
Artificial Intelligence 121 (2000) 109–169

ConGolog, a concurrent programming language
based on the situation calculus

Giuseppe De Giacomoa,∗, Yves Lespéranceb, Hector J. Levesquec
a Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via Salaria 113,

00198 Roma, Italy
b Department of Computer Science, York University, Toronto, ON, Canada M3J 1P3

c Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 3H5

Received 16 September 1999

Abstract

As an alternative to planning, an approach to high-level agent control based on concurrent program
execution is considered. A formal definition in the situation calculus of such a programming language
is presented and illustrated with some examples. The language includes facilities for prioritizing the
execution of concurrent processes, interrupting the execution when certain conditions become true,
and dealing with exogenous actions. The language differs from other procedural formalisms for
concurrency in that the initial state can be incompletely specified and the primitive actions can be
user-defined by axioms in the situation calculus. Some mathematical properties of the language are
proven, for instance, that the proposed semantics is equivalent to that given earlier for the portion of
the language without concurrency. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Cognitive robotics; Reasoning about actions; Situation calculus; Semantics of programs;
Concurrency

1. Introduction

When it comes to providing high-level control for robots or other agents in dynamic
and incompletely known worlds, approaches based on plan synthesis may end up being
too demanding computationally in all but simple settings. An alternative approach that is
showing promise is that ofhigh-level program execution[20]. The idea, roughly, is that

∗ Corresponding author.
E-mail addresses:degiacomo@dis.uniroma1.it (G. De Giacomo), lesperan@cs.yorku.ca (Y. Lespérance),

hector@cs.toronto.edu (H.J. Levesque).

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00031-X

110 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

instead of searching for a sequence of actions that would take the agent from an initial
state to some goal state, the task is to find a sequence of actions that constitutes a legal
execution of some high-level nondeterministic program. As in planning, to find a sequence
that constitutes a legal execution of a high-level program, it is necessary to reason about
the preconditions and effects of the actions within the body of the program. However,
if the program happens to be almost deterministic, very little searching is required; as
more and more nondeterminism is included, the search task begins to resemble traditional
planning. Thus, in formulating a high-level program, the user gets to control the search
effort required.

The hope is that in many domains, what an agent needs to do can be conveniently
expressed using a suitably rich high-level programming language, and that at the same
time finding a legal execution of that program will be more feasible computationally than
the corresponding planning task. Previous work on theGolog language [20] considered
how to reason about actions in programs containing conditionals, iteration, recursion, and
nondeterministic operators, where the primitive actions and fluents where characterized
by axioms of the situation calculus. In this paper, we explore how to execute programs
incorporating a rich account ofconcurrency. The execution task remains the same; what
changes is that the programming language, which we callConGolog(for Concurrent
Golog) [6], becomes considerably more expressive. One of the nice features of this
language is that it allows us to conveniently formulate agent controllers that pursue
goal-oriented tasks while concurrently monitoring and reacting to conditions in their
environment, all defined precisely in the language of the situation calculus. But this
kind of expressiveness requires considerable mathematical machinery: we need to encode
ConGologprograms as terms in the situation calculus (which, among other things, requires
encoding certain formulas as terms), and we also need to use second-order quantification
to deal with iteration and recursive procedures. It is not at all obvious that such complex
definitions are well-behaved or even consistent.

Of course ours is not the first formal model of concurrency. In fact, well developed
approaches are available [4,17,25,39]1 and our work inherits many of the intuitions
behind them. However, it is distinguished from these in at least two fundamental ways.
First, it allows incomplete information about the environment surrounding the program. In
contrast to typical computer programs, the initial state of aConGologprogram need only
be partially specified by a collection of axioms. Second, it allows the primitive actions
(elementary instructions) to affect the environment in a complex way and such changes to
the environment can affect the execution of the remainder of the program. In contrast to
typical computer programs whose elementary instructions are simple predefined statements
(e.g., variable assignments), the primitive actions of aConGologprogram are determined
by a separate domain-dependent action theory, which specifies the action preconditions
and effects, and deals with the frame problem. Finally, it might also be noted that the
interaction between prioritized concurrency and recursive procedures presents a level of
procedural complexity which, as far as we know, has not been dealt with in any previous
formal model.

1 In [5,28] a direct use of such approaches to model concurrent (complex) actions in AI is investigated.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 111

The rest of the paper is organized as follows: in Section 2 we briefly review the situation
calculus and how it can be used to formulate the planning task. In Section 3, we review
theGologprogramming language and in the following section, we present a variant of the
original specification of the high-level execution task. In Section 5, we explain informally
the sort of concurrency we are concerned with, as well as related notions of priorities
and interrupts. The section concludes with changes to theGolog specification required
to handle concurrency. In Section 6, we illustrate the use ofConGologby going over
several example programs. Then, in Section 7, we extend such a specification to handle
procedures and recursion. Handling the interaction between the very general form of
prioritized concurrency allowed inConGologand recursive procedures will require a quite
sophisticated approach. In Section 8 we will show general sufficient conditions that allow
us to use a much simplified semantics without loss of generality. In Section 9, we present a
Prolog interpreter forConGologand prove its correctness. In Section 10, we conclude by
discussing some of the properties ofConGolog, its implementation, and topics for future
research.

2. The situation calculus

As mentioned earlier, our high-level programs contain primitive actions and tests that are
domain dependent. An interpreter for such programs must reason about the preconditions
and effects of actions in the program to find legal executions. So we need a language to
specify such domain theories. For this, we use thesituation calculus[24], a first-order
language (with some second-order features) for representing dynamic domains. In this
formalism, all changes to the world are the result of namedactions. A possible world
history, which is simply a sequence of actions, is represented by a first-order term called
a situation. The constantS0 is used to denote the initial situation, namely that situation
in which no actions have yet occurred. There is a distinguished binary function symbol
do and the termdo(a, s) denotes the situation resulting from actiona being performed
in situations. Actions may be parameterized. For example,put(x, y) might stand for the
action of putting objectx on objecty, in which casedo(put(A,B), s) denotes that situation
resulting from puttingA onB when the world is in situations. Notice that in the situation
calculus, actions are denoted by function symbols, and situations (world histories) are also
first-order terms. For example,

do(putDown(A),do(walk(P),do(pickUp(A),S0)))

is a situation denoting the world history consisting of the sequence of actions

[pickUp(A),walk(P),putDown(A)].
Relations whose truth values vary from situation to situation, calledrelational fluents,

are denoted by predicate symbols taking a situation term as their last argument. For
example,Holding(r, x, s) might mean that a robotr is holding an objectx in situations.
Functions whose denotations vary from situation to situation are calledfunctional fluents.
They are denoted by function symbols with an additional situation argument, as in
position(r, s), i.e., the position of robotr in situations.

112 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

The actions in a domain are specified by providing certain types of axioms. First, one
must state the conditions under which it is physically possible to perform an action by
providing aaction precondition axiom. For this, we use the special predicatePoss(a, s)
which represents the fact that primitive actiona is physically possible (i.e., executable) in
situations. So, for example,

Poss(pickup(x), s) ≡ ∀x.¬Holding(x, s)∧NextTo(x, s)∧¬Heavy(x)

says that the actionpickup(x), i.e., the agent picking up an objectx, is possible in situation
s if and only if the agent is not already holding something in situations and is positioned
next tox in s andx is not heavy.

Secondly, one must specify how the action affects the state of the world; this is done by
providingeffect axioms. For example,

Fragile(x, s)⊃ Broken(x,do(drop(x, s)))

says that dropping an objectx causes it to become broken provided thatx is fragile. Effect
axioms provide the “causal laws” for the domain of application.

These types of axioms are usually insufficient if one wants to reason about change.
One must addframe axiomsthat specify when fluents remain unchanged by actions. For
example, dropping an object does not affect the color of things:

colour(y, s)= c⊃ colour(y,do(drop(x, s)))= c.
The frame problem arises because the number of these frame axioms is very large, in
general, of the order of 2×A×F , whereA is the number of actions andF the number of
fluents. This complicates the task of axiomatizing a domain and can make theorem proving
extremely inefficient.

To deal with the frame problem, we use an approach due to Reiter [31]. The basic idea
behind this is to collect all effect axioms about a given fluent and make a completeness
assumption, i.e., assume that they specify all of the ways that the value of the fluent may
change. A syntactic transformation can then be applied to obtain asuccessor state axiom
for the fluent, for example:

Broken(x,do(a, s)) ≡
a = drop(x)∧ Fragile(x, s)∨
∃b.(a = explode(b)∧NextTo(b, x, s))∨
Broken(x, s)∧ a 6= repair(x).

This says that an objectx is broken in the situation resulting from actiona being performed
in s if and only if a is droppingx andx is fragile, ora involves a bomb exploding next
to x, or x was already broken in situations prior to the action anda is not the action
of repairingx. This approach yields a solution to the frame problem—a parsimonious
representation for the effects of actions. Note that it relies on quantification over actions.
This discussion ignores the ramification and qualification problems; a treatment compatible
with the approach described has been proposed by Lin and Reiter [21].

So following this approach, a domain of application will be specified by a theory of the
following form:

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 113

• Axioms describing the initial situation,S0.
• Action precondition axioms, one for each primitive actiona, characterizingPoss(a, s).
• Successor state axioms, one for each fluentF , stating under what conditions
F(Ex,do(a, s)) holds as function of what holds in situations.
• Unique names axioms for the primitive actions.
• Some foundational, domain independent axioms.

The latter foundational axioms include unique names axioms for situations, and an
induction axiom. They also introduce the relation< over situations.s < s′ holds if and
only if s′ is the result of some sequence of actions being performed ins, where each
action in the sequence is possible in the situation in which it is performed;s 6 s′ stands
for s < s′ ∨ s = s′. Since the foundational axioms play no special role in this paper, we
omit them. For details, and for some of their metamathematical properties, see Lin and
Reiter [21] and Reiter [32].

For any domain theory of the sort just described, we have a very clean specification of
the planning task, which dates back to the work of Green [13]:

Classical Planning. Given a domain theoryD as above, and a goal formulaφ(s) with a
single free-variables, the planning task is to find a sequence of actionsEa such that:

D |= Legal(Ea,S0)∧ φ(do(Ea,S0)),

wheredo([a1, . . . , an], s) is an abbreviation for

do(an,do(an−1, . . . ,do(a1, s) . . .)),

and whereLegal([a1, . . . , an], s) stands for

Poss(a1, s)∧ · · · ∧ Poss(an,do([a1, . . . , an−1], s)).

In other words, the task is to find a sequence of actions that is executable (each action
is executed in a context where its precondition is satisfied) and that achieves the goal (the
goal formulaφ holds in the final state that results from performing the actions in sequence).

3. Golog

As presented in [20],Golog is a logic-programming language whose primitive actions
are those of a background domain theory. It includes the following constructs (δ, possibly
subscripted, ranges overGologprograms):

a, primitive action
φ?, wait for a condition2

(δ1; δ2), sequence
(δ1 | δ2), nondeterministic choice between actions
πv.δ, nondeterministic choice of arguments

2 Because there are no exogenous actions or concurrent processes inGolog, waiting forφ amounts to testing
thatφ holds in the current state.

114 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

δ∗, nondeterministic iteration
{proc P1(Ev1) δ1 end; . . .proc Pn(Evn) δn end; δ}, procedures.

In the first line,a stands for a situation calculus action where the special situation constant
now may be used to refer to the current situation (i.e., that wherea is to be executed).
Similarly, in the line below,φ stands for a situation calculus formula wherenow may
be used to refer to the current situation, for exampleOnTable(block,now). a[s] (φ[s])
will denote the action (formula) obtained by substituting the situation variables for
all occurrences ofnow in functional fluents appearing ina (functional and predicate
fluents appearing inφ). Moreover when no confusion can arise, we often leave out
the now argument from fluents altogether; for example, writeOnTable(block) instead
of OnTable(block,now). In such cases, the situation suppressed version of the action or
formula should be understood as an abbreviation for the version withnow.

Let’s examine a simple example to see some of the features of the language. Here’s a
Gologprogram to clear the table in a blocks world:{

proc removeAblock
πb. [OnTable(b,now)?;pickUp(b);putAway(b)]

end;
removeAblock∗;
¬∃b.OnTable(b,now)?

}
.

Here we first define a procedure to remove a block from the table using the nondeter-
ministic choice of argument operatorπ . πx. [δ(x)] is executed by nondeterministically
picking an individualx, and for thatx, performing the programδ(x). The wait action
OnTable(b,now)? succeeds only if the individual chosen,b, is a block that is on the table
in the current situation. The main part of the program uses the nondeterministic iteration
operator; it simply says to executeremoveAblockzero or more times until the table is clear.
Note thatGolog’s other nondeterministic construct,(δ1 | δ2), allows a choice between two
actions; a program of this form can be executed by performing eitherδ1 or δ2.

In its most basic form, the high-level program execution task is a special case of the
above planning task:

Program Execution. Given a domain theoryD as above, and a programδ, the execution
task is to find a sequence of actionsEa such that:

D |= Do(δ, S0,do(Ea,S0)),

whereDo(δ, s, s′) means that programδ when executed starting in situations hass′ as a
legal terminating situation.

Note that sinceGolog programs can be nondeterministic, there may be several
terminating situations for the same program and starting situation.

In [20], Do(δ, s, s′) was simply viewed as an abbreviation for a formula of the situation
calculus. The following inductive definition ofDo was provided:

(1) Primitive actions:

Do(a, s, s′) def= Poss(a[s], s)∧ s′ = do(a[s], s).

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 115

(2) Wait/test actions:

Do(φ?, s, s′) def= φ[s] ∧ s = s′.
(3) Sequence:

Do(δ1; δ2, s, s′) def= ∃s′′. Do(δ1, s, s′′)∧Do(δ2, s
′′, s′).

(4) Nondeterministic branch:

Do(δ1 | δ2, s, s′) def= Do(δ1, s, s
′)∨Do(δ2, s, s

′).

(5) Nondeterministic choice of argument:

Do(πx.δ(x), s, s′) def= ∃x.Do(δ(x), s, s′).

(6) Nondeterministic iteration:

Do(δ∗, s, s′) def= ∀P.{∀s1. P (s1, s1)∧
∀s1, s2, s3.[P(s1, s2)∧Do(δ, s2, s3)⊃ P(s1, s3)]}⊃ P(s, s′).

In other words, doing actionδ zero or more times takes you froms to s′ if and only
if (s, s′) is in every set (and therefore, the smallest set) such that:
(a) (s1, s1) is in the set for all situationss1.
(b) Whenever(s1, s2) is in the set, and doingδ in situations2 takes you to situation

s3, then(s1, s3) is in the set.
The above definition of nondeterministic iteration is the standard second-order way
of expressing this set. Some appeal to second-order logic appears necessary here
because transitive closure is not first-order definable, and nondeterministic iteration
appeals to this closure.

We have left out the expansion for procedures, which is somewhat more complex; see [20]
for the details.

4. A transition semantics

By using Do, programs are assigned a semantics in terms of a relation, denoted by
the formulasDo(δ, s, s′), that given a programδ and a situations, returns a situations′
resulting from executing the program starting in the situations. Semantics of this form
are sometimes calledevaluation semantics(see [15,26]), since they are based on the
(complete) evaluation the program.

When concurrency is taken into account it is more convenient to adopt semantics of a
different form: the so-calledtransition semanticsor computation semantics (see again [15,
26]). Transition semantics are based on definingsingle stepsof computation in contrast to
directly defining complete computations.

In the present case, we are going to define a relation, denoted by the predicate
Trans(δ, s, δ′, s′), that associates to a given programδ and situations, a new situation

116 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

s′ that results from executing a primitive action or test action and anew programδ′ that
represents whatremains of the programafter having performed such an action. In other
words,Trans denotes atransition relation betweenconfigurations. A configurationis a
pair formed by a program (the part of the initial program that is left to perform) and the a
situation (representing the current situation).

