2),S,prconc(P1,P2r),Sr) :-
not trans(P1,S,_, ), trans(P2,S,P2r,Sr).

trans(iterconc(P),S,conc(PP,iterconc(P)),Sr) :-
trans(P,S,PP,Sr).

trans(pcall(P_Args),S,Pr,Sr) -
sub(now,S,P_Args,P_ArgsS),
proc(P_ArgsS,P), trans(P,S,Pr,Sr).

[* final(Prog,Sit) */

final(nil,S).

final(seq(P1,P2),S) :- final(P1,S), final(P2,S).

final(choice(P1,P2),S) :- final(P1,S) ; final(P2,S).

final(pick(V,P),S) :- sub(V,_,P,PP), final(PP,S).

final(iter(P),S).

final(if(C,P1,P2),S) :-
holds(C,S),final(P1,S) ; holds(neg(C),S),final(P2,S).

final(while(C,P),S) :- holds(neg(C),S) ; final(P,S).
final(conc(P1,P2),S) :- final(P1,S), final(P2,S).
final(preconc(P1,P2),S) - final(P1,S), final(P2,S).
final(iterconc(P),S).

final(pcall(P_Args)) :-
sub(now,S,P_Args,P_ArgsS), proc(P_ArgsS,P),final(P,S).

143
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[* trans*(Prog,Sit,Prog_r,Sit_r) */

trans*(P,S,P,S).
trans*(P,S,Pr,Sr) :- trans(P,S,PP,SS), trans*(PP,SS,Pr,Sr).

/* do(Prog,Sit,Sit_r) */

do(P,S,Sr) :- trans*(P,S,Pr,Sr), final(Pr,Sr).

/* holds(Cond,Sit): as defined in [34] */

holds(and(F1,F2),S) :- holds(F1,S), holds(F2,S).
holds(or(F1,F2),S) :- holds(F1,S) ; holds(F2,S).
holds(all(V,F),S) :- holds(neg(some(V,neg(F))),S).
holds(some(V,F),S) :- sub(V,_,F,Fr), holds(Fr,S).
holds(neg(neg(F)),S) :- holds(F,S).
holds(neg(and(F1,F2)),S) :- holds(or(neg(F1),neg(F2)),S).
holds(neg(or(F1,F2)),S) :- holds(and(neg(F1),neg(F2)),S).
holds(neg(all(V,F)),S) :- holds(some(V,neg(F)),S).
holds(neg(some(V,F)),S) :- not holds(some(V,F),S).
/* Negation by failure */
holds(P_Xs,S) :-
P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(),P_Xs\=all(_,_),
P_Xs\=some(_,_),sub(now,S,P_Xs,P_XsS), P_XsS.
holds(neg(P_Xs),S) :-
P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(),P_Xs\=all(_,_),
P_Xs\=some(_,_),sub(now,S,P_Xs,P_XsS), not P_XsS.
[* Negation by failure */

[* sub(Const,Var,Term1,Term2): as defined in [34] */

sub(X,Y,T,Tr) :- var(T), Tr=T.
sub(X,Y,T,Tr) :- not var(T), T=X, Tr=Y.
sub(X,Y,T,Tr) :-

T\=X, T=.[F|Ts], sub_list(X,Y,Ts,Trs), Tr=..[F|Trs].
sub_list(X,Y,[1,[).
sub_list(X,Y,[T|Ts],[Tr|Trs]) :-

sub(X,Y,T,Tr), sub_list(X,Y,Ts,Trs).

In this implementation &onGologapplication is expected to have the following parts:

(1) A collection of clauses which together define which fluents are true in the initial
situations0 . The clauses need not to be atomic, and can involve arbitrary amounts
of computation for determining entailments in the initial database.

(2) A collection of clauses which together define the predi¢dissa, s) for every
actiona and situations. Typically, this requires one clause per action, using a
variable to range over all situations.



G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109-169 145

(3) A collection of clauses which together define the successor state axioms for each
fluent. Typically, this requires one clause per fluent, with variables for actions and
situations.

(4) A collection of facts definin@onGologprocedures. In particular for each procedure
p occurring in the program we have a fact of the form:

proc (p(X1,..., X,), body.

In such facts:
() formal parameters are represented as Prolog variables so as to use Prolog built-
in unification mechanism instead of a substitution procedure;
(i) in the bodybodythe only variables that can occur are those representing the
formal parameterXy, ..., X,.
For simplicity, we do not consider nested procedures in the above implementation.
Expressing action theories as Prolog clauses places a number of restrictions on the
action theories that are representable. These restrictions force the closed world assumption
(Prolog CWA) on the initial situation and the unique name assumption (UNA) on both
actions and objects. For an in-depth study on action theories expressible as Prolog clauses,
we refer to [34].

9.1. Example

Below, we give an implementation in Prolog of the two robots lifting a table sce-
nario discussed in Section 6.1. The code is written as close to the specification as possi-
ble. The inability of Prolog to define directly the functional fluemioge, s) is resolved
by introducing a predicateal /2 such thatval (vpos (e, s), v) stands fovpoge, s)
= 0.

/ *kkk *kkk *kkk *kkk * *kkkkkkkkk * x/

* Two Robots Lifting a Table Example */
/ * * Hokkk Fkkdok |

/* Precondition axioms */

poss(grab(Rob,E),S) :-

not holding(_,E,S), not holding(Rob,_,S).
poss(release(Rob,E),S) :- holding(Rob,E,S).
poss(vmove(Rob,Amount),S) :- true.

/* Succ state axioms */
val(vpos(E,do(A,S)),V) :-

(A=vmove(Rob,Amount), holding(Rob,E,S), val(vpos(E,S),V1),
V is V1+Amount) ;
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(A=release(Rob,E), V=0) ;

(val(vpos(E,S),V),

not(A=vmove(Rob,Amount), holding(Rob,E,S)),
A\=release(Rob,E)).

holding(Rob,E,do(A,S)) :-
A=grab(Rob,E) ; (holding(Rob,E,S), A\=release(Rob,E)).
/* Defined Fluents */

tableUp(S) :-
val(vpos(endl,S),V1), V1>=3, val(vpos(end2,S),V2), V2>=3.

safeToLift(Rob,Amount,Tol,S) :-
tableEnd(E1), tableEnd(E2), E2\=E1, holding(Rob,E1,S),
val(vpos(E1,S),V1), val(vpos(E2,S),V2),
V1=<V2+Tol-Amount.

/* Initial state */

val(vpos(endl,s0),0). /* plus by CWA: */
val(vpos(end2,s0),0). I* */
tableEnd(endl). /* not holding(robl, ,s0) */
tableEnd(end2). /* not holding(rob2,_,s0) */

[* Control procedures */

proc(ctrl(Rob,Amount, Tol),
seq(pick(e,seq(test(tableEnd(e)),act(grab(Rob,e)))),
while(neg(tableUp(now)),
seq(test(safeToLift(Rob,Amount,Tol,now)),
act(vmove(Rob,Amount)))))).

proc(jointLiftTable,
conc(pcall(ctrl(rob1,1,2)), pcall(ctrl(rob2,1,2)))).