We are also going to introduce a predicateFinal(δ, s), meaning that the configuration
(δ, s) is a final one, that is, where the computation can be considered completed (no
program remains to be executed). The final situations reached after a finite number
of transitions from a starting situation coincide with those satisfying theDo relation.
Complete computations are thus defined by repeatedly composing single transitions until
a final configuration is reached.

It worth noting that if a program does not terminate, then no final situation will satisfy
theDo relation (indeed evaluation semantics are typically used for terminating programs),
while we can still keep track of the various transitions performed by means ofTrans.
Indeed, nonterminating programs do not need any special treatment within transition
semantics, while they typically remain undefined in evaluation semantics.

In general, both evaluation semantics and transition semantics belong to the family of
structural operational semanticsintroduced by Plotkin in [27]. Both of these forms of
semantics are operational since they do not assign a meaning directly to the programs (as
denotational semantics), but instead see programs simply as specifications of computations
(or better as syntactic objects that specify the control flow of the computation). They are
abstract semantics since, in contrast toconcrete operational semantics, they do not define a
specific machine on which the operations are performed, but instead only define an abstract
relation (such asDo or Trans) which denotes the possible computations (either complete
computations for evaluation semantics, or single steps of computations for transition
semantics). In addition, both such form of semantics are structural since are are defined
on thestructureof the programs.

4.1. Encoding programs as first-order terms

In the simple semantics usingDo, it was possible to avoid introducing programs
explicitly into the logical language, sinceDo(δ, s, s′) was only an abbreviation for a
formulaΦ(s, s′) that did not mention the programδ (or any other programs). This was
possible essentially because it was not necessary to quantify over programs.

Basing the semantics onTranshowever does require quantification over programs. To
allow for this, we develop an encoding of programs as first-order terms in the logical
language (observe that programs as such, cannot in general be first-order terms, since on
one hand, they mention formulas in tests, and on the other, the operatorπ in πx.δ is a
quantifier).

Encoding programs as first-order terms, although it requires some care (e.g., introducing
constants denoting variables and defining substitution explicitly in the language), does not
pose any major problem.3 In the following we abstract from the details of the encoding

3 Observe that, we assume that formulas that occur in tests never mention programs, so it is impossible to build
self-referential sentences.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 117

as much as possible, and essentially use programs within formulas as if they were already
first-order terms. The full encoding is given in Appendix A.

4.2. Trans and Final

Let us formally defineTransandFinal, which intuitively specify what are the possible
transitionsbetween configurations (Trans), and when a configuration can be considered
final (Final).

It is convenient to introduce a special programnil, called theempty program, to denote
the fact that nothing remains to be performed (legal termination). For example, consider a
program consisting solely of a primitive actiona. If it can be executed (i.e., if the action is
possible in the current situation), then after the execution of the actiona nothing remains of
the program. In this case, we say that the program remaining after the execution of action
a is nil.

Trans(δ, s, δ′, s′) holds if and only if there is a transition from the configuration(δ, s)
to the the configuration(δ′, s′), that is, if by running programδ starting in situations, one
can get to situations′ in one elementary step with the programδ′ remaining to be executed.
As mentioned, every such elementary step will either be the execution of an atomic action
(which changes the current situation) or the execution of a test (which does not). As well,
if the program is nondeterministic, there may be several transitions that are possible in a
configuration. To simplify the discussion, we postpone the introduction of procedures to
Section 7.

The predicateTransfor programs without procedures is characterized by the following
set of axiomsT (here as in the rest of the paper, free variables are assumed to be universally
quantified):

(1) Empty program:

Trans(nil, s, δ′, s′) ≡ False.

(2) Primitive actions:

Trans(a, s, δ′, s′) ≡
Poss(a[s], s)∧ δ′ = nil ∧ s′ = do(a[s], s).

(3) Wait/test actions:

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ′ = nil ∧ s′ = s.
(4) Sequence:

Trans(δ1; δ2, s, δ′, s′) ≡
∃γ.δ′ = (γ ; δ2)∧ Trans(δ1, s, γ, s

′)∨
Final(δ1, s)∧ Trans(δ2, s, δ

′, s′).

(5) Nondeterministic branch:

Trans(δ1 | δ2, s, δ′, s′) ≡
Trans(δ1, s, δ

′, s′)∨ Trans(δ2, s, δ
′, s′).

118 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

(6) Nondeterministic choice of argument:

Trans(πv.δ, s, δ′, s′) ≡ ∃x.Trans(δvx , s, δ
′, s′).

(7) Iteration:

Trans(δ∗, s, δ′, s′) ≡
∃γ.(δ′ = γ ; δ∗)∧ Trans(δ, s, γ, s′).

The assertions above characterize when a configuration(δ, s) can evolve (in a single
step) to a configuration(δ′, s′). Intuitively they can be read as follows:

(1) (nil, s) cannot evolve to any configuration.
(2) (a, s) evolves to(nil,do(a[s], s)), provided thata[s] is possible ins. After having

performeda, nothing remains to be performed and hencenil is returned. Note that
in Trans(a, s, δ′, s′), a stands for the program term encoding the corresponding
situation calculus action, whilePossand do take the latter as argument; we take
the function·[·] as mapping the program terma into the corresponding situation
calculus actiona[s], as well as replacingnowby the situations. The details of how
this function is defined are in Appendix A.

(3) (φ?, s) evolves to(nil, s), provided thatφ[s] holds, otherwise it cannot proceed.
Note that the situation remains unchanged. Analogously to the previous case,
we take the function·[·] as mapping the program term for conditionφ into the
corresponding situation calculus formulasφ[s], as well as replacingnow by the
situations (see Appendix A for details).

(4) (δ1; δ2, s) can evolve to(δ′1; δ2, s′), provided that(δ1, s) can evolve to(δ′1, s′).
Moreover it can also evolve to(δ′2, s′), provided that(δ1, s) is a final configuration
and(δ2, s) can evolve to(δ′2, s′).

(5) (δ1|δ2, s) can evolve to(δ′, s′), provided that either(δ1, s) or (δ2, s) can do so.
(6) (πv.δ, s) can evolve to(δ′, s′), provided that there exists anx such that(δvx, s) can

evolve to(δ′, s′). Hereδvx is the program resulting fromδ by substitutingv with the
variablex. 4

(7) (δ∗, s) can evolve to(δ′; δ∗, s′) provided that(δ, s) can evolve to(δ′, s′). Observe
that(δ∗, s) can also not evolve at all,(δ∗, s) being final by definition (see below).

Final(δ, s) tells us whether a programδ can be considered to be already in afinal state
(legally terminated) in the situations. Obviously we haveFinal(nil, s), but alsoFinal(δ∗, s)
sinceδ∗ requires 0 or more repetitions ofδ and so it is possible to not executeδ at all, the
program completing immediately.

The predicateFinal for programs without procedures is characterized by the set of
axiomsF :

(1) Empty program:

Final(nil, s) ≡ True.

(2) Primitive action:

Final(a, s) ≡ False.

4 To be more precise,v is substituted by a term of the formnameOf(x), wherenameOf is used to convert
situation calculus objects/actions into program terms of the corresponding sort (see Appendix A).

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 119

(3) Wait/test action:

Final(φ?, s) ≡ False.

(4) Sequence:

Final(δ1; δ2, s) ≡
Final(δ1, s)∧ Final(δ2, s).

(5) Nondeterministic branch:

Final(δ1 | δ2, s) ≡
Final(δ1, s)∨ Final(δ2, s).

(6) Nondeterministic choice of argument:

Final(πv.δ, s) ≡ ∃x.Final(δvx, s).

(7) Iteration:

Final(δ∗, s) ≡ True.

The assertions above can be read as follows:
(1) (nil, s) is a final configuration.
(2) (a, s) is not final, indeed the program consisting of the primitive actiona cannot be

considered completed until it has performeda.
(3) (φ?, s) is not final, indeed the program consisting of the test actionφ? cannot be

considered completed until it has performed the testφ?.
(4) (δ1; δ2, s) can be considered completed if both(δ1, s) and(δ2, s) are final.
(5) (δ1|δ2, s) can be considered completed if either(δ1, s) or (δ2, s) is final.
(6) (πv.δ, s) can be considered completed, provided that there exists anx such that

(δvx, s) is final, whereδvx is obtained fromδ by substitutingv with x.
(7) (δ∗, s) is a final configuration, since byδ∗ is allowed to execute 0 times.

In the following we denote byC be the set of axioms forTransandFinal plus those needed
for the encoding of programs as first-order terms.

4.3. Trans∗ and Do

The possible configurations that can be reached by a programδ starting in a situations
are those obtained by repeatedly following the transition relation denoted byTransstarting
from (δ, s), i.e., those in the reflexive transitive closure of the transition relation. Such a
relation, denoted byTrans∗, is defined as the (second-order) situation calculus formula:

Trans∗(δ, s, δ′, s′) def= ∀T .[. . .⊃ T (δ, s, δ′, s′)],
where. . . stands for the conjunction of the universal closure of the following implications:

True⊃ T (δ, s, δ, s),
Trans(δ, s, δ′′, s′′)∧ T (δ′′, s′′, δ′, s′)⊃ T (δ, s, δ′, s′).

120 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

UsingTrans∗ andFinal we can give a new definition ofDo as:

Do(δ, s, s′) def= ∃δ′.Trans∗(δ, s, δ′, s′)∧ Final(δ′, s′).

In other words,Do(δ, s, s′) holds if it is possible to repeatedly single-step the programδ,
obtaining a programδ′ and a situations′ such thatδ′ can legally terminate ins′.

For Golog programs such a definition forDo coincides with the one given in [20].
Formally, we can state the the following result:

Theorem 1. Let Do1 be the original definition of Do in[20], presented in Section3, and
Do2 the new one given above. Then for each Golog programδ:

C |= ∀s, s′.Do1(δ, s, s
′) ≡ Do2(δ, s, s

′).

Proof. See Appendix B. 2
The theorem also holds forGologprograms involving procedures when the treatment in

Section 7 is used.
Let us note that aTrans-step which brings the state of a computation from one configura-

tion (δ, s) to another(δ′, s′) need not change the situation part of the configuration, i.e., we
may haves = s′. In particular, test actions have this property. If we want to abstract from
such computation steps that only change the state of the program, we can easily define a
new relation,TransSit, that skips transitions that do not change the situation:

TransSit(δ, s, δ′, s) def= ∀T ′.[. . .⊃ T ′(δ, s, δ′, s′)],
where. . . stands for the conjunction of the universal closure of the following implications:

Trans(δ, s, δ′, s′)∧ s′ 6= s ⊃ T ′(δ, s, δ′, s′),
Trans(δ, s, δ′′, s)∧ T ′(δ′′, s, δ′, s′)⊃ T ′(δ, s, δ′, s′).

5. Concurrency

We are now ready to defineConGolog, an extended version ofGolog that incorporates
a rich account of concurrency. We say ‘rich’ because it handles:
• concurrent processes with possibly different priorities,
• high-level interrupts,
• arbitrary exogenous actions.

As is commonly done in other areas of computer science, we model concurrent processes as
interleavingsof the primitive actions in the component processes. A concurrent execution
of two processes is one where the primitive actions in both processes occur, interleaved in
some fashion. So in fact, we never have more than one primitive action happening at any
given time. This assumption might appear problematic when the domain involves actions
with extended duration (e.g., filling a bathtub). In Section 6.4, we return to this issue and
argue that in fact, there is a straightforward way to handle such cases.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 121

An important concept in understanding concurrent execution is that of a process
becomingblocked. If a deterministic processδ is executing, and reaches a point where
it is about to do a primitive actiona in a situations but wherePoss(a, s) is false (or a
wait actionφ?, whereφ[s] is false), then the overall execution need not fail as inGolog. In
ConGolog, the current interleaving can continue successfully provided that a process other
thanδ executes next. The net effect is thatδ is suspended or blocked, and execution must
continue elsewhere.5

The ConGolog language is exactly likeGolog except with the following additional
constructs:

if φ then δ1 elseδ2, synchronized conditional
while φ do δ, synchronized loop
(δ1 ‖ δ2), concurrent execution
(δ1 〉〉 δ2), concurrency with different priorities
δ||, concurrent iteration
〈φ→ δ〉, interrupt.

The constructsif φ then δ1 elseδ2 andwhile φ do δ are the synchronized versions of
the usual if-then-else and while-loop. They are synchronized in the sense that testing the
conditionφ does not involve a transition per se: the evaluation of the condition and the first
action of the branch chosen are executed as an atomic unit. So these constructs behave in a
similar way to the test-and-set atomic instructions used to build semaphores in concurrent
programming [1].6

The construct(δ1 ‖ δ2) denotes the concurrent execution of the actionsδ1 and δ2.
(δ1 〉〉 δ2) denotes the concurrent execution of the actionsδ1 andδ2 with δ1 having higher
priority thanδ2. This restricts the possible interleavings of the two processes:δ2 executes
only whenδ1 is either done or blocked. The next construct,δ||, is like nondeterministic
iteration, but where the instances ofδ are executed concurrently rather than in sequence.
Just asδ∗ executes with respect toDo like nil | δ | (δ; δ) | (δ; δ; δ) | . . . , the programδ||
executes with respect toDo like nil | δ | (δ ‖ δ) | (δ ‖ δ ‖ δ) | See Section 6.3 for an
example of its use.

Finally, 〈φ→ δ〉 is an interrupt. It has two parts: a trigger conditionφ and a body,δ.
The idea is that the bodyδ will execute some number of times. Ifφ never becomes true,
δ will not execute at all. If the interrupt gets control from higher priority processes when
φ is true, thenδ will execute. Once it has completed its execution, the interrupt is ready
to be triggered again. This means that a high priority interrupt can take complete control
of the execution. For example,〈True→ ringBell〉 at the highest priority would ring a bell
and do nothing else. With interrupts, we can easily write controllers that can stop whatever

5 Just as actions inGolog are external (e.g., there is no internal variable assignment), inConGolog, blocking
and unblocking also happen externally, viaPossand wait actions. Internal synchronization primitives are easily
added.

6 In [20], nonsynchronized versions of if-then-else and while-loops are introduced by defining:

if φ then δ1 elseδ2
def= [(φ?; δ1) | (¬φ?; δ2)] and while φ do δ

def= [(φ?; δ)∗;¬φ?]. The synchronized
versions of these constructs introduced here behave essentially as the nonsynchronized ones in absence of con-
currency. However the difference is striking when concurrency is allowed.

122 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

task they are doing to handle various concerns as they arise. They are, dare we say, more
reactive.

We now show howTransandFinal need to be extended to handle these constructs. (We
handle interrupts separately below.)Trans and Final for synchronized conditionals and
loops are defined as follows:

Trans(if φ then δ1 elseδ2, s, δ′, s′) ≡
φ[s] ∧ Trans(δ1, s, δ

′, s′)∨¬φ[s] ∧ Trans(δ2, s, δ
′, s′),

Trans(while φ do δ, s, δ′, s′) ≡
∃γ.(δ′ = γ ;while φ do δ)∧ φ[s] ∧ Trans(δ, s, γ, s′),

Final(if φ then δ1 elseδ2, s) ≡
φ[s] ∧ Final(δ1, s)∨¬φ[s] ∧ Final(δ2, s),

Final(while φ do δ, s) ≡
¬φ[s] ∨ Final(δ, s).

That is(if φ then δ1 elseδ2, s) can evolve to(δ′, s′), if either φ[s] holds and(δ1, s) can
do so, or¬φ[s] holds and(δ2, s) can do so. Similarly,(while φ do δ, s) can evolve to
(δ′;while φ do δ, s′), if φ[s] holds and(δ, s) can evolve to(δ′, s′). (if φ then δ1 elseδ2, s)
can be considered completed, if eitherφ[s] holds and(δ1, s) is final, or if¬φ[s] holds and
(δ2, s) is final. Similarly,(while φ do δ, s) can be considered completed if either¬φ[s]
holds or(δ, s) is final.

For the constructs for concurrency the extension ofFinal is straightforward:

Final(δ1 ‖ δ2, s) ≡ Final(δ1, s)∧ Final(δ2, s),

Final(δ1 〉〉 δ2, s) ≡ Final(δ1, s)∧ Final(δ2, s),

Final(δ||, s) ≡ True.

Observe that the last clause says that it is legal to execute theδ in δ|| zero times. ForTrans,
we have the following:

Trans(δ1 ‖ δ2, s, δ′, s′) ≡
∃γ.δ′ = (γ ‖ δ2)∧ Trans(δ1, s, γ, s

′)∨
∃γ.δ′ = (δ1 ‖ γ)∧ Trans(δ2, s, γ, s

′),
Trans(δ1 〉〉 δ2, s, δ′, s′) ≡
∃γ.δ′ = (γ 〉〉 δ2)∧ Trans(δ1, s, γ, s

′)∨
∃γ.δ′ = (δ1 〉〉 γ)∧ Trans(δ2, s, γ, s

′)∧¬∃ζ, s′′.Trans(δ1, s, ζ, s
′′),

Trans(δ||, s, δ′, s′) ≡
∃γ.δ′ = (γ ‖ δ||)∧ Trans(δ, s, γ, s′).

In other words, you single step(δ1 ‖ δ2) by single stepping eitherδ1 or δ2 and leaving
the other process unchanged. The(δ1 〉〉 δ2) construct is identical, except that you are only
allowed to single stepδ2 if there is no legal step forδ1. This ensures thatδ1 will execute
as long as it is possible for it to do so. Finally, you single stepδ|| by single steppingδ, and

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 123

what is left is the remainder ofδ as well asδ|| itself. This allows an unbounded number of
instances ofδ to be running.

Observe that with(δ1 ‖ δ2), if both δ1 andδ2 are always able to execute, the amount
of interleaving between them is left completely open. It is legal to execute one of them
completely before even starting the other, and it also legal to switch back and forth after
each primitive or wait action. It is not hard to define, however, new concurrency constructs
‖min and ‖max that require the amount of interleaving to be minimized or maximized
respectively. We omit the details.

Regarding interrupts, it turns out that these can be explained using other constructs of
ConGolog:

〈φ→ δ〉 def= while Interrupts_runningdo
if φ then δ elseFalse?

To see how this works, first assume that the special fluentInterrupts_runningis identically
True. When an interrupt〈φ→ δ〉 gets control, it repeatedly executesδ until φ becomes
false, at which point it blocks, releasing control to anyone else able to execute. Note
that according to the above definition ofTrans, no transition occurs between the test
condition in a while-loop or an if-then-else and the body. In effect, ifφ becomes false,
the process blocks right at the beginning of the loop, until some other action makesφ

true and resumes the loop. To actually terminate the loop, we use a special primitive
actionstop_interrupts, whose only effect is to makeInterrupts_running false. Thus, we
imagine that to execute a programδ containing interrupts, we would actually execute
the program{start_interrupts; (δ 〉〉 stop_interrupts)} which has the effect of stopping all
blocked interrupt loops inδ at the lowest priority, i.e., when there are no more actions inδ

that can be executed.
Finally, let us consider exogenous actions. These are primitive actions that may occur

without being part of a user-specified program. We assume that in the background theory,
the user declares, using a predicateExo, which actions can occur exogenously. We define
a special program for exogenous events:

δEXO
def= (π a.Exo(a)?;a)∗.

Executing this program involves performing zero, one, or more nondeterministically
chosen exogenous events.7 Then we make the user-specified programδ run concurrently
with δEXO:

δ ‖ δEXO.

In this way we allow exogenous actions whose preconditions are satisfied to asynchro-
nously occur (outside the control ofδ) during the execution ofδ.

7 Observe the use ofπ : the program nondeterministically chooses an actiona, tests that thisa is an exogenous
event, and executes it.

124 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

5.1. Formal properties of Trans and Final without procedures

We are going to show that the axioms forTransandFinal for the whole ofConGologare
definitional, in the sense that they completely characterizeTransandFinal for programs
without procedures.

Lemma 1. For any ConGolog program termδ(Ex) containing only variablesEx of sort
object or action, there exist two formulasΦ(Ex, s, δ, s′) andΨ (Ex, s), whereEx, s, δ′, s′ and
Ex, s are the only free variables inΦ and inΨ respectively, that do not mention Final and
Trans, and are such that:

C |= ∀Ex, s, δ′, s′.Trans(δ(Ex), s, δ′, s′) ≡ Φ(Ex, s, δ′, s′), (1)

C |= ∀Ex, s.Final(δ(Ex), s) ≡ Ψ (Ex, s). (2)

Proof. For both (1) and (2), the proof is similar; it is done by induction on the program
structure considering as base cases programs of the formnil, a, andφ?. Base cases: the
thesis is an immediate consequence of the axioms ofTransandFinal since the right-hand
side of the equivalences does not mentionTransandFinal. Inductive cases: by inspection,
all the axioms have on the right-hand side simpler program terms, which contain only
variables of sort object or action, as the first argument toTransandFinal, hence the thesis
is a straightforward consequence of the inductive hypothesis.2

It follows from the lemma that the axioms inT andF , together with the axioms for
encoding of programs as first-order terms, completely determine the interpretation of the
predicatesTransandFinal on the basis of the interpretation of the other predicates. That is
T andF implicitly definethe predicatesTransandFinal. Formally, we have the following
theorem:

Theorem 2. There are no pair of models ofC that differ only in the interpretation of the
predicates Trans and Final.

Proof. By contradiction. Suppose that there are two modelsM1 andM2 of C that agree
in the interpretation of all nonlogical symbols (constant, function, predicates) other than
either Trans or Final. Let’s say that they disagree onTrans, i.e., there is a tuple of
domain values(δ̂, ŝ, δ̂′, ŝ′) such that(δ̂, ŝ, δ̂′, ŝ′) ∈ TransM1 and (δ̂, ŝ, δ̂′, ŝ′) /∈ TransM2.
Considering the structure of the sortprograms(see Appendix A), we have that for every
value of the domain of sortprogramsδ̂ there is a program termδ(Ex), containing only
variablesEx of sort object or action, such that for some assignmentσ to Ex, δM1,σ = δM2,σ =
δ̂. Now let us consider three variabless, δ′, s′ and an assignmentσ ′ such thatσ ′(Ex)= σ(Ex),
σ ′(s) = ŝ, σ ′(δ′) = δ̂′, andσ ′(s′) = ŝ′. By Lemma 1, there exists a formulaΦ such that
neitherTransnor Final occurs inΦ and:

Mi,σ
′ |= Trans(δ, s, δ′, s′) iff Mi,σ

′ |=Φ(Ex, s, δ′, s′) i = 1,2.

Since,M1, σ
′ |=Φ(Ex, s, δ′, s′) iff M2, σ

′ |=Φ(Ex, s, δ′, s′), we get a contradiction.2

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 125

6. Some examples

6.1. Two robots lifting a table

Our first example involves a simple case of concurrency: two robots that jointly lift a
table. Test actions are used to synchronize the robots’ actions so that the table does not tip
so much that objects on it fall off. Two instances of the same program are used to control
the robots.
• Objects:

Two agents:∀r.Robot(r) ≡ r =Rob1∨ r =Rob2.

Two table ends:∀e.TableEnd(e) ≡ e= End1∨ e= End2.

• Primitive actions:

grab(rob,end),

release(rob,end),

vmove(rob, z) move robot arm up or down byz units.

• Primitive fluents:

Holding(rob,end, s),

vpos(end, s)= z height of the table end.

• Initial state:

∀r, e.¬Holding(r, e, S0),

∀e.vpos(e, S0)= 0.

• Precondition axioms:

Poss(grab(r, e), s) ≡ ∀r ′.¬Holding(r ′, e, s)∧ ∀e′.¬Holding(r, e′, s),
Poss(release(r, e), s) ≡ Holding(r, e, s),

Poss(vmove(r, z), s) ≡ True.

• Successor state axioms:

Holding(r, e,do(a, s)) ≡
a = grab(r, e)∨Holding(r, e, s)∧ a 6= release(r, e),

vpos(e,do(a, s))= p ≡
∃r, z.(a = vmove(r, z)∧Holding(r, e, s)∧ p = vpos(e, s)+ z)∨
∃r. a = release(r, e)∧ p = 0∨
p= vpos(e, s)∧¬∃r, z.(a = vmove(r, z)∧ Holding(r, e, s))∧
¬∃r. a = release(r, e).

126 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

The goal here is to get the table up, but to keep it sufficiently level so that nothing falls off.
We can define these as follows:

TableUp(s)
def= vpos(End1, s)>H ∧ vpos(End2, s)>H

(both ends of the table are higher than some thresholdH),

Level(s)
def= |vpos(End1, s)− vpos(End2, s)|6 Tol

(both ends are at the same height to within a thresholdTol).

So the goal is

Goal(s)
def= TableUp(s)∧ ∀s′.s′ 6 s ⊃ Level(s′)

and the claim is that this goal can be achieved by havingRob1 andRob2 each concurrently
execute the same procedurectrl defined as:

proc ctrl(rob)
πe.[TableEnd(e)?; grab(rob, e)];
while ¬TableUp(now) do

SafeToLift(rob,now)?;
vmove(rob,Amount)

end,

whereAmountis some constant such that 0< Amount< Tol, andSafeToLiftis defined by

SafeToLift(rob, s)
def= ∃e, e′. e 6= e′ ∧ TableEnd(e)∧ TableEnd(e′)∧

Holding(rob, e, s) ∧ vpos(e)6 vpos(e′)+ Tol−Amount.

Here, we use procedures simply for convenience and the reader can take them as
abbreviations. A formal treatment for procedures will be provided in Section 7.

So formally, the claim is:8

C ∪D |= ∀s.Do(ctrl(Rob1)‖ctrl(Rob2), S0, s)⊃Goal(s).

Here is an informal sketch of a proof.Do holds if and only if there is a finite sequence
of transitions from the initial configuration(ctrl(Rob1)‖ctrl(Rob2), S0) to a configuration
that is Final. A program involving two concurrent processes can only get to aFinal
configuration by reaching a configuration that isFinal for both processes. The processes
in our program involve while-loops, which only reach a final configuration when the loop
condition becomes is false. So the table must be high enough in the final situation.

It remains to be shown that the table stayed level. Letvi stand for the action
vmove(robi ,Amount). Suppose to the contrary that the table went too high onEnd1 held
by Rob1, and consider the first configuration where this became true. This situation in this
configuration is of the formdo(v1, s) where

vpos(End1,do(v1, s)) > vpos(End2,do(v1, s))+ Tol.

8 Actually, proper termination of the program is also guaranteed. However, stating this condition formally, in
the case of concurrency, requires additional machinery, since∃s.Do(ctrl(Rob1)‖ctrl(Rob2), S0, s) is too weak.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 127

However, at some earlier configuration, we had to haveSafeToLift(Rob1, s′) with no
intervening actions byRob1, otherwise the lastv1 would not have been executed. This
means that we have

vpos(End1, s
′)6 vpos(End2, s

′)+ Tol−Amount.

However, if all the actions betweens′ ands are byRob2, sinceRob2 can only increase the
value ofvpos(End2), it follows that

vpos(End1, s)6 vpos(End2, s)+ Tol−Amount,

that is, thatSafeToLiftwas also true just before the finalv1 action. This contradicts the
assumption thatv1 only addsAmountto the value ofvpos(End1).

6.2. A reactive multi-elevator controller

Our next example involves a reactive controller for a bank of elevators; it illustrates the
use of interrupts and prioritized concurrency. The example will use the following terms
(wheree stands for an elevator):
• Ordinary primitive actions:

goDown(e) move elevator down one floor
goUp(e) move elevator up one floor
buttonReset(n) turn off call button of floorn
toggleFan(e) change the state of elevator fan
ringAlarm ring the smoke alarm.

• Exogenous primitive actions:

reqElevator(n) call button on floorn is pushed
changeTemp(e) the elevator temperature changes
detectSmoke the smoke detector first senses smoke
resetAlarm the smoke alarm is reset.

• Primitive fluents:

floor(e, s)= n the elevator is on floorn, 16 n6 6
temp(e, s)= t the elevator temperature ist
FanOn(e, s) the elevator fan is on
ButtonOn(n, s) call button on floorn is on
Smoke(s) smoke has been detected.

• Defined fluents:

TooHot(e, s)
def= temp(e, s) > 1,

TooCold(e, s)
def= temp(e, s) <−1.

We begin with the following basic action theory for the above primitive actions and fluents:
• Initial state:

floor(e, S0)= 1, ¬FanOn(S0), temp(e, S0)= 0,

ButtonOn(3, S0), ButtonOn(6, S0).

128 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

• Exogenous actions:

∀a.Exo(a) ≡ a = detectSmoke∨ a = resetAlarm∨
a = changeTemp(e)∨ ∃n.a = reqElevator(n).

• Precondition axioms:

Poss(goDown(e), s) ≡ floor(e, s) 6= 1,

Poss(goUp(e), s) ≡ floor(e, s) 6= 6,

Poss(buttonReset(n), s) ≡ True,

Poss(toggleFan(e), s) ≡ True,

Poss(ringAlarm) ≡ True,

Poss(reqElevator(n), s) ≡ (16 n6 6) ∧ ¬ButtonOn(n, s),

Poss(changeTemp, s) ≡ True,

Poss(detectSmoke, s) ≡ ¬Smoke(s),

Poss(resetAlarm, s) ≡ Smoke(s).

• Successor state axioms:

floor(e,do(a, s))= n ≡
(a = goDown(e)∧ n= floor(e, s)− 1)∨
(a = goUp(e)∧ n= floor(e, s)+ 1)∨
(n= floor(e, s)∧ a 6= goDown(e)∧ a 6= goUp(e)),

temp(e,do(a, s))= t ≡
(a = changeTemp(e)∧ FanOn(e, s)∧ t = temp(e, s)− 1)∨
(a = changeTemp(e)∧¬FanOn(e, s)∧ t = temp(e, s)+ 1)∨
(t = temp(e, s)∧ a 6= changeTemp(e)),

FanOn(e,do(a, s)) ≡
(a = toggleFan(e)∧¬FanOn(e, s))∨
(FanOn(e, s)∧ a 6= toggleFan(e)),

ButtonOn(n,do(a, s)) ≡
a = reqElevator(n)∨
(ButtonOn(n, s)∧ a 6= buttonReset(n)),

Smoke(do(a, s)) ≡
a = detectSmoke∨
(Smoke(s)∧ a 6= resetAlarm).

Note that many fluents are affected by both exogenous and programmed actions. For
instance, the fluentButtonOn is made true by the exogenous actionreqElevator (i.e.,
someone calls for an elevator) and made false by the programmed actionbuttonReset(i.e.,
when an elevator serves a floor).

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 129

Now we are ready to consider a basic elevator controller for an elevatore. It might be
defined by something like:

while ∃n.ButtonOn(n) do
πn.{BestButton(n)?;serveFloor(e, n)};

while floor(e) 6= 1 do goDown(e).