Below we show a few final situations returned by the interpreter for the above example
(note that the interpreter does not filter out identical situations).

?- do(pcall(jointLiftTable),s0,S).

S = do(vmove(rob2,1), do(vmove(robl,1), do(vmove(rob2,1),
do(vmove(rob1,1), do(vmove(rob2,1), do(grab(rob2,end2),
do(vmove(rob1,1), do(vmove(robl,1), do(grab(robl,endl),
sONMM)))
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S = do(vmove(rob2,1), do(vmove(robl,1), do(vmove(rob2,1),
do(vmove(robl,1), do(vmove(rob2,1), do(grab(rob2,end2),
do(vmove(rob1,1), do(vmove(robl,1), do(grab(robl,endl),

sONMM)))
S = do(vmove(robl,1), do(vmove(rob2,1), do(vmove(rob2,1),

do(vmove(robl,1), do(vmove(rob2,1), do(grab(rob2,end2),
do(vmove(robl,1), do(vmove(robl,1), do(grab(robl,endl),

SO

Yes

Correctness of the Prolog implementation

In this section we prove the correctness of the interpreter presented above under suitable
assumptions. Lef be the set of axioms fofrans Final, andDo plus those needed for
the encoding of programs as first-order terms, 2nithe domain theory. To keep notation
simple we denote the condition corresponding to a situation calculus foknwith the
situation argument replaced hgw, simply by¢. Similarly for Prolog terms corresponding
to actions and programs.

Our proof of correctness relies on the following assumptions:

The domain theoryD enforces the unique name assumption (UNA) on both actions

and objectst®

The predicatesub /4 correctly implements substitution for both programs and

formulas.

The predicatéolds /2 satisfies the following properties:

(1) Ifagoalholds (¢, s), with free variables only on object terms and action terms,
succeeds with computed answer then D = Vo[s]0 (by Vi, we mean the
universal closure ofy).

(2) Ifagoalholds (¢, s), with free variables only on object terms and action terms,
finitely fails, thenD = V—¢[s].

The predicatgoss /2 satisfies the following properties:

(1) If a goalposs (a, s), with free variables only on object terms and action terms,
succeeds with computed ansviethenD = VPossa, s)0.

(2) If a goalposs (a, s), with free variables only on object terms and action terms,
finitely fails, thenD = V—-Posga, s).

The Prolog interpreter flounders (and hence does not return) on goals of thedbrm

trans (8,s,_, )7 with nonground ands.18

16UNAis already enforced for programs, see Appendix A.

17From a formal point of viewot trans (8, s,_, ) is a shorthand fonot aux (§, s) with aux /2 defined as
aux (8,s):—trans (8,s,_,_).

18 This form of floundering arises for example when we expand programs of the fornrz.(81(z) )) 62(z)).
Notably it does not arise for their variantg.(¢ (z)? (81(z) ) §2(2))).
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Observe that the hypotheses requiredsiai /4, holds /2 andposs /2 do hold when
these predicates are defined as above and run by an interpreter that flounders on nonground
negative goals (see [34]).

Theorem 8. Under the hypotheses above the following holds
(1) If a goaldo(s,s,s’), where§ ands may contain variables only on object terms
and action terms, succeeds with computed angwénenC U D = VDo(s, s, s')0,
moreovers’? may contain free variables only on object terms and action terms.
(2) Ifagoaldo(s, s, s’), whered ands may contain variables only on object terms and
action terms, finitely fails, the@ U D =V—-Do(s, s, s).

To make the arguments more apparent we will first prove the theorem without
considering procedures. Then we show how introducing procedures affects the proof.

Without procedures
Theorem 8 is an easy consequence of Lemmas 2 and 3 below.

Lemma 2. Under the hypotheses above the following holds
e The predicatdrans /4 satisfies the following properties
(1) If a goal trans (3,s,48’,s"), wheres and s may contain variables only on
object terms and action terms, succeeds with computed ams\wleenC U D =
VTrangs, s, 8, s')0, moreovers’d and s’6 may contain free variables only on
object terms and action terms.
(2) Ifagoaltrans (8,s,4,s’), wheres ands may contain variables only on object
terms and action terms, finitely fails, thému D = V—Trangs, s, §', s').
e The predicatdinal /2 satisfies the following properties
(1) Ifagoalfinal (68, s), wheres ands may contain variables only on object terms
and action terms, succeeds with computed angwyirenC U D = VFinal(s, s)6.
(2) Ifagoalfinal (6, s), wheres ands may contain variables only on object terms
and action terms, finitely fails, thehU D = V—=Final(s, ).

Proof. First we observe that since we are not considering procedurass and Final
satisfy the axiomg andF from Sections 4 and 5. We prove simultaneously (1) and (2)
for bothtrans /4 andfinal /2 by induction on the prograh Here we show only the
cases =61 ) 82 fortrans /4.
Succesdf trans (1)) 82, s,8’, s") succeeds with computed ansvéeithen: either
(i) trans (81,s,87,s") succeeds with computed answir ando = 6’61 whered’ =
mgué’, 81 )) 82) is the most general unifier [23] betwe&rands; )) 82; or
(i) trans (81,s,_,_) finitely fails andtrans (82, s, 85,s) succeeds with computed
answerz andd = mgué’, 81 )) 85)62.
In case (i) by the induction hypothesis) D = VTrang8y, s, 81, )01, ands’61 ands§;01
may contain free variables only on object terms and action terms. In case (ii) by the
induction hypothesi€ U D = V—Trang41, s, 81, s7), CUD [=V¥Trang§z, s, 85, s")02, and
5’02 ands,0. may contain free variables only on object terms and action terms. Considering
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Trang81 ) 82,s,8",s") =
3y.8 = (y ) 82) ATrang8y, s, ¥, s") vV
y.8" = (1)) y) ATranddz, s, v, s') A =3¢, 5" Trang81, 5, ¢, s™) 3)

and hows is defined in both cases, we get the thesis.
Failure. If trans (81)) 82, s, 8', s') finitely fails, then:
(i) for all 8] such that” unifies withé} )) 82, trans (81, s, 81, s) finitely fails, hence
by the induction hypothesU D |= V—=Trang8y, s, 81, 5") A 8" = (8] ) 82);
(ii) eithertrans (81,s,_,_) succeeds, hencB8UD k= 357, s1.Trang81, s, 87, s7), or for
all 8, such tha®’ unifies withésy )) 85, trans (82, s, 85, s) finitely fails, hence by
the induction hypothesiSU D |= V—=Trang52, s, 85, 5") A 8" = (81)) 85).
Considering (3) and the UNA for object, actions, and program terms, we get the thesis.

Lemma 3. Under the hypotheses above the following holds
(1) If a goal trans *(8,s,8’,s’), where§ and s may contain variables only on
object terms and action terms, succeeds with computed artsvikenC U D =
VTrans'(s, s, 8’, s")0, moreovers’d and s’0 may contain free variables only on
object terms and action terms.
(2) If agoaltrans *(8,s,8’,s’), wheres ands may contain variables only on object
terms and action terms, finitely fails, thémJ D = V—Trans*(é, s, 8, s').

Proof. Using Lemma 2SuccessThen there exists a successful SLDNF-derivation [23].
Such a derivation must contain a finite numberof selected literals of the form
trans (81, s1, 82, s2). The thesis is proven by induction on such a nuniber

Failure. Then there exists a finitely failed SLDNF-tree [23] formed by failed SLDNF-
derivations each of which contains a finite number of selected literals of the form
trans (81, s1, 82, s2). The thesis is proven by induction on the maximal number of
selected literals of the forrtrans *(81, 51, 82, s2) contained in the SLDNF-derivations
forming the tree. O

With procedures

Since we do not have nested procedures in the Prolog implementation, we can avoid
carrying around the procedure environment. Hence we can simplify the constraints on
procedures in the definition diransandFinal from Section 7 to respectively:

T(P(),s,8,s) = T((Spr?[’;],s,(s/,s/),
F(P(1),s) = F(sp;i[';],s).

To prove the soundness of the interpreter in presence of procedures, we need only redo
the proof of Lemma 2.

We now prove Lemma 2 as follows. Assume, for the moment, Thans and Final
satisfy the axiomdg and.F from Sections 4 and 5 plus the following ones:

TransP(0), s,8',s") = Trangspl 5,85,
Final(P(7),s) = Final(épg[f;],s).
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Then we follow the line of the proof given above. However we need to deal with the
additional complication that due to procedure expansions the program now does not
get always simpler anymore. To this end, we observe that every terminating SLDNF-
derivation contains a finite number of selected literals of the foams (P (7), s1, 82, 52)
(final  (P(7),s1)). Hence we can prove the lemma using the following three nested
inductions:
e Induction on the rank of successful SLDNF-derivations/finitely failed SLDNF-trees
(i.e., the depth of nesting of auxiliary finitely failed SLDNF-trees) [23].
e Induction on the number of selected literals of the fomans (P (7), s1, 82, s2)
(final  (P(7), s1)) occurring in a successful SLDNF-derivation, for success. Induc-
tion on the maximal number of selected literals of the farams (P(7), s1, 82, s2)
(final  (P(7), s1)) contained in the SLDNF-derivations forming the finitely failed
SLDNF-tree, for failure.
e Induction on the structure of the program.
Now we come back to the assumption we made abovérforsandFinal. In factFinal,
being closed under the constraints Brin its definition, does actually satisfy the axioms
F from Sections 4 and 5 as well as the one above. Howdvans which isnot closed
under the constraints fdf in its definition, does not satisfy the assumption, in general.
However, we get the desired result by noticing that the equivalences assunigdrisr
form aconservative extensigsee, e.g., [37]) of domain theofy plus the axioms needed
for the encoding of programs as first-order terms, and appealing to the following general
result:

Proposition 1. Let I be a consistent theory; U{®} a conservative extension bfwhere
@ is a closed first-order formula, anél a predicate occurring ir® but notin/". Then for
any tuple of terms:

(1) TU{@}=VP(@@) impliesI” =EY(VZ.[®¢L D ZD)),

(2) T U{@} =V=P(1) impliesT” EV(=VZ.[®L > Z(®)).

Proof. (1) by contradiction. Suppose there exists a madealf I" and variable assignment
o with o(Z) = R for some relatioriR, such thatV, o = @2 but M, o = Z(7). Now
consider the modeM’ of I obtained fromM by changing the interpretation @? to
PM =R.ThenM' = ® andM’, o = P(7), which contradictd” U {@} = VP(7).

(2) by contradiction. Suppose exists a mogiebf I" and a variable assignmedstsuch
thatM, o = VZ.[¢§ o Z(1)]. Then for every variable assignment obtained fromo
by puttingo (Z) = Q if M,o’ = qbg thenM, o’ = Z(7). Let M’ be an expansion af/
such thatM’ = @. Then forQ = PM" we haveM, o’ = Z(7), i.e., M’, o = P(7), which
contradicts” U {®} EV—P(7). O

Intuitively, Proposition 1 says that when we constrain a relatfotby a first-order
statement, then every tuple that is forced to be “in” or “out” of the relation, will also be
similarly “in” or “out” of the relation obtained by the second-order version of the statement.
Thus if Trangé, s, §’, s’) holds for the first-order version drans it must also hold for the
second-order version.
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10. Discussion

With all of this procedural richness (nondeterminism, concurrency, recursive procedures,
priorities, etc.), it is important not to lose sight of the logical framewd@knGologis
indeed a programming language, but one whose execution, like planning, depends on
reasoning about actions. Thus, a crucial part @aGologprogram is thedeclarative
part: the precondition axioms, the successor state axioms, and the axioms characterizing
the initial state. This is central to how the language differs from superficially similar
“procedural languages”. AZonGologprogram together with the definition do and
some foundational axioms about the situation calcisus formal logical theory about
the possible behaviors of an agent in a given environment. And this theory must be used
explicitly by aConGologinterpreter.

In contrast, an interpreter for an ordinary procedural language does not use its semantics
explicitly. Standard semantic accounts of programming languages also require the initial
state to be completely specified; our account does not; an agent may have to act without
knowing everything about its environment. Our account accommodates domain-dependent
primitive actions and allows the interactions between the agent and its environment to be
modeled—actions may change the environment in a way that affects what actions can later
occur [8].

As mentioned, an important motivation for the development€ohGologis the need
for tools to implement intelligent agent programs that are “reactive” in the sense that
they reconsider their plans in response to significant changes in their environment. Thus,
our work is related to earlier research on resource-bounded deliberative architectures
such as [2] (IRMA) and [30] (PRS), and agent programming languages that are to some
extent based on this kind of architectures, such as AGENT-0 [38], AgentSpeak(L) [29],
and 3APL [16]. One difference is that iBonGolog domain dynamics are specified
declaratively and the specification is used automatically in program execution; there is no
need to program the updating of a world model when actions are performed. On the other
hand, plan selection or generation is not specified using rules; it must be coded up in the
program; this produces more complex programs, but there is perhaps less overhead. Finally,
agents programmed i@onGologcan be understood as executing programs, albeit in a
smart way; they have a simple operational semantics; architectures like IRMA and PRS,
and languages like AGENT-0, AgentSpeak(L), and 3APL have more complex execution
models.

Other programming languages share features @ihGolog The agent programming
language Concurrent MetateM [11] supports concurrency and uses a temporal logic to
specify the behavior of agents. Bonner and Kifer [3] have proposed a logical formalism to
specify concurrent database transactions. Also related are concurrent constraint languages
such as CCP [35] and HCC [14], which support incompletely specified information states
and concurrency. But unlik€onGolog these languages generally restrict the kinds of
constraints allowed in order to make entailment easy to compu@omGolog the action
theory is what determines how how states are updated. Also in constraint languages, control
seems somewhat deemphasized. van Eijk et al. [10] have proposed an agent language partly
inspired from CCP.
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[®] CONGOLOG simulation viewer [N

Fig. 1. TheConGologtoolkit's graphical viewer.

The simple Prolog implementation of ti@nGologinterpreter described in Section 8
is at the core of a toolkit we have developed for implemen@ogGologapplications. The
interpreter in the toolkit is very similar to the one described, but uses a more convenient
syntax, performs some error detection, and has tracing facilities for debugging.