The fluentBestButtonwould be defined to select among all buttons that are currently
on, the one that will be served next. For example, it might choose the button that has
been on the longest. For our purposes, we can take it to be anyButtonOn. The procedure
serveFloor(e, n) would consist of the actions the elevator would take to serve the request
from floorn. For our purposes, we can use:

proc serveFloor(e, n)
while floor(e) < n do goUp(e);
while floor(e) > n do goDown(e);
buttonReset(n)

end.

We have not bothered formalizing the opening and closing of doors, or other nasty
complications like passengers.

As with Golog, we try to prove an existential and look at the bindings for thes. They
will be of the formdo(Ea,S0) whereEa are the actions to perform. In particular, using this
controller programδ, we would get execution traces like

C ∪D |=Do(δ ‖ δEXO, S0,do([u,u, b3, u,u,u, b6, d, d, d, d, d], S0)),

C ∪D |=Do(δ ‖ δEXO, S0,do([u, r4, u, b3, u, b4, u,u, r2, b6, d, d, d, d, b2, d], S0)),

. . .

whereu= goUp(e), d = goDown(e), bn = buttonReset(n), rn = reqElevator(n), andD is
the basic action theory specified above. In the first run there were no exogenous actions,
while in the second, two elevator requests were made.

This controller does have a big drawback, however: if no buttons are on, the first loop
terminates, the elevator returns to the first floor and stops, even if buttons are pushed on its
way down. It would be better to structure it as two interrupts:

〈∃n.ButtonOn(n)→
πn.{BestButton(n)?;serveFloor(e, n)}〉,
〈floor(e) 6= 1→ goDown(e)〉

with the second at lower priority. So if no buttons are on, and you’re not on the first floor,
go down a floor, and reconsider; if at any point buttons are pushed exogenously, pick one
and serve that floor, before checking again. Thus, the elevator only quits when it is on the
first floor with no buttons on.

130 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

With this scheme, it is easy to handle emergency or high-priority requests. We would
add

〈∃n.EButtonOn(n)→
πn.{EButtonOn(n)?;serveEFloor(e, n)}〉

as an interrupt with a higher priority than the other two (assuming suitable additional
actions and fluents).

To deal with the fan, we can add two new interrupts:

〈TooHot(e) ∧ ¬FanOn(e)→ toggleFan(e)〉,
〈TooCold(e) ∧ FanOn(e)→ toggleFan(e)〉.

These should both be executed at the veryhighestpriority. In that case, while serving a
floor, whatever that amounts to, if the temperature ever becomes too hot, the fan will be
turned on before continuing, and similarly if it ever becomes too cold. Note that if we
did not check for the state of the fan, this interrupt would loop repeatedly, never releasing
control to lower priority processes.

Finally, imagine that we would like to ring a bell if smoke is detected, and disrupt normal
service until the smoke alarm is reset exogenously. To do so, we add the interrupt:

〈Smoke→ ringAlarm〉
with a priority that is less than the emergency button, but higher than normal service. Once
this interrupt is triggered, the elevator will stop and ring the bell repeatedly. It will handle
the fan and serve emergency requests, however.

Putting all this together, we get the following controller:

(〈TooHot(e) ∧ ¬FanOn(e)→ toggleFan(e)〉 ‖
〈TooCold(e) ∧ FanOn(e)→ toggleFan(e)〉) 〉〉
〈∃n.EButtonOn(n)→
πn.{EButtonOn(n)?;serveEFloor(e, n)}〉 〉〉
〈Smoke→ ringAlarm〉 〉〉
〈∃n.ButtonOn(n)→
πn.{BestButton(n)?;serveFloor(e, n)}〉 〉〉
〈floor(e) 6= 1→ goDown(e)〉.

Using this controllerδr , we would get execution traces like

C ∪D |=Do(δr ‖ δEXO, S0,do([u,u, b3, u,u,u, b6, d, d, d, d, r5, u,u,u, b5, d, d, d,

d], S0)),

C ∪D |=Do(δr ‖ δEXO, S0,do([u,u, b3, u, z, a, a, a, a,h,u,u, b6, d, d, d, d, d],
S0)),

C ∪D |=Do(δr ‖ δEXO, S0,do([u, t, u, b3, u, t, f,u, t, t, u, t, b6, d, t, f, d, t, d, d,

d], S0)),

. . .

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 131

where z = detectSmoke, a = ringAlarm, h = resetAlarm, t = changeTemp, and f =
toggleFan. In the first run, we see that this controller does handle requests that come in
while the elevator is on its way to retire on the bottom floor. The second run illustrates how
the controller reacts to smoke being detected by ringing the alarm. The third run shows
how the controller reacts immediately to temperature changes while it is serving floors.
Note that this elevator controller uses 5 different levels of priority. It could have been
programmed inGologwithout interrupts, but the code would have been a lot messier.

Now let us suppose that we would like to write a controller that handles two independent
elevators. InConGolog, this can be done very elegantly using(δ1 ‖ δ2), whereδ1 is the
above program withe replaced byElevator1 andδ2 is the same program withe replaced
by Elevator2. This allows the two processes to work completely independently (in terms
of priorities).9 Forn elevators, we would use(δ1 ‖ · · · ‖ δn).
6.3. A client–server system

In some applications, it is useful to have anunboundednumber of instances of a process
running concurrently. For example in an FTP server, we may want an instance of a manager
process for each active FTP session. This can be programmed using theδ|| concurrent
iteration construct.

Let us give a high-level sketch of how this might be done. Suppose that there is
an exogenous actionnewClient(cid) that occurs when a new client with the IDcid
first requests service. Also assume that a procedureserve(cid) has been defined, which
implements the behavior required for the server for a given client. To set up the system, we
run the program:

[π cid.acquire(cid);serve(cid)]||;
¬∃cid. (ClientWaiting(cid))?

Here, we assume that when the exogenous actionnewClient(cid) occurs, it makes the
fluent ClientWaiting(cid) true. Then, the only way the computation can be completed is
by generating a new process that first acquires the client by doingacquire(cid), and then
serves it. We formalize this as follows:

Poss(acquire(cid), s) ≡ ClientWaiting(cid),

ClientWaiting(cid,do(a, s)) ≡
a = newClient(cid)∨ClientWaiting(cid, s)∧ a 6= acquire(cid)].

Then, only a single process can acquire a given client, sinceacquire is only possible
when ClientWaiting(cid) is true and performing it makes this fluent false. The whole
program can only reach a final configuration if it forks exactly the right number of server
processes: at least one for each client because a server can only acquire one client, and no
more than one for each client because servers can be activated only if they can acquire a
client.

9 Of course, when an elevator is requested on some floor, both elevators may decide to serve it. It is easy to
program a better strategy that coordinates the elevators: when an elevator decides to serve a floor, it immediately
makes a fluent true for that floor, and the other elevator will not serve a floor for which that fluent is already true.

132 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

6.4. Actions with extended duration

One possible criticism of our approach to concurrency is that it does not work when
we consider actions that have extended duration. Consider singing while filling the bathtub
with water, for example. If one of the actions involved is “filling the bathtub”, and the other
actions are “singing do”, “singing re”, and “singing mi”, say, then there are exactly four
possible interleavings,

[filling ; do; re ; mi],
[do; filling ; re ; mi],
[do; re ; filling ; mi],
[do; re ; mi ; filling],

but none of them capture the idea of singing and filling the tub at the same time. Moreover,
the prospect of replacing the filling action by a large number of component actions (that
could be interleaved with the singing ones) is even less appealing.

To deal with this type of case, we recommend the following approach (see [33] for a
detailed presentation): instead of thinking of filling the bathtub as anaction or group of
actions, think of it as astate that an agent could be in, extending possibly over many
situations. The idea is that the agent can be in many such states simultaneously, including
listening to the radio, walking, and chewing gum. For each such state, we need two
primitive actions and a fluent; for the bathtub, they arestartFilling, which puts the agent
into the state, andendFilling, which terminates it, as well as the fluentFillingTub, which
holds in those situations where the agent is filling the tub. Formally, we would express this
with a successor state axiom as follows:

FillingTub(do(a, s)) ≡
a = startFilling∨ FillingTub(s)∧ a 6= endFilling.

Since thestartFilling and endFilling actions can be taken to be instantaneous, the
interleaving account is once again plausible. If we define a complex action

FillTheTub
def= [startFilling ; endFilling],

and run it concurrently with the singing, then we get these possible interleavings:

[startFilling ; endFilling; do; re ; mi],
[startFilling ; do; endFilling; re ; mi],
[startFilling ; do; re ; endFilling; mi],
[startFilling ; do; re ; mi ; endFilling],
[do; startFilling ; endFilling; re ; mi],
[do; startFilling ; re ; endFilling; mi],
[do; startFilling ; re ; mi ; endFilling],

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 133

[do; re ; startFilling ; endFilling; mi],
[do; re ; startFilling ; mi ; endFilling],
[do; re ; mi ; startFilling ; endFilling].

A better model would be something like

FillTheTub
def= [startFilling ; (waterLevel>H)?; endFilling],

which would rule out interleavings where the filling stops too soon. The most natural way
of modeling the water level is as a continuous function of time:l = L0+R× t,whereL0 is
the initial level,R is the rate of filling (taken to be constant), andt is the elapsed time. One
simple way to accommodate this idea within the situation calculus is to assume that every
action has a durationdur(a) (which we could also make dependent on the situation the
action is performed in). Actions such asstartFilling can have duration 0, but there must be
some action, if only atimePasses, with a non-0 duration. We then describe thewaterLevel
functional fluent by:

waterLevel(do(a, s))=waterLevel(s)+waterRate(s)× dur(a),

waterRate(do(a, s))= if FillingTub(s) thenR else0.

So as long as a situation is in a filling-the-tub state, the water level rises according to the
above equation. In terms of concurrency, the result is that the only allowable interleavings
would be those where enough actions of sufficient duration occur between thestartFilling
andstopFilling.

Of course, this model of the continuous process of water entering the bathtub does not
allow us to predict the eventual outcome, for example, the water overflowing if a tap is not
turned off, etc. A more complex program, typically involving interrupts, would be required,
so that suitable “trajectory altering” actions are triggered under the appropriate conditions.

7. Extending the transition semantics to procedures

We now extend the transition semantics introduced above to deal with procedures.
Because a recursive procedure may do an arbitrary number of procedure calls before it
performs a primitive action or test, and such procedure calls are not viewed as transitions,
we must use a second-order definition ofTransandFinal. In doing so, great care has to
be put in understanding the interaction between recursive procedures and the very general
form of prioritized concurrency allowed inConGolog.

Let proc P1(Ev1)δ1 end; . . . ;proc Pn(Evn)δn end be a collection of procedure definitions.
We call such a collection anenvironmentand denote it byEnv. In a procedure definition
proc Pi(Evi)δi end, Pi is the name of theith procedure inEnv; Evi are its formal parameters;
and δi is the procedure body, which is aConGologprogram, possibly including both
procedure callsand new procedure definitions. We usecall-by-valueas the parameter
passing mechanism, andlexical (or static) scopeas the scoping rule.

134 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

Formally we introduce three program constructs:
• P(Et) whereP is a procedure name andEt actual parameters associated to the procedure
P ; as usual we replace the situation argument in the terms constitutingEt by now.
P(Et) denotes a procedure call, which invokes procedureP on the actual parametersEt
evaluated in the current situation.
• {Env; δ}, whereEnv is an environment andδ is a program extended with procedures

calls. {Env; δ} binds procedures calls inδ to the definitions given inEnv. The usual
notion of free and bound apply, so for, e.g., in{proc P1() a end;P2();P1()}, P1 is
bound butP2 is free.
• [Env : P(Et)], where Env is an environment,P a procedure name andEt actual

parameters associated to the procedureP . [Env: P(Et)] denotes a procedure call that
has been contextualized: the environment in which the definition ofP is to be looked
for is Env.

We define the semantics ofConGologprograms with procedures by defining bothTrans
andFinal by a second-order formula (instead of a set of axioms).10 Trans is defined as
follows:

Trans(δ, s, δ′, s′) ≡ ∀T .[. . .⊃ T (δ, s, δ′, s′)],
where. . . stands for the conjunction ofT Trans

T —i.e., the set of axiomsT modulo textual
substitution ofTranswith T—and (the universal closure of) the following two assertions:

T ({Env; δ}, s, δ′, s′) ≡ T
(
δ
Pi(Et)
[Env:Pi(Et)], s, δ

′, s′
)
,

T ([Env: P(Et)], s, δ′, s′) ≡ T
({Env; δP EvPEt [s]}, s, δ′, s′

)
,

whereδPi(
Et)

[Env:Pi(Et)] denotes the programδ with all procedures bound byEnv and free inδ

replaced by their contextualized version (this gives us the lexical scope), and whereδP
EvP
Et[s]

denotes the body of the procedureP in Envwith formal parametersEv substituted by the
actual parametersEt evaluated in the current situation.

Similarly, Final is defined as follows:

Final(δ, s) ≡ ∀F.[. . .⊃ F(δ, s)],
where. . . stands for the conjunction ofFFinal

F —i.e., the set of axiomsF modulo textual
substitution ofFinal with F—and (the universal closure of) the following assertions:

F({Env; δ}, s) ≡ F
(
δ
Pi(Et)
[Env:Pi(Et)], s

)
,

F ([Env: P(Et)], s) ≡ F
({Env; δP EvPEt [s]}, s

)
.

Note that no assertions for (uncontextualized) procedure calls are present in the definitions
of Trans and Final. Indeed a procedure call which cannot be bound to a procedure
definition neither can do transitions nor can be considered successfully completed.

10 For compatibility with the formalization in Section 4, we treatTransandFinal as predicates, although it is
clear that they could be understood as abbreviations for the second-order formulas.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 135

Observe also the two uses of substitution to deal with procedure calls. When a program
with an associated environment is executed, for all procedure calls bound byEnv,
we simultaneously substitute the corresponding procedure calls, contextualized by the
environment of the procedurein order to deal with further procedure calls according to
the static scoperules. Then when a (contextualized) procedure is actually executed, the
actual parameters are first evaluated in the current situation, and then are substituted for
the formal parameters in the procedure bodies,11 thus yieldingcall-by-valueparameter
passing.

The following example programδStScillustratesConGolog’s static scoping:

{ proc P1()
a

end;
proc P2()

P1()

end;
proc P3()

{ proc P1()
b

end;
P2();P1()

}
end;
P3()

}.
One can show that for this program, the sequence of atomic actions performed will bea

followed byb (assuming that botha andb are always possible):

∀s.[Poss(a, s)∧Poss(b, s)] ⊃
∀s, s′.[Do(δStSc, s, s

′)≡ s′ = do(b,do(a, s))].
To see this consider the following. Let

Env1
def= proc P1() a end;

proc P2() P1() end;
proc P3() {Env2;P2();P1()} end,

Env2
def= proc P1() b end.

Then it is easy to see that:

Trans(δStSc, s, δ
′, s′)

≡ Trans({Env1;P3()}, s, δ′, s′)
11 To be more precise, every formal parameterv is substituted by a term of the formnameOf(t[s]), where again

nameOf is used to convert situation calculus objects/actions into program terms of the corresponding sort (see
Appendix A).

136 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

≡ Trans([Env1 : P3()], s, δ′, s′)
≡ Trans({Env1; {Env2;P2();P1()}}, s, δ′, s′)
≡ Trans({Env2; [Env1 : P2()];P1()}, s, δ′, s′)
≡ Trans([Env1 : P2()]; [Env2 : P1()], s, δ′, s′)
≡ Trans({Env1;P1()}; [Env2 : P1()], s, δ′, s′)
≡ Trans([Env1 : P1()]; [Env2 : P1()], s, δ′, s′)
≡ Trans(a; [Env2 : P1()], s, δ′, s′)
≡ Poss(a, s)∧ s′ = do(a, s)∧ δ′ = (nil; [Env2 : P1()]).