The toolkit also includes a module fgrogressingthe initial state database. To
understand the role of this component, first note that the basic method used by our
implementation of action theories for determining whether a condition holds in a given
situation (i.e., evaluatbolds (¢, do(az, ..., do(a,, So)...) is to performregressionon
the condition to obtain a new condition that only mentions the initial situation and then
guery the initial situation database to determine whether the new condition holds. But
regressing the condition all the way back to the initial situation can be quite inefficient
when the program has been running for a while and many actions have been performed.
If the program is willing to commit to a particular sequence of actions, it is possible to
progresgshe initial situation theory to a new initial situation theory representing the state of
affairs after the sequence of actiohs Subsequent queries can then be efficiently evaluated
with respect to this new initial situation database. The progression module performs this
updating of the initial situation database.

The toolkit also includes a graphical viewer (see Fig. 1) for debug@iogGolog
programs and delivering process modeling applications. The tool, which is implemented
in Tcl/Tk, displays the sequence of actions performed byQGbaGologprogram and
the value of the fluents in the resulting situation (or any situation along the path). The

191n general, the progression of an initial situation database may not be first-order representable; but when
the initial situation is completely known (as we are assuming in this implementation), its progression is always
first-order representable and can be computed efficiently; see [22] for details.
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program can be stepped through and exogenous events can be generated either manually
or at random according to a given distribution. The manner in which state information is
displayed can be specified easily and customized as required.

Finally, a high-level Golog Domain Specification language (GDL) similar to Gelfond
and Lifschitz's A [12] has also been developed. The toolkit includes a GDL compiler that
takes a domain specification in GDL, generates successor state axioms for it, and then
produces a Prolog implementation of the resulting domain theory.

ConGologhas already been used in various applications. Lespérance et al. [19] have
implemented a “reactive” high-level control module for a mobile robd€anGolog The
robot performs a mail-delivery task. ThgonGologcontrol program involves a set of
prioritized interrupts that react to events such as the robot arriving to a customer’s mailbox
or failing to get to a mailbox due to obstacles, as well as new shipment orders with varying
degrees of urgency being received. TenGologcontroller was interfaced to navigation
software and successfully tested on a RwWI B12 mobile robot.

Work has also been done on usi@gnGologto model multiagent systems [36]. In this
case, the domain theory includes fluents that model the beliefs and goals of the system’s
agents (this is done by adapting a possible-world semantics of such mental states to the
situation calculus). AConGologprogram is used to specify the complex behavior of the
agents in such a system. A simple multiagent meeting scheduling example is specified
in [36]. ConGologbased tools for specifying and verifying complex multiagent systems
are being investigated.

Finally, in [7], the transition semantics developed in this paper is adapted so that
execution can be interleaved with program interpretation in order to accommodate sensing
actions, that is, actions whose effect is not to change the world so much as to provide
information to be used by the agent at runtime.

In summary, we have seen how, given a basic action theory describing an initial state and
the preconditions and effects of a collection of primitive actions, it is possible to combine
these into complex actions for high-level agent control. The semantics of the resulting
language end up deriving directly from that of the underlying primitive actions. In this
sense, the solution to the frame problem provided by successor state axioms for primitive
actions is extended to cover the complex actiorSariGolog SoConGologcan be viewed
as an action theory (that supports complex actions), as a specification language, and as an
implementation language, and has been used in all three ways.

There are, however, many areas for future research. Among them, we mention:
handling non-termination, that is, developing accounts of program correctness (fairness,
liveness etc.) appropriate for controllers expected to operate indefinitely as in [9], but
without giving up the agent’s control over nondeterministic choices that characterizes
the Do-based semantics for terminating programs; and also incorporating utilities, so that
nondeterministic choices in execution can be made to maximize the expected benefit.
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Appendix A. Programs as terms

In this section, we develop an encoding of programs as first-order terms. Although some
care is required (e.g., introducing constants denoting variables and defining substitution
explicitly in the language), this does not pose any major problem; see [18] for an
introduction to problems and techniques in this area.

We add to the sortSit, Obj andAct of the Situation Calculus, the following new sorts:

Idx, PseudoSjtPseudoActPseudoOhjPseudoFormENYV, andPROG

Intuitively, elements ofdx denote natural numbers, and are used for building indexing
functions. Elements dPseudoActPseudoOhjPseudoSiand PseudoFornare syntactic
devices to denote respectively actions, objects, situations and formulas within programs.
Elements ofENV denote environments, i.e., sets of procedure definitions. And finally,
elements oPROGdenote programs, which are considered as simply syntactic objects.

A.1. Sort ldx

We introduce the constant O of sdalx, and a functiorsucc :ldx — Idx. For them we
enforce the following unique name axioms:

succ (i) #0,
succ (i) =succ () Di=i'.

We define the predicatex :ldxas:
ldx (i) = VX.[...DX(@)],

where. .. stands for the conjunction of the universal closure of
X(0),
X (i) D X(succ (i)).

Finally we assume the following domain closure axiom for $axt
vildx (i).

A.2. Sorts PseudoSit, PseudoObj, PseudoAct

The languages d?seudoSjtPseudoObandPseudoAcare as follows:

e A constantNow: PseudoSit

e AfunctionnameOfggi: Sort— PseudoSortor Sort= Obj, Act. We use the notation
[[x]] to denotenameOfgor(x), leavingSortimplicit.
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e Afunctionvar sort: ldx — PseudoSorfor Sort= Obj, Act. We call terms of the form
var sort(i) pseudo-variableand we use the notationy (or justx,y, z) to denote
var sor(i), leavingSortimplicit.

e Afunctionf :PseudoSoitx --- x PseudoSopt— PseudoSoyt, 1 for each fluent or
nonfluent functions of sortSort; x --- x Sort, — Sort,+1 with Sor = Obj, Act, Sit
in the original language (note thatif= 0 then f is a constant).

We define the predicateBseudoSit : PseudoSjt PseudoObj : PseudoObjand

PseudoAct :PseudoActespectively as:

PseudoSit (x) = VPsit, Pobj, Pact[... D Psit(x)],
PseudoObj (x) = VPsit, Pobj, Pact.l... D Pobj(x)],
PseudoAct (x) = VPsi, Pobj, Pactl... D Pact(x)],

where. .. stands for the conjunction of the universal closure of

Psit(Now),
Psori(nameOfseri(x))  for Sort= Obj, Act,
Psor(zi)  for Sort= Obj, Act,
Psort(x1) A -+ A Psort(xn) D Psor(f (x1...,x,)) (foreachf).

We assume the following domain closure axioms for the sessudoSjtPseudoOb)j
andPseudoAct

Vx.PseudoSit (x),
Vx.PseudoObj (x),
Vx.PseudoAct (x).

We also enforce unique name axioms for them, that is, for all funcgogpsof any arity
(including constants) introduced above:

g(-xla .. -axn) #g/(ylv cec ym)a

gx1, .., X)) =81, -, ) DXI=Y1IA - AXp =Yy

Observe that the unique name axioms imposerthate Of (x) = nameOf(y) D x = y but
do not say anything on domain elements denoted laypd y since these are elements of
Actor Obj.