Similarly, one can show that:Trans([Env2 : P1()],do(a, s),nil,do(b,do(a, s))) and
Final(nil,do(b,do(a, s))), which yields the thesis.

Our next example illustratesConGolog’s call-by-value parameter passing:

{ proc P(n)
if (n= 1) then nil

elsegoDown;P(n− 1)
end;
P(floor)
}.

Intuitively, this program is intended to bring an elevator down to the bottom floor of a
building. If we run the program starting in situationS0, the procedure callP(floor) invokes
P with the value of the functional fluentfloor in S0, i.e.,P is called withfloor[S0], the floor
the elevator is on inS0, as actual parameter. IfConGologused call-by-name parameter
passing,P would be invoked with the term “floor” as actual parameter, and the elevator
would only go halfway to the bottom floor. Indeed at each iteration of the procedure the
call P(n− 1) would be evaluated by textually replacingn by floor, which at that moment
has already decreased by 1.

As mentioned earlier, the need for a second-order definition ofTrans(δ, s, δ′, s′) and
Final(δ, s) when procedures are introduced comes from recursive procedures. The second-
order definition allows us to assign a formal semantics to every such procedure, including
viciously circular ones. The definition ofTrans disallows the execution of such ill-
formed procedures. At the same time the definition ofFinal considers them not to have
completed (nonfinal). For example, the program{proc P()P ()end;P()} does not have
any transitions, but it is not final for any situations. 12

7.1. Formal properties of Trans and Final with procedures

We observe that the second-order definitions ofTransandFinal can easily be put in the
following form:

Trans(δ, s, δ′, s′) ≡
∀T .[∀δ1, s1, δ2, s2.ΦTrans(T , δ1, s1, δ2, s2)≡ T (δ1, s1, δ2, s2)]
⊃ T (δ, s, δ′, s′),

12 Note that bothGologandConGologdo not allow for Boolean procedures to be used in tests. Introducing such
kind of procedures requires particular care to avoid counterintuitive implications.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 137

Final(δ, s, δ′, s′) ≡
∀F.[∀δ1, s1.ΦFinal(F, δ1, s1)≡ F(δ1, s1)]
⊃ F(δ, s),

whereΦTrans andΦFinal are obtained by rewriting each of the assertions in the definition
of TransandFinal so that only variables appear in the left-hand part of the equations, i.e.:

T (δ, s, δ′, s′) ≡ φt(T , δ, s, δ
′, s′), F (δ, s) ≡ φf (F, δ, s),

and then getting the disjunction of all right-hand sides, which are mutually exclusive since
each of them deals with programs of a specific form.

From such definitions, natural “induction principles” emerge (cf. the discussion on
extracting induction principles from inductive definitions in [34]). These are principles
saying that to prove that a propertyP holds for instances ofTransandFinal, it suffices
to prove that the propertyP is closed under the assertions in the definition ofTransand
Final, i.e.:

ΦTrans(P, δ1, s1, δ2, s2) ≡ P(δ1, s1, δ2, s2),

ΦFinal(P, δ1, s1) ≡ P(δ1, s1).

Formally we can state the following theorem:

Theorem 3. The following sentences are consequences of the second-order definitions of
Trans and Final respectively:

∀P.[∀δ1, s1, δ2, s2.ΦTrans(P, δ1, s1, δ2, s2)≡ P(δ1, s1, δ2, s2)] ⊃
∀δ, s, δ′, s′.Trans(δ, s, δ′, s′)⊃ P(δ, s, δ′, s′),

∀P.[∀δ1, s1.ΦFinal(P, δ1, s1)≡ P(δ1, s1)] ⊃
∀δ, s.Final(δ, s, δ′, s′)⊃ P(δ, s).

Proof. We prove only the first sentence. The proof of the second sentence is analogous.
By definition we have:

∀δ, s, δ′, s′.Trans(δ, s, δ′, s′) ≡
∀P.[∀δ1, s1, δ2, s2.ΦTrans(P, δ1, s1, δ2, s2)≡ P(δ1, s1, δ2, s2)]
⊃ P(δ, s, δ′, s′).

By considering the only-if part of the above equivalence, we get:

∀δ, s, δ′, s′.Trans(δ, s, δ′, s′)∧
∀P.[∀δ1, s1, δ2, s2.ΦTrans(P, δ1, s1, δ2, s2)≡ P(δ1, s1, δ2, s2)]
⊃ P(δ, s, δ′, s′).

So moving the quantifiers around we get:

∀P.[∀δ1, s1, δ2, s2.ΦTrans(P, δ1, s1, δ2, s2)≡ P(δ1, s1, δ2, s2)] ∧
∀δ, s, δ′, s′.Trans(δ, s, δ′, s′)
⊃ P(δ, s, δ′, s′),

and hence the thesis.2

138 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

These induction principles allow us to prove thatTrans and Final for programs with
procedures can be considered an extension of those for programs without procedures.

Theorem 4. With respect toConGologprograms without procedures, Trans and Final
introduced above areequivalentto the versions introduced in Section4.

Proof. Let us denoteTransdefined by the second-order sentence asTransSOL andTrans
implicitly defined through axioms in Section 4 asTransFOL. Since procedures are not
considered we can drop, without loss of generality, the assertions for{Env; δ} and[Env:
P(Et)] in the definition ofTransSOL. Then:
• TransSOL(δ, s, δ

′, s′) ⊃ TransFOL(δ, s, δ
′, s′), is proven simply by noting that

TransFOL satisfies (is closed under) the assertions in the definition ofTransSOL, and
then using Theorem 3.
• TransFOL(δ, s, δ

′, s′) ⊃ TransSOL(δ, s, δ
′, s′), is proven by induction on the structure

of δ considering as base casesnil, a, and φ?, and then applying the induction
argument.

Similarly for Final. 2
It is interesting to examine whetherTransandFinal introduced above are themselves

closed under the assertions in their definitions. ForFinal a positive answer can be
established:

Theorem 5. The following sentence is a consequence of the second-order definition of
Final:

ΦFinal(Final(δ, s), δ, s) ≡ Final(δ, s).

Proof. Observe thatΦFinal is monotonic, 13 i.e.:

∀Z1,Z2.[∀δ, s.Z1(δ, s)⊃Z2(δ, s)] ⊃ [∀δ, s.ΦFinal(Z1, δ, s)⊃ΦFinal(Z2, δ, s)].
Hence the thesis is a direct consequence of the Tarski–Knaster fixpoint theorem [40].2

For Transan analogous result does not hold in general. Indeed consider the following
programδq :

{ procQ()
Q() 〉〉 a

end;
Q()

}.
Observe that the definition ofTransimplies thatTrans(δq, s, δ′, s′)≡ False. Hence ifTrans
was closed underΦTrans, then we would haveTrans(δq 〉〉 a, s, δ′, s′) ≡ Trans(a, s, δ′, s′),
which would imply thatTrans(δq, s, δ′, s′)≡ Trans(a, s, δ′, s′). Contradiction.

13 In fact syntactically monotonic.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 139

Obviously there are several classes ofConGologprograms that are closed underΦTrans.
For instance, if we disallow prioritized concurrency in procedures we get one such class.
Another such class is that obtained by allowing prioritized concurrency to appear only in
nonrecursive procedures. Yet another quite general class is immediately obtainable from
what is discussed next.

8. First-order Transand Final for procedures

In this section we investigate conditions that allow us to replace the second-order
definitions ofTransandFinal for programs with procedures by the first-order definitions,
as in the case where procedures are not allowed.

8.1. Guarded configurations

We define a quite general condition on configurations (pairs of programs and situations)
that guarantees the possibility of using first-order axioms forTrans and Final for
procedures as well. To this end we introduce a notion of “configuration rank”. Intuitively, a
configuration is of rankn if and only if makes at mostn (recursive) procedure calls before
trying to make an actual program step (either an atomic action or a test).

We define the rank of a configuration inductively. A configuration is of rankn denoted
by Rank(n, δ, s) if and only if:

Rank(n,nil, s) ≡ True,

Rank(n, a, s) ≡ True,

Rank(n,φ?, s) ≡ True,

Rank(n, δ1; δ2, s) ≡ Rank(n, δ1, s)∧ (Final(δ1, s)⊃Rank(n, δ2, s)),

Rank(n, δ1 | δ2, s) ≡ Rank(n, δ1, s)∧Rank(n, δ2, s),

Rank(n,πv.δ, s) ≡ ∀x.Rank(n, δvx, s),

Rank(n, δ∗, s) ≡ Rank(n, δ, s),

Rank(n, if φ then δ1 elseδ2, s) ≡ φ[s] ∧Rank(n, δ1, s) ∨
¬φ[s] ∧Rank(n, δ2, s),

Rank(n,while φ do δ, s) ≡ φ[s] ⊃Rank(n, δ, s),

Rank(n, δ1 ‖ δ2, s) ≡ Rank(n, δ1, s)∧Rank(n, δ2, s),

Rank(n, δ1 〉〉 δ2, s) ≡ Rank(n, δ1, s)∧
((¬∃δ′1, s′.Trans(δ1, s, δ

′
1, s
′))⊃ Rank(n, δ2, s)),

Rank(n, δ||, s) ≡ Rank(n, δ, s),

Rank(n, {Env; δ}, s) ≡ Rank
(
n, δ

Pi (Et)
[Env:Pi(Et)], s

)
,

Rank(n, [Env: P(Et)], s) ≡ Rank
(
n− 1, {Env; δP EvPEt [s]}, s

)
.

140 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

A configuration(δ, s) is guardedif and only if it is of rankn for somen:

Guarded(δ, s)
def= ∃n.Rank(n, δ, s).

8.2. First-order Trans and Final for procedures

For guarded configurations, we do not need to use the second-order definitions ofTrans
and Final when dealing with procedures. Instead we can use the first-order axioms in
Section 4 together with the following:14

Trans({Env; δ}, s, δ′, s′) ≡ Trans
(
δ
Pi(Et)
[Env:Pi(Et)], s, δ

′, s′
)
,

Trans([Env: P(Et)], s, δ′, s′) ≡ Trans
({Env; δP EvPEt[s]}, s, δ′, s′

)
,

Final({Env; δ}, s) ≡ Final
(
δ
Pi (Et)
[Env:Pi(Et)], s

)
,

Final([Env: P(Et)], s) ≡ Final
({Env; δP EvPEt[s]}, s

)
.

Let us callTransFOL andFinalFOL the predicates determined by the first-order axioms
and TransSOL and FinalSOL the original predicates determined by the second-order
definition for procedures. We can prove the following result:

Theorem 6.

Guarded(δ, s)⊃
∀δ′, s′.TransSOL(δ, s, δ

′, s′)≡ TransFOL(δ, s, δ
′, s′),

Guarded(δ, s)⊃
FinalSOL(δ, s)≡ FinalFOL(δ, s).

Proof (Outline). By induction on the rank of the configuration(δ, s). For rank 0 the thesis
is trivial. For rankn+ 1, we assume that the thesis holds for all configurations of rankn,
and show the thesis by induction on the structure of the program consideringnil, a, φ? and
[Env: P(Et)] as base cases.2

A configuration(δ, s) has aguarded evolution, if and only if:

GuardedEvol(δ, s)
def=

∀δ′, s′.Trans∗SOL(δ, s, δ
′, s′)⊃Guarded(δ′, s′).

For configurations with guarded evolution we have the following easy consequences:

GuardedEvol(δ, s)⊃
∀δ′, s′.Trans∗SOL(δ, s, δ

′, s′)≡ Trans∗FOL(δ, s, δ
′, s′),

GuardedEvol(δ, s)⊃
∀s′.DoSOL(δ, s, s

′)≡DoFOL(δ, s, s
′).

14 The form of these axioms is exactly that of the conditions on the predicate variablesT andF in the second-
order definitions.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 141

8.3. Sufficient condition for guarded evolutions

Theorem 7. If all proceduresP with environment Env in a programδ are such that

∀Et , s.Guarded([Env: P(Et)], s),
then we have:

∀s.GuardedEvol(δ, s).

Proof (Outline). By induction on the number of transitions. For 0 transitions, we get the
thesis by induction on the structure of the program (consideringnil, a,φ? and[Env: P(Et)]
as base cases). Fork + 1 transitions, we assume the thesis holds fork transitions, and
we prove by induction on the structure of the program (again consideringnil, a,φ? and
[Env : P(Et)] as base cases) that making a further transition from the program resulting
from thek transitions still preserves the thesis.2

It is easy to verify that nonrecursive procedures, as well as procedures whose body starts
with an atomic action or a wait action, trivially satisfy the hypothesis of the theorem.
Observe also that all procedures in [20] satisfy such hypothesis, except for the procedure
d at p. 9 whose definition is reported below (n is a natural number):

proc d(n) (n= 0?) | d(n− 1);goDownend.

However, the variants

proc d(n) (n= 0?) | goDown;d(n− 1)end

proc d(n) (n= 0?) | (n > 0)?;d(n− 1);goDownend

proc d(n) if (n= 0) thennil else(d(n− 1);goDown)end

do satisfy the hypothesis.

9. Implementation

Despite the fact that in defining the semantics ofConGologwe resorted to first- and
second-order logic, it is possible to come up with a simple implementation of theConGolog
language in Prolog.

In this section, we present aConGologinterpreter in Prolog which is lifted directly from
the definition ofFinal, Trans, andDo introduced above.15 This interpreter requires that
the program’s precondition axioms, successor state axioms, and axioms about the initial
situation be expressible as Prolog clauses. In particular, the usualclosed world assumption
(CWA) is made on the initial situation. Note that this is a limitation of this particular
implementation, not the theory.

15 Exogenous actions can be generated by simulating them probabilistically, by asking the user at runtime when
they should occur, or by monitoring the environment in which the program is running.

142 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

Prolog terms representingConGologprograms are as follows:
• nil , empty program.
• act (a), atomic action, wherea is an action term with the situation arguments

replaced by the constantnow.
• test (c), wait/test, wherec is a condition described below.
• seq (p1,p2), sequence.
• choice (p1,p2), nondeterministic branch.
• pick (v,p), nondeterministic choice of argument, wherev is a Prolog constant

(atom), standing for aConGologvariable, andp a program-term that usesv.
• iter (p), nondeterministic iteration.
• if (c,p1,p2), if-then-else, withp1 the then-branch andp2 the else-branch.
• while (c,p), while-do.
• conc (p1,p2), concurrency.
• prconc (p1,p2), prioritized concurrency.
• iterconc (p), iterated concurrency.
• pcall (pArgs), procedure call, withpArgsthe procedure name and arguments.

A conditionc in the above is either a Prolog-term representing an atomic formula/fluent
with the situation arguments replaced bynow or an expression of the formand (c1, c2),
or (c1, c2), neg (c), all (v, c), or some(v, c), with the obvious intended meaning. In
all (v, c) andsome(v, c), v is an Prolog constant, standing for a logical variable, and
c a condition usingv.

The Prolog predicatetrans /4, final /2, trans ∗/4 anddo/3 implement respec-
tively the predicateTrans, Final, Trans∗ andDo.

The Prolog predicateholds /2 is used to evaluate conditions in tests, while-loops and
if-then-else’s inConGologprograms. As well, the Prolog predicatesub /4 implements the
substitution so thatsub (x, y, t, t ′) means thatt ′ = txy . The definition of these two Prolog
predicates is taken from [20,34].

The following is the Prolog code.