Next we want to relate pseudo-situations, pseudo-objects and pseudo-actions to real
situations, object and actions. In fact we do not want to relate all terms oPsettdoObj
andPseudoActo real object and actions, but just the “closed” ones, i.e., those in which no
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pseudo variable; occur. To formalize the notion @alosednesave introduce the predicate
Closed :PseudoSorfor Sort= Sit, Obj, Act, characterized by the following assertidfs

Closed (Now),
Closed (nameOf(x)),
—Closed (z;),
Closed (f (x1,...,x,)) = Closed (x1) A---AClosed (x,) (foreachf).

Closed terms of so®seudoObpnd PseudoAchre related to real objects and actions
by means of the functiodecode : (PseudoSork Sit— Sorf) for Sort= Sit, Obj, Act.
We use the notation[s] to denotedecode (x, s). Such a function is characterized by the
following assertions:

decode (Now, s) =,

decode (nameOf(x), s) = x,

decode (f (x1...,x,),s) = f(decode (x1,s),...,decode (x,, s))
(for eachf ).

A.3. Sort PseudoForm

Next we introduceseudo-formulagsed in tests. Specifically, we introduce:

e A function p:PseudoSoit x --- x PseudoSojt— PseudoFormfor each nonflu-
ent/fluent predicate in the original language (not including the new the predicates
introduced in this section).

e A function and : PseudoFornmx PseudoForm— PseudoFormWe use the notation
p1 A p2 to denoteand (p1, 02).

e A function not :PseudoForm— PseudoFormWe use the notatiorp to denote
not (p).

e A function somesgri: PseudoSork PseudoForm— PseudoFormfor PseudoSore
PseudoOhjPseudoActWe use the notatiofiz;.p to denotesome(var sor(i), p),
leavingSortimplicit.

We define the predicateseudoForm : PseudoFornas:

PseudoForm (p) = VProrm.[... D Prorm(p)]
where. .. stands for the conjunction of the universal closure of

Prorm(p(x1,...,x,))  (foreachp),
Prorm(p1) A Prorm(p2) D Prorm(p1 A p2),
Prorm(p) D Prorm(—p),
Prorm(p) O Prorm(3z;.p).

20we say the following theory is “characterizing” since it is complete, in the sense that it partitions the elements
in PseudoSorinto those that arelosedand those that are not.
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We assume the following domain closure axiom for the BsgudoForm
Vp.PseudoForm (p).
We also enforce unique name axioms for pseudo-formulas, that is, for all fungtighsf
any arity introduced above:
g1, Xn) & (V1 Ym)s
g(x1, ..., X)) =801, - Yn) DXLI=Y1IA - AXy = Yn.

Next we formalize the notion of substitution. We introduce the functsub :
PseudoSork PseudoSork PseudoSort— PseudoSortfor Sort= Obj, ActandSort’ =
Sit, Obj, Act. We use the notatiorjf to denotesub (x, y, ). Such a function is character-
ized by the following assertions:

Now] = Now,

nameOf(t))y‘ = nameOf(s),

zii =y,

X #z Dzi;:zi,

f (11, ...,tn)’; =f (tl’;, ...,t,,;“.) (for eachf ).

We extend the functiogaub to pseudo-formulas (as third argument) as follows:

P, ... 1)y =Py, ..., tay) (for eachp),
(p1 A p2)y = (p1)y A (p2)y,

(=p)y ==(p)y,

(3zi.p)y =3zi.p,

x #2; O (3zi.p)y = 3zi.(py).

Next we extend the predicatdosed to pseudo-formulas in a natural way:
Closed (p(x1,...,x,)) = Closed (x1) A---AClosed (x,) (foreachp),
Closed (p1 A p2) = Closed (p1) A Closed (p2),

Closed (—p) = Closed (p1),
Closed (3z;.p) = Vy.Closed (prz]"ameof(y)).

We relateclosedpseudo-formulas to real formulas by introducing a preditééds :
PseudoFornx Sit, characterized by the following assertions:

Holds (p(x1,...,x,),s) = p(decode (x1,s),...,decode (x,,s))
(for eachp),

Holds (p1 A p2,5) = Holds (p1,s) A Holds (p2, s),
Holds (—p,s) = =—Holds (p,s),
Holds (3z.p,s) = 3y.Holds (prz1ame0f(y)’s)’

wherey in the last equation is any variable that does not appear e use the notation
¢[s] to denoteHolds (¢, s).
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Sorts PROG and ENV

Now we are ready to introduggograms Specifically, we introduce:

A constantil : PROG

A function act :PseudoAct> PROG As notation we write simply: to denote
act (a) when confusion cannot arise.

A function test :PseudoForm— PROG We use the notatiorp? to denote
test (p).

A function seq : PROGx PROG— PROG We use the notatiod; 52 to denote
seq (81, 82).

A functionchoice :PROGx PROG— PROG We use the notatiosy | §» to denote
choice (81, 82).

e Afunctioniter :PROG— PROG We use the notatiofi* to denotdter ().
e Two functionspick gqr: PseudoSork PROG— PROG wherePseudoSoris either

PseudoObpr PseudoActWe use the notationz;.é to denotepick ggr(var sori(i),
3), leavingSortimplicit.

A functionif :PseudoFormk PROGx PROG— PROG We use the notatioii p
then §1 elseé, to denotef (p, 81, 82).

A function while :PseudoFormnx PROG— PROG We use the notatiowhile p
do é to denotewhile (p, §).

A function conc :PROGx PROG— PROG We use the notatiosy || 52 to denote
conc (81, 82).

A functionprconc :PROGx PROG— PROG We use the notatiody )) > to denote
prconc (81, 82).

A function iterconc :PROG— PROG We use the notatiors! to denote
iterconc  (5).

To deal with procedures we need to introduce the notion of environment together with
that of program. We introduce:

A finite number of function® : PseudoSoitx - -- x PseudoSojt— PROG where
PseudoSortis eitherPseudoObpr PseudoActThese functions are going to be used

as procedure calls.

A functionproc :PROGx PROG— PROG This function is used to build procedure
definitions and so we will force the first argument to have the f&m@,, ..., z,),
wherez; ...z, are used to denote the formal parameters of the defined procedure. We
use the notatioproc P(zy, ..., zy) § endto denoteproc (P(zy, ..., zn), ).

e A constante : ENV, denoting theempty environment
e Afunctionaddproc :ENV x PROG— ENV. We will restrict the programs allowed

to appear as the second argument to procedure definitions only. We use the notation
&; proc P(2) § endto denoteaddproc (&, proc P(z) § end).

A function pblock :ENV x PROG— PROG We use the notatiof€; §} to denote
pblock (&, 9).

Afunctionc_call :ENV x PROG— PROG We will restrict the programs allowed

to appear as the second argument to procedure calls only. We use the notation
[£:P(7)] to denotec_call (€, P(7)).
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We next introduce a predicatiefined : PROGx ENV meaning that a procedure is
defined in an environment. It is specified as:

defined (¢,&) = VD.[...D D(c, &)],

where. .. stands for the conjunction of the universal closure of
D(P(X), &; proc P(¥) § end),
D(c,&)D D(c, & d).