/**/
/* Trans-based ConGolog Interpreter */
/**/

/* trans(Prog,Sit,Prog_r,Sit_r) */

trans(act(A),S,nil,do(AS,S)) :- sub(now,S,A,AS), poss(AS,S).

trans(test(C),S,nil,S) :- holds(C,S).

trans(seq(P1,P2),S,P2r,Sr) :- final(P1,S),trans(P2,S,P2r,Sr).
trans(seq(P1,P2),S,seq(P1r,P2),Sr) :- trans(P1,S,P1r,Sr).

trans(choice(P1,P2),S,Pr,Sr) :-
trans(P1,S,Pr,Sr) ; trans(P2,S,Pr,Sr).

trans(pick(V,P),S,Pr,Sr) :- sub(V,_,P,PP), trans(PP,S,Pr,Sr).

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 143

trans(iter(P),S,seq(PP,iter(P)),Sr) :- trans(P,S,PP,Sr).

trans(if(C,P1,P2),S,Pr,Sr) :-
holds(C,S), trans(P1,S,Pr,Sr) ;
holds(neg(C),S), trans(P2,S,Pr,Sr).

trans(while(C,P),S,seq(PP,while(C,P)),Sr) :-
holds(C,S), trans(P,S,PP,Sr).

trans(conc(P1,P2),S,conc(P1r,P2),Sr) :- trans(P1,S,P1r,Sr).
trans(conc(P1,P2),S,conc(P1,P2r),Sr) :- trans(P2,S,P2r,Sr).

trans(prconc(P1,P2),S,prconc(P1r,P2),Sr) :-
trans(P1,S,P1r,Sr).

trans(prconc(P1,P2),S,prconc(P1,P2r),Sr) :-
not trans(P1,S,_,_), trans(P2,S,P2r,Sr).

trans(iterconc(P),S,conc(PP,iterconc(P)),Sr) :-
trans(P,S,PP,Sr).

trans(pcall(P_Args),S,Pr,Sr) :-
sub(now,S,P_Args,P_ArgsS),
proc(P_ArgsS,P), trans(P,S,Pr,Sr).

/* final(Prog,Sit) */

final(nil,S).

final(seq(P1,P2),S) :- final(P1,S), final(P2,S).

final(choice(P1,P2),S) :- final(P1,S) ; final(P2,S).

final(pick(V,P),S) :- sub(V,_,P,PP), final(PP,S).

final(iter(P),S).

final(if(C,P1,P2),S) :-
holds(C,S),final(P1,S) ; holds(neg(C),S),final(P2,S).

final(while(C,P),S) :- holds(neg(C),S) ; final(P,S).

final(conc(P1,P2),S) :- final(P1,S), final(P2,S).

final(prconc(P1,P2),S) :- final(P1,S), final(P2,S).

final(iterconc(P),S).
final(pcall(P_Args)) :-

sub(now,S,P_Args,P_ArgsS), proc(P_ArgsS,P),final(P,S).

144 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

/* trans*(Prog,Sit,Prog_r,Sit_r) */

trans*(P,S,P,S).
trans*(P,S,Pr,Sr) :- trans(P,S,PP,SS), trans*(PP,SS,Pr,Sr).

/* do(Prog,Sit,Sit_r) */

do(P,S,Sr) :- trans*(P,S,Pr,Sr), final(Pr,Sr).

/* holds(Cond,Sit): as defined in [34] */

holds(and(F1,F2),S) :- holds(F1,S), holds(F2,S).
holds(or(F1,F2),S) :- holds(F1,S) ; holds(F2,S).
holds(all(V,F),S) :- holds(neg(some(V,neg(F))),S).
holds(some(V,F),S) :- sub(V,_,F,Fr), holds(Fr,S).
holds(neg(neg(F)),S) :- holds(F,S).
holds(neg(and(F1,F2)),S) :- holds(or(neg(F1),neg(F2)),S).
holds(neg(or(F1,F2)),S) :- holds(and(neg(F1),neg(F2)),S).
holds(neg(all(V,F)),S) :- holds(some(V,neg(F)),S).
holds(neg(some(V,F)),S) :- not holds(some(V,F),S).

/* Negation by failure */
holds(P_Xs,S) :-

P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),P_Xs\=all(_,_),
P_Xs\=some(_,_),sub(now,S,P_Xs,P_XsS), P_XsS.

holds(neg(P_Xs),S) :-
P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),P_Xs\=all(_,_),
P_Xs\=some(_,_),sub(now,S,P_Xs,P_XsS), not P_XsS.
/* Negation by failure */

/* sub(Const,Var,Term1,Term2): as defined in [34] */

sub(X,Y,T,Tr) :- var(T), Tr=T.
sub(X,Y,T,Tr) :- not var(T), T=X, Tr=Y.
sub(X,Y,T,Tr) :-

T\=X, T=..[F|Ts], sub_list(X,Y,Ts,Trs), Tr=..[F|Trs].
sub_list(X,Y,[],[]).
sub_list(X,Y,[T|Ts],[Tr|Trs]) :-

sub(X,Y,T,Tr), sub_list(X,Y,Ts,Trs).

In this implementation aConGologapplication is expected to have the following parts:
(1) A collection of clauses which together define which fluents are true in the initial

situations0 . The clauses need not to be atomic, and can involve arbitrary amounts
of computation for determining entailments in the initial database.

(2) A collection of clauses which together define the predicatePoss(a, s) for every
action a and situations. Typically, this requires one clause per action, using a
variable to range over all situations.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 145

(3) A collection of clauses which together define the successor state axioms for each
fluent. Typically, this requires one clause per fluent, with variables for actions and
situations.

(4) A collection of facts definingConGologprocedures. In particular for each procedure
p occurring in the program we have a fact of the form:

proc (p(X1, . . . ,Xn),body).

In such facts:
(i) formal parameters are represented as Prolog variables so as to use Prolog built-

in unification mechanism instead of a substitution procedure;
(ii) in the bodybody the only variables that can occur are those representing the

formal parametersX1, . . . ,Xn.
For simplicity, we do not consider nested procedures in the above implementation.

Expressing action theories as Prolog clauses places a number of restrictions on the
action theories that are representable. These restrictions force the closed world assumption
(Prolog CWA) on the initial situation and the unique name assumption (UNA) on both
actions and objects. For an in-depth study on action theories expressible as Prolog clauses,
we refer to [34].

9.1. Example

Below, we give an implementation in Prolog of the two robots lifting a table sce-
nario discussed in Section 6.1. The code is written as close to the specification as possi-
ble. The inability of Prolog to define directly the functional fluentvpos(e, s) is resolved
by introducing a predicateval /2 such thatval (vpos (e, s), v) stands forvpos(e, s)
= v.

/**/
/* Two Robots Lifting a Table Example */
/**/

/* Precondition axioms */

poss(grab(Rob,E),S) :-
not holding(_,E,S), not holding(Rob,_,S).

poss(release(Rob,E),S) :- holding(Rob,E,S).
poss(vmove(Rob,Amount),S) :- true.

/* Succ state axioms */

val(vpos(E,do(A,S)),V) :-
(A=vmove(Rob,Amount), holding(Rob,E,S), val(vpos(E,S),V1),

V is V1+Amount) ;

146 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

(A=release(Rob,E), V=0) ;
(val(vpos(E,S),V),

not(A=vmove(Rob,Amount), holding(Rob,E,S)),
A\=release(Rob,E)).

holding(Rob,E,do(A,S)) :-
A=grab(Rob,E) ; (holding(Rob,E,S), A\=release(Rob,E)).

/* Defined Fluents */

tableUp(S) :-
val(vpos(end1,S),V1), V1>=3, val(vpos(end2,S),V2), V2>=3.

safeToLift(Rob,Amount,Tol,S) :-
tableEnd(E1), tableEnd(E2), E2\=E1, holding(Rob,E1,S),
val(vpos(E1,S),V1), val(vpos(E2,S),V2),
V1=<V2+Tol-Amount.

/* Initial state */

val(vpos(end1,s0),0). /* plus by CWA: */
val(vpos(end2,s0),0). /* */
tableEnd(end1). /* not holding(rob1,_,s0) */
tableEnd(end2). /* not holding(rob2,_,s0) */

/* Control procedures */

proc(ctrl(Rob,Amount,Tol),
seq(pick(e,seq(test(tableEnd(e)),act(grab(Rob,e)))),

while(neg(tableUp(now)),
seq(test(safeToLift(Rob,Amount,Tol,now)),

act(vmove(Rob,Amount)))))).

proc(jointLiftTable,
conc(pcall(ctrl(rob1,1,2)), pcall(ctrl(rob2,1,2)))).

Below we show a few final situations returned by the interpreter for the above example
(note that the interpreter does not filter out identical situations).

?- do(pcall(jointLiftTable),s0,S).

S = do(vmove(rob2,1), do(vmove(rob1,1), do(vmove(rob2,1),
do(vmove(rob1,1), do(vmove(rob2,1), do(grab(rob2,end2),
do(vmove(rob1,1), do(vmove(rob1,1), do(grab(rob1,end1),
s0))))))))) ;

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 147

S = do(vmove(rob2,1), do(vmove(rob1,1), do(vmove(rob2,1),
do(vmove(rob1,1), do(vmove(rob2,1), do(grab(rob2,end2),
do(vmove(rob1,1), do(vmove(rob1,1), do(grab(rob1,end1),
s0))))))))) ;

S = do(vmove(rob1,1), do(vmove(rob2,1), do(vmove(rob2,1),
do(vmove(rob1,1), do(vmove(rob2,1), do(grab(rob2,end2),
do(vmove(rob1,1), do(vmove(rob1,1), do(grab(rob1,end1),
s0)))))))))

Yes

9.2. Correctness of the Prolog implementation

In this section we prove the correctness of the interpreter presented above under suitable
assumptions. LetC be the set of axioms forTrans, Final, andDo plus those needed for
the encoding of programs as first-order terms, andD the domain theory. To keep notation
simple we denote the condition corresponding to a situation calculus formulaφ with the
situation argument replaced bynow, simply byφ. Similarly for Prolog terms corresponding
to actions and programs.

Our proof of correctness relies on the following assumptions:
• The domain theoryD enforces the unique name assumption (UNA) on both actions

and objects.16

• The predicatesub /4 correctly implements substitution for both programs and
formulas.
• The predicateholds /2 satisfies the following properties:

(1) If a goalholds (φ, s), with free variables only on object terms and action terms,
succeeds with computed answerθ , thenD |= ∀φ[s]θ (by ∀ψ , we mean the
universal closure ofψ).

(2) If a goalholds (φ, s), with free variables only on object terms and action terms,
finitely fails, thenD |= ∀¬φ[s].

• The predicateposs /2 satisfies the following properties:
(1) If a goalposs (a, s), with free variables only on object terms and action terms,

succeeds with computed answerθ thenD |= ∀Poss(a, s)θ .
(2) If a goalposs (a, s), with free variables only on object terms and action terms,

finitely fails, thenD |= ∀¬Poss(a, s).
• The Prolog interpreter flounders (and hence does not return) on goals of the formnot

trans (δ, s,_,_) 17 with nongroundδ ands. 18

16 UNA is already enforced for programs, see Appendix A.
17 From a formal point of viewnot trans (δ, s,_,_) is a shorthand fornot aux (δ, s) with aux /2 defined as

aux (δ, s) :− trans (δ, s,_,_).
18 This form of floundering arises for example when we expandπ in programs of the formπz.(δ1(z) 〉〉 δ2(z)).

Notably it does not arise for their variantsπz.(φ(z)?; (δ1(z) 〉〉 δ2(z))).

148 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

Observe that the hypotheses required forsub /4, holds /2 andposs /2 do hold when
these predicates are defined as above and run by an interpreter that flounders on nonground
negative goals (see [34]).

Theorem 8. Under the hypotheses above the following holds:
(1) If a goal do(δ, s, s′), whereδ and s may contain variables only on object terms

and action terms, succeeds with computed answerθ , thenC ∪D |= ∀Do(δ, s, s′)θ ,
moreovers′θ may contain free variables only on object terms and action terms.

(2) If a goaldo(δ, s, s′), whereδ ands may contain variables only on object terms and
action terms, finitely fails, thenC ∪D |= ∀¬Do(δ, s, s′).

To make the arguments more apparent we will first prove the theorem without
considering procedures. Then we show how introducing procedures affects the proof.

Without procedures
Theorem 8 is an easy consequence of Lemmas 2 and 3 below.

Lemma 2. Under the hypotheses above the following holds:
• The predicatetrans /4 satisfies the following properties:

(1) If a goal trans (δ, s, δ′, s′), where δ and s may contain variables only on
object terms and action terms, succeeds with computed answerθ , thenC ∪D |=
∀Trans(δ, s, δ′, s′)θ , moreoverδ′θ and s′θ may contain free variables only on
object terms and action terms.

(2) If a goal trans (δ, s, δ′, s′), whereδ ands may contain variables only on object
terms and action terms, finitely fails, thenC ∪D |= ∀¬Trans(δ, s, δ′, s′).

• The predicatefinal /2 satisfies the following properties:
(1) If a goal final (δ, s), whereδ ands may contain variables only on object terms

and action terms, succeeds with computed answerθ , thenC∪D |= ∀Final(δ, s)θ .
(2) If a goal final (δ, s), whereδ ands may contain variables only on object terms

and action terms, finitely fails, thenC ∪D |= ∀¬Final(δ, s).

Proof. First we observe that since we are not considering procedures,Trans and Final
satisfy the axiomsT andF from Sections 4 and 5. We prove simultaneously (1) and (2)
for both trans /4 andfinal /2 by induction on the programδ. Here we show only the
caseδ = δ1 〉〉 δ2 for trans /4.

Success.If trans (δ1 〉〉 δ2, s, δ′, s′) succeeds with computed answerθ , then: either
(i) trans (δ1, s, δ

′
1, s
′) succeeds with computed answerθ1, andθ = θ ′θ1 whereθ ′ =

mgu(δ′, δ′1 〉〉 δ2) is the most general unifier [23] betweenδ′ andδ′1 〉〉 δ2; or
(ii) trans (δ1, s,_,_) finitely fails and trans (δ2, s, δ

′
2, s
′) succeeds with computed

answerθ2 andθ =mgu(δ′, δ1 〉〉 δ′2)θ2.
In case (i) by the induction hypothesisC ∪D |= ∀Trans(δ1, s, δ′1, s′)θ1, ands′θ1 andδ′1θ1
may contain free variables only on object terms and action terms. In case (ii) by the
induction hypothesisC ∪D |= ∀¬Trans(δ1, s, δ′1, s′1), C ∪D |= ∀Trans(δ2, s, δ′2, s′)θ2, and
s′θ2 andδ′2θ2 may contain free variables only on object terms and action terms. Considering

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 149

Trans(δ1 〉〉 δ2, s, δ′, s′) ≡
∃γ.δ′ = (γ 〉〉 δ2)∧ Trans(δ1, s, γ, s

′)∨
∃γ.δ′ = (δ1 〉〉 γ)∧ Trans(δ2, s, γ, s

′)∧¬∃ζ, s′′.Trans(δ1, s, ζ, s
′′) (3)

and howθ is defined in both cases, we get the thesis.
Failure. If trans (δ1 〉〉 δ2, s, δ′, s′) finitely fails, then:
(i) for all δ′1 such thatδ′ unifies withδ′1 〉〉 δ2, trans (δ1, s, δ

′
1, s
′) finitely fails, hence

by the induction hypothesisC ∪D |= ∀¬Trans(δ1, s, δ′1, s′)∧ δ′ = (δ′1 〉〉 δ2);
(ii) either trans (δ1, s,_,_) succeeds, henceC∪D |= ∃δ′1, s′1.Trans(δ1, s, δ′1, s′1), or for

all δ′2 such thatδ′ unifies withδ1 〉〉 δ′2, trans (δ2, s, δ
′
2, s
′) finitely fails, hence by

the induction hypothesisC ∪D |= ∀¬Trans(δ2, s, δ′2, s′)∧ δ′ = (δ1 〉〉 δ′2).
Considering (3) and the UNA for object, actions, and program terms, we get the thesis.2
Lemma 3. Under the hypotheses above the following holds:

(1) If a goal trans ∗(δ, s, δ′, s′), where δ and s may contain variables only on
object terms and action terms, succeeds with computed answerθ , thenC ∪ D |=
∀Trans∗(δ, s, δ′, s′)θ , moreoverδ′θ and s′θ may contain free variables only on
object terms and action terms.