Observe that procedur®sare only defined in an environmefif and that the parameters
the procedure is applied to do not play any role in determining whether the procedure is
defined.

Now we define the predicaferog : PROGand the predicatenv : ENV as:

Prog (8) = VPproc Penv[ ... D Pproc(d)],
Env(€) = VPproc Penv.| ... D Penv(E)],
where. .. stands for the universal closure of
Pprog(nil),
Pprog(act (a))  (a pseudo-action)
Prroc(p?)  (p pseudo-formula)
Pproc(81) A Pprod(d2) O Pproc(d1; 82),
Pprod(81) A PproG(82) D Pproc(é1 | 82),
Pprod(8) D Pproc(8"),
Pprod(d) D Prrod(z;.8),
PproG(81) A Prrod(82) D Pprodl(if p then 8, elsesy),
Pprod(8) D Pprog(While p do ),
Pprod(61) A Pproc(82) D Pproc(d1 || 82),
Pproc(81) A Pprod(82) O Pprod(81)) 82),
Pprod(8) D Pprod(8)),
Pproc(P(x1,...,x,))  (for eachP),
Penv(€) A Perodd) D Pproc{E; 8)),
Penv(€) ndefined  (P(Z),€) D Perod[€ : P(x1, ..., xn)]),
Penv(e),

n

Penv(€) A Prrod(8) A —defined  (P(2), &) A ( /\ Zi, # Z,‘k> D
h,k=1

Penv(&; proc P(z;,, ..., z;,) § end).



160 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109-169

We assume the following domain closure axioms for the $9IROGandENV:

V§.Prog (6),
VE.Env(E).

We also enforce uniqgue name axioms for programs and environments, that is for all
functionsg, g’ of any arity introduced above:

g(xla "'5-xl’l) 758/()’1»-~7)’m),

gx1, .., X)) =81, -, V) DXL=Y1IA - AXp =Yy

We extend the predica@osed to PROGby induction on the structure of the program
terms in the obvious way so as to considirsed programs in which all occurrences of
pseudo-variablex are bound either by, or by being a formal parameter of a procedure.
Only closed programs are considered legal

We introduce the functioresolve :ENV x PROGx PROG— PROG to be used to
associate to procedure calls the environment to be used to resolve them. Namely, given the

procedureP defined in the environmerd, resolve (&, P(7), §) denoted by(a)'jg(té,(t)],

suitably replace®(7) by ¢_call (&, P(r)) in order to obtain static scope for procedures.

It is obvious how the function can be extended to resolve whole sets of procedure calls
whose procedures are defined in the environngerftormally this function satisfies the
following assertions:

. p(}) o
(nl|)[5tp(})] =nil,

P(¥)
(@\g.pa) =9

P(x) _

. P(X) P(X) P(X)
(81; 82)[5:p(})] (61) (E: P(x)]v (52)[5 P’

P(X P P
(311 82y = OD ey | 62

P()
(z;. 5)[5 PGy = - (%) [E:PE)]°

PX) PE)
(8" )[5XP(x)] ((5)[5xp(x)) ’

P P P

(if p then 81 elses,) éx;(x)] =if p then (81) éxF)’(x) else(sy) g(xg,(x)],
, P P

(while p do ), = while p do (B[ z;.

P(X) P(x) P(x)
(61 || 82) [E:PG)] — (61)[g:p(;)] || (52)[g:p(;)]a

P(X) _ P(X) P(X)
(61 )) 82) [E:PG)] — (81)[g:p(;)] ) (82)[g:p(;)]a

P(X) P(x)
¢hepE) = = () £pa) ",



G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109-169 161

(PG ey = €1 P@)L,

(Q(?))[F:S(fg(})] =Q(r) forany procedure callX?) different fromP(x),

(€ 5)°D) {&'; 8} if procedureP is (re)defined irt’,
OV EP)) = PG _

] €O gy otherwise

(I Q(?D)[ng‘s(;)] =[€": Q1) for every procedure call7) and environmenf’.

Finally, we extend the functiosub to PROG(as third argument) again by induction on
the structure of program terms in the natural way considetiag a binding construct for
pseudo-variables and without doing any substitutions into environnmerisis used for
substituting formal parameters with actual parameters in contextualized procedure calls, as
well as to deal withr. We also introduce a function_body : PROGx ENV — PROGto
be used to return the body of the procedures. Naneelypdy (P(x), £) returns the body
of the procedur® in £ with the formal parameters substituted by the actual parameters
Formally this function satisfies the following assertions:

c_body (P(Z), £; proc P(3) 8 end) = 7,
¢_body (P(x), &; proc Qy) § end) = ¢_body (P(xX),E) (Q+#P).

A.5. Consistency preservation
The encoding presented here preserves consistency as stated by the following theorem.

Theorem A.1. Let’H be the axioms defining the encoding above. Then every model of an
action theoryD (involving sorts Sit, Act and Opfgan be extended to a model HfU D
(involving the additional sorts ldx, PseudoSit, PseudoAct, PseudoObj, PseudoForm, ENV
and PROG.

Proof. It suffices to observe that for each new sadi( . .., PROQ H contains:
e A second-order axiom that explicitly defines a predicate which inductively character-
izes the elements of the sort.
e An axiom that closes the domain of the new sort with respect to the characterizing
predicate.
e Unigque name axioms that extend the interpretatioa¢b the new sort by induction
on the structure of the elements (as imposed by the characterizing axiom).
e Axioms that characterize predicates and functions, suci@sed , decode , sub,
Holds , etc., by induction on the structure of the elements of the sort.
Hence, given a modell of the action theoryD, it is straightforward to introduce domains
for the new sorts that satisfy the characterizing predicate, the domain closure axioms, and
the unique name axioms for the sort, by proceeding by induction on the structure of the
elements forced by the characterizing predicate, and then establishing the extension of the
newly defined predicates/functions for the sorta
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Appendix B. Proof of Theorem 1—Equivalence between th®o's for Golog
programs

In this section, we prove Theorem 1, i.e., the equivalence of the original definition of
Do and the new one given in this paper, in the more general language which includes
procedures. To simplify the presentation of the proof, we use the same symbols to denote
terms and elements of the domain of interpretation; the meaning will be clear from the
context.

B.1. Alternative definitions of Trans and Final

For proving the following results, it is convenient to reformulate the definitiosaris
andFinal:
e Trangs,s,8’,s’) = VT.[...DT(,s,8,s")], where... stands for the conjunction
of the universal closure of the following implications:

Possal[s],s) D T(a,s,nil,do(a[s], s)),
¢ls] D T(¢?, s,nil,s),
T@,s,8,5) D T6;y,s,8;y,s),
Final(y,s) AT(8,s,8",s") D T(y;8,s,8,s'),
T,s,8,s) DTG|y,s,8,s),
T@,s,8,s)y DT(yl8,s,8,s),
T(8),s,8,s") D T(nv.d,s, 8, s"),
T(,s,8,s") D T s,8;8%s),
T(500, o 5:858") O TUENV 8}, 5,85,

T ({Env 5P§[I;]},s,5/,s/) S T(EnV: P(D)],s,8,5').

e Final(d,s) = VF.[...D F(8,s)], where... stands for the conjunction of the
universal closure of the following implications:

True D F(nil,s),
F@,s) NF(y,s) D F(8;v,s),
F@,s) D F(8|y,s),
F(,s) D F(y|4,s),
F(8Y,5) D F(mv.d,s),
True D F(8*,s),
FORY , o15) D FUENV ), 5),
F({Env, ap;i[‘;],s) > F([Env: P()],s).
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Theorem B.1. With respect to Golog programs, the definitions aboveesgpeivalento the
ones given in Sectionof the paper.

Proof. To prove this equivalence, consider first the following general results, which are a
direct consequence of the Tarski—Knaster fixpoint theorem [40]. If

SX) = VZIIVy.®(Z,y) D Z()]D Z(¥)] (B.1)
and®(Z, y) is monotonic, i.e.,

VZ1, Z2.IVy.Z1(3) D Z2(y)]1 D [Vy.®(Z1,y) D P(Z2, y)],
then we get the following consequenéés

SE) = @(S, %), (B.2)
S(x) VZ.[[Vy.Z(y)=P(Z,¥)] D Z(X)]. (B.3)

Now it is easy to see that the above definitiormadnsandFinal can be rewritten as (B.1)

and that the resulting is indeed monotonic (in particular it is syntactically monotonic
since the predicate variabl@sand F do not occur in the scope of any negation). Thus,
by the Tarski—Knaster fixpoint theorem, the above definitions can be rewritten in the form
of (B.3). Once in this form it is easy to see that dologprograms they are equivalent to
those introduced in Section 7.0

B.2. Dqg is equivalentto Dg

Let Do; be the original definition oDo in [20] extended wittDoy (nil, s, s") e =

> f - .. .
and Do([Env: P(1)],s,s’) ae Do({Env, P(1)},s,s’), and Doy the new definition in
terms ofTransandFinal. Also, we do not allow procedure calls for which no procedure
definitions are given.

Lemma B.1. For every modeM of C, there existy, s1...6,, s, such thatM = Trangs;,
si,8ix1,si+1) fori=1,...,n—1ifand only if M = Trans" (61, s1, 8., sn).

Proof. (=) By induction onn. If n = 1, thenM = Trans'(81, s1, 61, s1) by definition
of Trans'. If n > 1, then by induction hypothesi® = Trans (82, s2, 8,,, s,), and since
M = Trangé1, 51, 82, s2), we getM = Trans‘ (81, s1, 8., s,) by definition of Trans".

(<) Let R be the relation formed by the tupl€s,, s1, 8,, s,) such that there exist
81,81...8n, 8, and M = Trand§;, s;, 8i+1,si+1) fori =1,...,n — 1. It is easy to verify
that

(@) forall 8,s, (8,s,8,5) € R;

(i) for all 68,s,68,s",8",s", M = Trangs, s, 8’,s") and (§',s’,8”,s”) € R implies

6,s,8",s"YeR. O

211n fact, (B.2) is only mentioned in passing and not used in the proof.
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Lemma B.2. For every modeM of C, M = Do1(é, s, s") implies that there exisi, s1,
..., 8,,8, such that§; = 6, s1 = s, s, = ', M = Final(s,,s,), and M = Transé;, s;,
Sit1, Sit+1) fori=1,....,n—1

Proof. We prove the lemma by induction on the structure of the program. We only give
details for the most significant cases.
(1) a (atomic action).M = Doi(a,s,s’) iff M = Possa[s],s) ands’ = do(a[s], s).
ThenM k= Tranga, s, nil, do(a[s], s)), and hence the thesis.
(2) 8;y (sequence)M = Doi(8; y,s,s’) iff M =Doi(8,s,s”) andM = Doy(y, s”,
s7). Then by induction hypothesis:
(i) there exis®,s1..., 8, s such thaty =68, s1 ==, sy =s”, M = Final (8, sx)
andM = Trangs;, s;, 8i41,s) fori=1,...,k —1;
(i) there existyy, s ..., ¥n, sy suchthayy =y, sy =s”,s, =s', M = Final(y,, s,)
andM = Trandy;, si, vi+1, si) fori =k, ...,n — 1.
SinceTransitself is closed under the assertions in its definition we have Mat:
Trang(s;, s, 8;+1, si+1) impliesM = Trang($;; v, si, 8i+1; ¥, si+1). MoreoverM =
Final(x, sx) and M &= TranSyx, sk, Vk+1, Sk+1) implies M = Trans(8x; vk, sk,
Ye+1, Sk+1). Similarly in the casé = n we have that, sincEinal is also closed under
the assertions in its definitiod = Final(8, sy) and M = Final(yx, sx) implies
M = Final(8x; v, sx). Hence the thesis.
(3) 8* (iteration). M = Doy1(8*,s,s") iff M =VYP.[...D P(s,s’)] where... stand for
the following two assertions:
(i) Vs.P(s,s);
(i) Vs,s’,s”.D0o1(8,s,s") A P(s”,s") D P(s,s).
Consider the relatior® defined as the set of pairs, s’) such that: there exist
81,81...,8,, 5, With 81 = 8%, s1 ==, 5, = ', M = Final(§,,s,) and M =
Trangs;, s;, 8;+1, ;) fori =1,...,n— 1. To prove the thesis, it is sufficient to show
that Q satisfies the two assertions (i) and (ii).
() Letsy =26, =6% s1=s, =s,; sinceM = Final(8*, s), it follows that for alls,
(s,s) € Q.
(i) By the firstinduction hypothesis (the induction on the structure of the program):
M = Do1(8,s,s”) implies that there exisbi,s1..., 8, s such thats; =
8, s1 =y, sx =", M = Final(, sx) and M = Trang$;, s;, 8;+1, si+1) for
i =1,...,k — 1. This implies thatM = Trang$;; 8%, s;, 8i+1; 6%, si+1) for
i:2,...,k—1.Moreover, we must also hawé = Trang(§*, s1, 82; 8*, s2).

By the second induction hypothesis (rule induction fj;, we can assume
that there existy, sk ..., ¥n, sy such thatyy = 8%, sy =s", s, =5, M =
Final(y,, s,) andM = Trandy;, s, yi+1, si+1) fori =k, ..., n — 1.

Now observe thatinal(8g, sy) and Trans(yx, sk, Yk+1, sk+1) implies that
Trans(8x; vk, Sk, Vk+1, Sk+1). Thus, we get that (ii) holds fa®.

Hence the thesis.

(4) {Env, 8} (procedures)M = Doi({Env, 8}, s, s7) iff

M |=VPy,...,P,. [® DD01(8,s,s)],
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where

n
® = |:/\V)?, s, s/.Dol(Si;i,s, s D Pi(X,s, s/):|. (B.4)

i=1
To get the thesis, it suffices to prove it for the case:
MEVPL, ..., Py [® D Pi(X,s,5)] (B.5)

and then apply the induction argument on the structure of the program considering
as base casesl, a, $?, andP (7).

Consider the relation®; defined as the set of tuplés, s, s") such that there exist
81,51+ .., 8, sn With 81 = {Env. P;(X)},%2 s1 =35, s, =s', M = Final($,, s,) and
M = Trangs;, s;, 8;+1,s;) fori =1,...,n — 1. To prove the thesis it is sufficient to
show that eacl®; satisfies (is closed under) the assertion (B.4).