(2) If a goal trans ∗(δ, s, δ′, s′), whereδ ands may contain variables only on object
terms and action terms, finitely fails, thenC ∪D |= ∀¬Trans∗(δ, s, δ′, s′).

Proof. Using Lemma 2.Success.Then there exists a successful SLDNF-derivation [23].
Such a derivation must contain a finite numberk of selected literals of the form
trans ∗(δ1, s1, δ2, s2). The thesis is proven by induction on such a numberk.

Failure. Then there exists a finitely failed SLDNF-tree [23] formed by failed SLDNF-
derivations each of which contains a finite number of selected literals of the form
trans ∗(δ1, s1, δ2, s2). The thesis is proven by induction on the maximal number of
selected literals of the formtrans ∗(δ1, s1, δ2, s2) contained in the SLDNF-derivations
forming the tree. 2
With procedures

Since we do not have nested procedures in the Prolog implementation, we can avoid
carrying around the procedure environment. Hence we can simplify the constraints on
procedures in the definition ofTransandFinal from Section 7 to respectively:

T (P (Et), s, δ′, s′) ≡ T
(
δP
EvP
Et[s], s, δ

′, s′
)
,

F (P (Et), s) ≡ F
(
δP
EvP
Et[s], s

)
.

To prove the soundness of the interpreter in presence of procedures, we need only redo
the proof of Lemma 2.

We now prove Lemma 2 as follows. Assume, for the moment, thatTrans and Final
satisfy the axiomsT andF from Sections 4 and 5 plus the following ones:

Trans(P (Et), s, δ′, s′) ≡ Trans
(
δP
EvP
Et[s], s, δ

′, s′
)
,

Final(P (Et), s) ≡ Final
(
δP
EvP
Et [s], s

)
.

150 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

Then we follow the line of the proof given above. However we need to deal with the
additional complication that due to procedure expansions the program now does not
get always simpler anymore. To this end, we observe that every terminating SLDNF-
derivation contains a finite number of selected literals of the formtrans (P (Et), s1, δ2, s2)
(final (P (Et), s1)). Hence we can prove the lemma using the following three nested
inductions:
• Induction on the rank of successful SLDNF-derivations/finitely failed SLDNF-trees

(i.e., the depth of nesting of auxiliary finitely failed SLDNF-trees) [23].
• Induction on the number of selected literals of the formtrans (P (Et), s1, δ2, s2)

(final (P (Et), s1)) occurring in a successful SLDNF-derivation, for success. Induc-
tion on the maximal number of selected literals of the formtrans (P (Et), s1, δ2, s2)
(final (P (Et), s1)) contained in the SLDNF-derivations forming the finitely failed
SLDNF-tree, for failure.
• Induction on the structure of the program.
Now we come back to the assumption we made above forTransandFinal. In factFinal,

being closed under the constraints onF in its definition, does actually satisfy the axioms
F from Sections 4 and 5 as well as the one above. However,Trans, which isnot closed
under the constraints forT in its definition, does not satisfy the assumption, in general.
However, we get the desired result by noticing that the equivalences assumed forTrans
form aconservative extension(see, e.g., [37]) of domain theoryD plus the axioms needed
for the encoding of programs as first-order terms, and appealing to the following general
result:

Proposition 1. LetΓ be a consistent theory,Γ ∪{Φ} a conservative extension ofΓ where
Φ is a closed first-order formula, andP a predicate occurring inΦ but not inΓ . Then for
any tuple of termsEt :

(1) Γ ∪ {Φ} |= ∀P(Et) impliesΓ |= ∀(∀Z.[ΦPZ ⊃ Z(Et)]),
(2) Γ ∪ {Φ} |= ∀¬P(Et) impliesΓ |= ∀(¬∀Z.[ΦPZ ⊃ Z(Et)]).

Proof. (1) by contradiction. Suppose there exists a modelM of Γ and variable assignment
σ with σ(Z) = R for some relationR, such thatM,σ |= ΦPZ but M,σ 6|= Z(Et). Now
consider the modelM ′ of Γ obtained fromM by changing the interpretation ofP to
PM

′ =R. ThenM ′ |=Φ andM ′, σ 6|= P(Et), which contradictsΓ ∪ {Φ} |= ∀P(Et).
(2) by contradiction. Suppose exists a modelM of Γ and a variable assignmentσ such

thatM,σ |= ∀Z.[ΦPZ ⊃ Z(Et)]. Then for every variable assignmentσ ′ obtained fromσ
by puttingσ(Z) =Q if M,σ ′ |= ΦPZ thenM,σ ′ |= Z(Et). LetM ′ be an expansion ofM
such thatM ′ |=Φ. Then forQ= PM ′ we haveM,σ ′ |= Z(Et), i.e.,M ′, σ |= P(Et), which
contradictsΓ ∪ {Φ} |= ∀¬P(Et). 2

Intuitively, Proposition 1 says that when we constrain a relationP by a first-order
statement, then every tuple that is forced to be “in” or “out” of the relation, will also be
similarly “in” or “out” of the relation obtained by the second-order version of the statement.
Thus ifTrans(δ, s, δ′, s′) holds for the first-order version ofTrans, it must also hold for the
second-order version.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 151

10. Discussion

With all of this procedural richness (nondeterminism, concurrency, recursive procedures,
priorities, etc.), it is important not to lose sight of the logical framework.ConGologis
indeed a programming language, but one whose execution, like planning, depends on
reasoning about actions. Thus, a crucial part of aConGologprogram is thedeclarative
part: the precondition axioms, the successor state axioms, and the axioms characterizing
the initial state. This is central to how the language differs from superficially similar
“procedural languages”. AConGologprogram together with the definition ofDo and
some foundational axioms about the situation calculusis a formal logical theory about
the possible behaviors of an agent in a given environment. And this theory must be used
explicitly by aConGologinterpreter.

In contrast, an interpreter for an ordinary procedural language does not use its semantics
explicitly. Standard semantic accounts of programming languages also require the initial
state to be completely specified; our account does not; an agent may have to act without
knowing everything about its environment. Our account accommodates domain-dependent
primitive actions and allows the interactions between the agent and its environment to be
modeled—actions may change the environment in a way that affects what actions can later
occur [8].

As mentioned, an important motivation for the development ofConGologis the need
for tools to implement intelligent agent programs that are “reactive” in the sense that
they reconsider their plans in response to significant changes in their environment. Thus,
our work is related to earlier research on resource-bounded deliberative architectures
such as [2] (IRMA) and [30] (PRS), and agent programming languages that are to some
extent based on this kind of architectures, such as AGENT-0 [38], AgentSpeak(L) [29],
and 3APL [16]. One difference is that inConGolog, domain dynamics are specified
declaratively and the specification is used automatically in program execution; there is no
need to program the updating of a world model when actions are performed. On the other
hand, plan selection or generation is not specified using rules; it must be coded up in the
program; this produces more complex programs, but there is perhaps less overhead. Finally,
agents programmed inConGologcan be understood as executing programs, albeit in a
smart way; they have a simple operational semantics; architectures like IRMA and PRS,
and languages like AGENT-0, AgentSpeak(L), and 3APL have more complex execution
models.

Other programming languages share features withConGolog. The agent programming
language Concurrent MetateM [11] supports concurrency and uses a temporal logic to
specify the behavior of agents. Bonner and Kifer [3] have proposed a logical formalism to
specify concurrent database transactions. Also related are concurrent constraint languages
such as CCP [35] and HCC [14], which support incompletely specified information states
and concurrency. But unlikeConGolog, these languages generally restrict the kinds of
constraints allowed in order to make entailment easy to compute. InConGolog, the action
theory is what determines how how states are updated. Also in constraint languages, control
seems somewhat deemphasized. van Eijk et al. [10] have proposed an agent language partly
inspired from CCP.

152 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

Fig. 1. TheConGologtoolkit’s graphical viewer.

The simple Prolog implementation of theConGologinterpreter described in Section 8
is at the core of a toolkit we have developed for implementingConGologapplications. The
interpreter in the toolkit is very similar to the one described, but uses a more convenient
syntax, performs some error detection, and has tracing facilities for debugging.

The toolkit also includes a module forprogressingthe initial state database. To
understand the role of this component, first note that the basic method used by our
implementation of action theories for determining whether a condition holds in a given
situation (i.e., evaluateholds (φ,do(a1, . . . ,do(an, S0) . . .) is to performregressionon
the condition to obtain a new condition that only mentions the initial situation and then
query the initial situation database to determine whether the new condition holds. But
regressing the condition all the way back to the initial situation can be quite inefficient
when the program has been running for a while and many actions have been performed.
If the program is willing to commit to a particular sequence of actions, it is possible to
progressthe initial situation theory to a new initial situation theory representing the state of
affairs after the sequence of actions.19 Subsequent queries can then be efficiently evaluated
with respect to this new initial situation database. The progression module performs this
updating of the initial situation database.

The toolkit also includes a graphical viewer (see Fig. 1) for debuggingConGolog
programs and delivering process modeling applications. The tool, which is implemented
in Tcl/Tk, displays the sequence of actions performed by theConGologprogram and
the value of the fluents in the resulting situation (or any situation along the path). The

19 In general, the progression of an initial situation database may not be first-order representable; but when
the initial situation is completely known (as we are assuming in this implementation), its progression is always
first-order representable and can be computed efficiently; see [22] for details.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 153

program can be stepped through and exogenous events can be generated either manually
or at random according to a given distribution. The manner in which state information is
displayed can be specified easily and customized as required.

Finally, a high-level Golog Domain Specification language (GDL) similar to Gelfond
and Lifschitz’sA [12] has also been developed. The toolkit includes a GDL compiler that
takes a domain specification in GDL, generates successor state axioms for it, and then
produces a Prolog implementation of the resulting domain theory.

ConGologhas already been used in various applications. Lespérance et al. [19] have
implemented a “reactive” high-level control module for a mobile robot inConGolog. The
robot performs a mail-delivery task. TheConGologcontrol program involves a set of
prioritized interrupts that react to events such as the robot arriving to a customer’s mailbox
or failing to get to a mailbox due to obstacles, as well as new shipment orders with varying
degrees of urgency being received. TheConGologcontroller was interfaced to navigation
software and successfully tested on a RWI B12 mobile robot.

Work has also been done on usingConGologto model multiagent systems [36]. In this
case, the domain theory includes fluents that model the beliefs and goals of the system’s
agents (this is done by adapting a possible-world semantics of such mental states to the
situation calculus). AConGologprogram is used to specify the complex behavior of the
agents in such a system. A simple multiagent meeting scheduling example is specified
in [36]. ConGolog-based tools for specifying and verifying complex multiagent systems
are being investigated.

Finally, in [7], the transition semantics developed in this paper is adapted so that
execution can be interleaved with program interpretation in order to accommodate sensing
actions, that is, actions whose effect is not to change the world so much as to provide
information to be used by the agent at runtime.

In summary, we have seen how, given a basic action theory describing an initial state and
the preconditions and effects of a collection of primitive actions, it is possible to combine
these into complex actions for high-level agent control. The semantics of the resulting
language end up deriving directly from that of the underlying primitive actions. In this
sense, the solution to the frame problem provided by successor state axioms for primitive
actions is extended to cover the complex actions ofConGolog. SoConGologcan be viewed
as an action theory (that supports complex actions), as a specification language, and as an
implementation language, and has been used in all three ways.

There are, however, many areas for future research. Among them, we mention:
handling non-termination, that is, developing accounts of program correctness (fairness,
liveness etc.) appropriate for controllers expected to operate indefinitely as in [9], but
without giving up the agent’s control over nondeterministic choices that characterizes
theDo-based semantics for terminating programs; and also incorporating utilities, so that
nondeterministic choices in execution can be made to maximize the expected benefit.

Acknowledgements

This research has been funded by the National Science and Engineering Research
Council of Canada. We thank Koen Hindriks for interesting discussions about this work

154 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

and for pointing out an error in an earlier version regarding situations other thannow
appearing in primitive actions and tests. We also thank David Tremaine for alerting us
to a problem with an earlier way of handling exogenous events in the semantics. We
thank David McAllester for pointing out the subtleties that arise in extendingGolog and
ConGologwith boolean procedures. Finally, we thank the referees for their comments.

Appendix A. Programs as terms

In this section, we develop an encoding of programs as first-order terms. Although some
care is required (e.g., introducing constants denoting variables and defining substitution
explicitly in the language), this does not pose any major problem; see [18] for an
introduction to problems and techniques in this area.

We add to the sortsSit, Obj andAct of the Situation Calculus, the following new sorts:
Idx, PseudoSit, PseudoAct, PseudoObj, PseudoForm, ENV, andPROG.

Intuitively, elements ofIdx denote natural numbers, and are used for building indexing
functions. Elements ofPseudoAct, PseudoObj, PseudoSitandPseudoFormare syntactic
devices to denote respectively actions, objects, situations and formulas within programs.
Elements ofENV denote environments, i.e., sets of procedure definitions. And finally,
elements ofPROGdenote programs, which are considered as simply syntactic objects.

A.1. Sort Idx

We introduce the constant 0 of sortIdx, and a functionsucc : Idx→ Idx. For them we
enforce the following unique name axioms:

succ (i) 6= 0,

succ (i)= succ (i ′)⊃ i = i ′.
We define the predicateIdx : Idx as:

Idx (i) ≡ ∀X.[. . .⊃X(i)],
where. . . stands for the conjunction of the universal closure of

X(0),

X(i) ⊃ X(succ (i)).

Finally we assume the following domain closure axiom for sortIdx:

∀i.Idx (i).

A.2. Sorts PseudoSit, PseudoObj, PseudoAct

The languages ofPseudoSit, PseudoObjandPseudoActare as follows:
• A constantNow: PseudoSit.
• A functionnameOfSort: Sort→ PseudoSortfor Sort=Obj,Act. We use the notation
[[x]] to denotenameOfSort(x), leavingSort implicit.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 155

• A functionvar Sort: Idx→ PseudoSortfor Sort=Obj,Act. We call terms of the form
var Sort(i) pseudo-variablesand we use the notationzi (or just x, y, z) to denote
var Sort(i), leavingSort implicit.
• A function f : PseudoSort1× · · · ×PseudoSortn→ PseudoSortn+1 for each fluent or

nonfluent functionf of sortSort1× · · ·×Sortn→ Sortn+1 with Sorti =Obj,Act,Sit
in the original language (note that ifn= 0 thenf is a constant).

We define the predicatesPseudoSit : PseudoSit, PseudoObj : PseudoObjand
PseudoAct : PseudoActrespectively as:

PseudoSit (x) ≡ ∀PSit,PObj,PAct.[. . .⊃ PSit(x)],
PseudoObj (x) ≡ ∀PSit,PObj,PAct.[. . .⊃ PObj(x)],
PseudoAct (x) ≡ ∀PSit,PObj,PAct.[. . .⊃ PAct(x)],

where. . . stands for the conjunction of the universal closure of

PSit(Now),

PSort(nameOfSort(x)) for Sort=Obj,Act,

PSort(zi) for Sort=Obj,Act,

PSort(x1)∧ · · · ∧ PSort(xn) ⊃ PSort(f (x1 . . . , xn)) (for eachf).