Recall thatDoy (P; (X)), s, s’) P (x,s,5") whereP is a free predicate variable.
This means that for any variable assignmentM, o """P" = Doy (P; (%), s, s)
implies (%, s, s") € Q;, i.e., there exisé1, s1...,8,, sn Wlth 81 ={Env, P;(X)}, s1 =
s, s, =5, M =Final(§,,s,) andM = Trans(al,sl,aﬂrl,sl) fori=1,...,n—1.
Hence by induction on the structure of the program, considering as basendases
a, $? and P(7), we have thatM, o P” |= D01(<Sl~ s, s") implies that there
exist 81,51...,8,, 5, With 8§, = {Env, 81; }, s1=s, s, =5, M = Final(8,, s,)
and M = Trans(é;, si, 8i+1, ) for i =1,...,n — 1. Now considering thad/ |=
Trang{Env, 5,~;[},s1, 82, s2) implies M = Trang[Env: P;(X)], s1, 82, s2) implies
M = Trang{Env, P;(X)}, s1, 82, s2), we get thaix,s,s’) € Q;. O

.....

Lemma B.3. For all Gologprogramss and situations:
Final(s, s) > Do1(4, s, s).
Proof. It is easy to show thdDoi (3, s, s) is closed with respect to the implications in the
inductive definition ofFinal. O
Lemma B.4. For all Gologprogramss, 8’ and situations, s':

Trangs, s, 8, s') AD01(8, 5", s") D Do1(8, s, s”).

Proof. The property we want to prove can be rewritten as follows:
Trangs,s,8',s) D @, s,8,s)
with

def

D(5,s,8,5) vs”.D01(8',s’,s”) D D01(8, s, s”).

2279 pe more precise, the variablesin P; (x) should be read azameOf(x;) thus converting situation calculus
objects/actions variables into suitable program terms (see Appendix A).
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Hence it is sufficient to show that is closed under the implications that inductively define
Trans Again, we only give details for the most significant cases.
(1) Implication for primitive actions. We show th&osga[s],s) D @ (a[s], s, nil,
do(a[s], s)), i.e.:

Posgal[s], s) D Vs”.Doy(nil, do(a[s], s), s”) D Doy(a, s, s”).

SinceDoy(nil, s, s) def s" = s, this reduces t®osga[s], s) D Doi(a, s, do(a, s)),

which holds by the definition dbos.
(2) First implication for sequences. We have to shd, s, 8’,s') D @(8; y, 5,8, 5),
i.e..

Vs”.[Doy(8',s’, s”") D D0o1(8, s, s")] D
Vs .Do1(8'; y,s',s") D D01(S; y, 5, s7).

By contradiction. Suppose that there is a motlebuch thatM = Vs”.Doy (8, s,
sy D Do1(8,s,s”), and M = Do1(8"; v,s',s.) and M = —Doi(8; y, s, s.) for
somes.. This means thaM |= Doy (8',s’, s;) A Do1(y, s, s.) for somes,, but
M = Vt.—Do01(8,s,1) v =Do1(y, t,s.). SinceM = Do1(8,s’,s;) implies M =
Doy (8, s, s;), we have a contradiction.

(3) Second implication for sequences. We have to shmal(§, s) A @ (y,s,y’,s’) D
D6 y,s,y,8), e

Final(8,s) AVs”.[Dor(y',s’,s”) D Doy, s,s”)] D
vs”.Do1(y’, s, s") D D0o1(8; v, s, s7).

By contradiction. Suppose that there is a mogelsuch thatM = Final(é, s),
M = Vs".Doi(y',s’,s”) D Doi(y,s,s”), and M = Doi(y’,s’, sc)—thus M =
Doi(y, s, sc)—andM = —Do1(38; y, s, s¢) for somes,. The latter means thatl =
Vt.—Do1(8, s,1) vV =Do1(y, t, s¢). SinceM = Final(8, s) impliesM = Do (8, s, s)
by Lemma B.3, ther! = —-Do1(y, s, s.), contradiction.

(4) Implication for iteration. We have to sho®(s, s, 8, s") D @ (8%, s, 8'; 8*,5'), i.e.:

Vs”.[Doy(8,s',s”) D Do1(8, s, s)] D
vs”.Doy(8"; 8%, 5", s") D Doy (8%, s,5”).

By contradiction. Suppose that there is a modebuch thatM = Vs”.Doy (8, s,
sy D Do1(8,s,s”), and M k= Doi(8; 8*,s',s.) and M = —Do1(8*,s,s.) for
somes.. Since M = Do1(8'; 86,5, s.) implies M &= Do1(8, s', s;)—thus M =
Do1 (6, s, s;)—and M = Do1(8*, 57, s.), andM = Do1(8, s, s;) and M = Doy (5*,
s¢, 8¢) imply M = Do (8%, s, s¢), contradiction.

(5) Implication for contextualized procedure calls. We have to show that

@ ({Env, 5,~;3["S]}, 5,8, s") D D(Env: Pi(D)],s5,8,s).
It suffices to prove that:

Doy ({Env. 5,~§["S]}, 5,5') D DoL([Env: P;(D)], 5, 5").
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We proceed by contradiction. Suppose that there exists an niddslich that
M = Doi({Env 81-;’[’;]}, s,s") andM = —Doy([Env, P;i(1)], s, s'), for somer, s and

s’. That is:
MIEVPL ..., Py [¥ D D0i(5:% | 5.5')], (B.6)
ME3PL, ..., Py [¥ A =Pi(]s],s, s)], (B.7)

wherey = [/\f’:lv)?,»,s,s/.Dol((Sig"_,s,s’) O Pi(X;,s,s)]. Then by (B.7) there
exists a variable assignment such thato =¥ andM, o = —P;(t[s], s, s), which
impliesM, o = —-Dol(sti’["s], s, s"), which contradicts (B.6).
(6) Implication for programs within an environment. We have to show
D (8itmp, iy S 8 5) D PUENV 8}, 5,6, 5).
It suffices to prove that:
Dol(S[PEr(]’\z py ') D DOL(EN 8}, 5, 5.

This can be done by induction on the structure of the programnsideringnil, a,
¢?, and[EnV : P(7)] as base cases (such programs do not make USenf O

Lemma B.5. For every modeM ofC, if there exis®1, s1...68,, s, suchthat; =6, s1 =3,
sp =s', M = Final(8,, s,) and M = Trang§;, s;, 8i+1, si+1) fori =1,...,n — 1, then
M =Do1(8,s,s").

Proof. By induction onn. If n = 1, thenFinal(é,s) D Do1(8, s,s) by Lemma B.3. If
n > 1, then by induction hypothesig = Do; (82, s2, s), hence by applying Lemma B.4,
we get the thesis. O

With these lemmas in place we can finally prove the wanted result:

Theorem 1. For each Golog prograni:
C=Vs,s'.D0o1(8, s, s") =D02(3, s, s).

Proof. (=) by Lemmas B.2 and B.1) by Lemmas B.1 and B.5. 0O
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