We assume the following domain closure axioms for the sortsPseudoSit, PseudoObj
andPseudoAct:

∀x.PseudoSit (x),

∀x.PseudoObj (x),

∀x.PseudoAct (x).

We also enforce unique name axioms for them, that is, for all functionsg,g′ of any arity
(including constants) introduced above:

g(x1, . . . , xn) 6= g′(y1, . . . , ym),

g(x1, . . . , xn)= g(y1, . . . , yn)⊃ x1= y1∧ · · · ∧ xn = yn.

Observe that the unique name axioms impose thatnameOf(x)= nameOf(y)⊃ x = y but
do not say anything on domain elements denoted byx andy since these are elements of
Act or Obj.

Next we want to relate pseudo-situations, pseudo-objects and pseudo-actions to real
situations, object and actions. In fact we do not want to relate all terms of sortPseudoObj
andPseudoActto real object and actions, but just the “closed” ones, i.e., those in which no

156 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

pseudo variablezi occur. To formalize the notion ofclosedness, we introduce the predicate
Closed : PseudoSortfor Sort= Sit,Obj,Act, characterized by the following assertions20

Closed (Now),

Closed (nameOf(x)),

¬Closed (zi),

Closed (f (x1, . . . , xn)) ≡ Closed (x1)∧ · · · ∧Closed (xn) (for eachf).

Closed terms of sortPseudoObjandPseudoActare related to real objects and actions
by means of the functiondecode : (PseudoSort× Sit→ Sort) for Sort= Sit,Obj,Act.
We use the notationx[s] to denotedecode (x, s). Such a function is characterized by the
following assertions:

decode (Now, s)= s,
decode (nameOf(x), s)= x,
decode (f (x1 . . . , xn), s)= f (decode (x1, s), . . . ,decode (xn, s))

(for eachf).

A.3. Sort PseudoForm

Next we introducepseudo-formulasused in tests. Specifically, we introduce:
• A function p : PseudoSort1 × · · · × PseudoSortn → PseudoFormfor each nonflu-

ent/fluent predicatep in the original language (not including the new the predicates
introduced in this section).
• A function and : PseudoForm× PseudoForm→ PseudoForm. We use the notation
ρ1∧ ρ2 to denoteand (ρ1, ρ2).
• A function not : PseudoForm→ PseudoForm. We use the notation¬ρ to denote

not (ρ).
• A function someSort: PseudoSort× PseudoForm→ PseudoForm, for PseudoSort=

PseudoObj,PseudoAct. We use the notation∃zi .ρ to denotesome(var Sort(i), ρ),
leavingSort implicit.

We define the predicatePseudoForm : PseudoFormas:

PseudoForm (ρ) ≡ ∀PForm.[. . .⊃ PForm(ρ)]
where. . . stands for the conjunction of the universal closure of

PForm(p(x1, . . . , xn)) (for eachp),

PForm(ρ1)∧ PForm(ρ2) ⊃ PForm(ρ1∧ ρ2),

PForm(ρ) ⊃ PForm(¬ρ),
PForm(ρ) ⊃ PForm(∃zi .ρ).

20 We say the following theory is “characterizing” since it is complete, in the sense that it partitions the elements
in PseudoSortinto those that areclosedand those that are not.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 157

We assume the following domain closure axiom for the sortPseudoForm:

∀ρ.PseudoForm (ρ).

We also enforce unique name axioms for pseudo-formulas, that is, for all functionsg,g′ of
any arity introduced above:

g(x1, . . . , xn) 6= g′(y1, . . . , ym),

g(x1, . . . , xn)= g(y1, . . . , yn)⊃ x1= y1∧ · · · ∧ xn = yn.
Next we formalize the notion of substitution. We introduce the functionsub :

PseudoSort×PseudoSort×PseudoSort′ → PseudoSort′ for Sort=Obj,Act andSort′ =
Sit,Obj,Act. We use the notationtxy to denotesub (x, y, t). Such a function is character-
ized by the following assertions:

Nowxy =Now,

nameOf(t)xy = nameOf(t),

zi
zi
y = y,

x 6= zi ⊃ zi
x
y = zi ,

f (t1, . . . , tn)
x
y = f (t1

x
y, . . . , tn

x
y) (for eachf).

We extend the functionsub to pseudo-formulas (as third argument) as follows:

p(t1, . . . , tn)
x
y = p(t1

x
y, . . . , tn

x
y) (for eachp),

(ρ1∧ ρ2)
x
y = (ρ1)

x
y ∧ (ρ2)

x
y,

(¬ρ)xy =¬(ρ)xy,
(∃zi .ρ)ziy = ∃zi .ρ,
x 6= zi ⊃ (∃zi .ρ)xy = ∃zi .(ρxy).

Next we extend the predicateClosed to pseudo-formulas in a natural way:

Closed (p(x1, . . . , xn)) ≡ Closed (x1)∧ · · · ∧Closed (xn) (for eachp),

Closed (ρ1∧ ρ2) ≡ Closed (ρ1)∧Closed (ρ2),

Closed (¬ρ) ≡ Closed (ρ1),

Closed (∃zi .ρ) ≡ ∀y.Closed (ρ
zi
nameOf(y)).

We relateclosedpseudo-formulas to real formulas by introducing a predicateHolds :
PseudoForm×Sit, characterized by the following assertions:

Holds (p(x1, . . . , xn), s) ≡ p(decode (x1, s), . . . ,decode (xn, s))
(for eachp),

Holds (ρ1∧ ρ2, s) ≡ Holds (ρ1, s)∧Holds (ρ2, s),

Holds (¬ρ, s) ≡ ¬Holds (ρ, s),

Holds (∃z.ρ, s) ≡ ∃y.Holds (ρz
nameOf(y), s),

wherey in the last equation is any variable that does not appear inρ. We use the notation
φ[s] to denoteHolds (φ, s).

158 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

A.4. Sorts PROG and ENV

Now we are ready to introduceprograms. Specifically, we introduce:
• A constantnil : PROG.
• A function act : PseudoAct→ PROG. As notation we write simplya to denote

act (a) when confusion cannot arise.
• A function test : PseudoForm→ PROG. We use the notationρ? to denote

test (ρ).
• A function seq : PROG× PROG→ PROG. We use the notationδ1; δ2 to denote

seq (δ1, δ2).
• A functionchoice : PROG×PROG→ PROG. We use the notationδ1 | δ2 to denote

choice (δ1, δ2).
• A function iter : PROG→ PROG. We use the notationδ∗ to denoteiter (δ).
• Two functionspick Sort: PseudoSort×PROG→ PROG, wherePseudoSortis either

PseudoObjor PseudoAct. We use the notationπzi .δ to denotepick Sort(var Sort(i),

δ), leavingSort implicit.
• A function if : PseudoForm× PROG× PROG→ PROG. We use the notationif ρ

then δ1 elseδ2 to denoteif (ρ, δ1, δ2).
• A function while : PseudoForm× PROG→ PROG. We use the notationwhile ρ

do δ to denotewhile (ρ, δ).
• A function conc : PROG× PROG→ PROG. We use the notationδ1 ‖ δ2 to denote

conc (δ1, δ2).
• A functionprconc : PROG×PROG→ PROG. We use the notationδ1 〉〉 δ2 to denote

prconc (δ1, δ2).
• A function iterconc : PROG→ PROG. We use the notationδ|| to denote

iterconc (δ).
To deal with procedures we need to introduce the notion of environment together with

that of program. We introduce:
• A finite number of functionsP: PseudoSort1× · · · × PseudoSortn→ PROG, where

PseudoSorti is eitherPseudoObjor PseudoAct. These functions are going to be used
as procedure calls.
• A functionproc : PROG×PROG→ PROG. This function is used to build procedure

definitions and so we will force the first argument to have the formP(zi1, . . . , zin),
wherez1 . . .zn are used to denote the formal parameters of the defined procedure. We
use the notationproc P(z1, . . . , zn) δ end to denoteproc (P(z1, . . . , zn), δ).
• A constantε : ENV, denoting theempty environment.
• A functionaddproc : ENV×PROG→ ENV. We will restrict the programs allowed

to appear as the second argument to procedure definitions only. We use the notation
E;proc P(Ez) δ end to denoteaddproc (E,proc P(Ez) δ end).
• A function pblock : ENV× PROG→ PROG. We use the notation{E; δ} to denote

pblock (E, δ).
• A functionc_call : ENV×PROG→ PROG. We will restrict the programs allowed

to appear as the second argument to procedure calls only. We use the notation
[E : P(Et)] to denotec_call (E,P(Et)).

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 159

We next introduce a predicatedefined : PROG× ENV meaning that a procedure is
defined in an environment. It is specified as:

defined (c,E) ≡ ∀D.[. . .⊃D(c,E)],
where. . . stands for the conjunction of the universal closure of

D(P(Ex), ε;proc P(Ey) δ end),

D(c,E ′)⊃D(c,E ′;d).
Observe that proceduresP are only defined in an environmentE , and that the parameters
the procedure is applied to do not play any role in determining whether the procedure is
defined.

Now we define the predicateProg : PROGand the predicateEnv : ENV as:

Prog (δ) ≡ ∀PPROG,PENV.[. . . ⊃ PPROG(δ)],
Env(E) ≡ ∀PPROG,PENV.[. . . ⊃ PENV(E)],

where. . . stands for the universal closure of

PPROG(nil),

PPROG(act (a)) (a pseudo-action),

PPROG(ρ?) (ρ pseudo-formula),

PPROG(δ1)∧ PPROG(δ2) ⊃ PPROG(δ1; δ2),
PPROG(δ1)∧ PPROG(δ2) ⊃ PPROG(δ1 | δ2),

PPROG(δ) ⊃ PPROG(δ
∗),

PPROG(δ) ⊃ PPROG(πzi .δ),

PPROG(δ1)∧ PPROG(δ2) ⊃ PPROG(if ρ then δ1 elseδ2),

PPROG(δ) ⊃ PPROG(while ρ do δ),

PPROG(δ1)∧ PPROG(δ2) ⊃ PPROG(δ1 ‖ δ2),
PPROG(δ1)∧ PPROG(δ2) ⊃ PPROG(δ1 〉〉 δ2),

PPROG(δ) ⊃ PPROG(δ
||),

PPROG(P(x1, . . . , xn)) (for eachP),

PENV(E)∧ PPROG(δ) ⊃ PPROG({E; δ}),
PENV(E)∧ defined (P(Ez),E) ⊃ PPROG([E : P(x1, . . . , xn)]),

PENV(ε),

PENV(E)∧ PPROG(δ) ∧ ¬defined (P(Ez),E)∧
(

n∧
h,k=1

zih 6= zik

)
⊃

PENV(E;proc P(zi1, . . . , zin) δ end).

160 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

We assume the following domain closure axioms for the sortsPROGandENV:

∀δ.Prog (δ),

∀E .Env(E).
We also enforce unique name axioms for programs and environments, that is for all
functionsg,g′ of any arity introduced above:

g(x1, . . . , xn) 6= g′(y1, . . . , ym),

g(x1, . . . , xn)= g(y1, . . . , yn)⊃ x1= y1∧ · · · ∧ xn = yn.
We extend the predicateClosed to PROGby induction on the structure of the program

terms in the obvious way so as to considerclosed, programs in which all occurrences of
pseudo-variableszi are bound either byπ , or by being a formal parameter of a procedure.
Only closed programs are considered legal.

We introduce the functionresolve : ENV× PROG× PROG→ PROG, to be used to
associate to procedure calls the environment to be used to resolve them. Namely, given the

procedureP defined in the environmentE , resolve (E,P(Et), δ) denoted by(δ)P(
Et)
[E :P(Et)],

suitably replacesP(Et) by c_call (E,P(Et)) in order to obtain static scope for procedures.
It is obvious how the function can be extended to resolve whole sets of procedure calls
whose procedures are defined in the environmentE . Formally this function satisfies the
following assertions:

(nil)P(Ex)[E :P(Ex)] = nil,

(a)
P(Ex)
[E :P(Ex)] = a,

(ρ?)P(Ex)[E :P(Ex)] = ρ?,

(δ1; δ2)P(Ex)[E :P(Ex)] = (δ1)P(Ex)[E :P(Ex)]; (δ2)P(Ex)[E :P(Ex)],

(δ1 | δ2)P(Ex)[E :P(Ex)] = (δ1)P(Ex)[E :P(Ex)] | (δ2)P(Ex)[E :P(Ex)],

(πzi .δ)
P(Ex)
[E :P(Ex)] = πzi .(δ)

P(Ex)
[E :P(Ex)],

(δ∗)P(Ex)[E :P(Ex)] =
(
(δ)

P(Ex)
[E :P(Ex)]

)∗
,

(if ρ then δ1 elseδ2)
P(Ex)
[E :P(Ex)] = if ρ then (δ1)

P(Ex)
[E :P(Ex)] else(δ2)

P(Ex)
[E :P(Ex)],

(while ρ do δ)P(Ex)[E :P(Ex)] =while ρ do (δ)P(Ex)[E :P(Ex)],

(δ1 ‖ δ2)P(Ex)[E :P(Ex)] = (δ1)P(Ex)[E :P(Ex)] ‖ (δ2)P(Ex)[E :P(Ex)],

(δ1 〉〉 δ2)P(Ex)[E :P(Ex)] = (δ1)P(Ex)[E :P(Ex)] 〉〉 (δ2)P(Ex)[E :P(Ex)],

(δ||)P(Ex)[E :P(Ex)] = ((δ)P(Ex)[E :P(Ex)])||,

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 161

(P(Ex))P(Ex)[E :P(Ex)] = [E : P(Ex)],
(Q(Et))P(Ex)[E :P(Ex)] =Q(Et) for any procedure callQ(Et) different fromP(Ex),

({E ′; δ})P(Ex)[E :P(Ex)] =
 {E

′; δ} if procedureP is (re)defined inE ′,{
E ′; (δ)P(Ex)[E :P(Ex)]

}
otherwise,

([E ′ :Q(Et]))P(Ex)[E :P(Ex)] = [E ′ :Q(Et)] for every procedure callQ(Et) and environmentE ′.

Finally, we extend the functionsub to PROG(as third argument) again by induction on
the structure of program terms in the natural way consideringπ as a binding construct for
pseudo-variables and without doing any substitutions into environments.sub is used for
substituting formal parameters with actual parameters in contextualized procedure calls, as
well as to deal withπ . We also introduce a functionc_body : PROG×ENV→ PROGto
be used to return the body of the procedures. Namely,c_body (P(Ex),E) returns the body
of the procedureP in E with the formal parameters substituted by the actual parametersEx.
Formally this function satisfies the following assertions:

c_body (P(Ex),E;proc P(Ey) δ end)= δ EyEx ,
c_body (P(Ex),E;proc Q(Ey) δ end)= c_body (P(Ex),E) (Q 6= P).

A.5. Consistency preservation

The encoding presented here preserves consistency as stated by the following theorem.

Theorem A.1. LetH be the axioms defining the encoding above. Then every model of an
action theoryD (involving sorts Sit, Act and Obj) can be extended to a model ofH ∪D
(involving the additional sorts Idx, PseudoSit, PseudoAct, PseudoObj, PseudoForm, ENV
and PROG).

Proof. It suffices to observe that for each new sort (Idx, . . . ,PROG) H contains:
• A second-order axiom that explicitly defines a predicate which inductively character-

izes the elements of the sort.
• An axiom that closes the domain of the new sort with respect to the characterizing

predicate.
• Unique name axioms that extend the interpretation of= to the new sort by induction

on the structure of the elements (as imposed by the characterizing axiom).
• Axioms that characterize predicates and functions, such asClosed , decode , sub ,

Holds , etc., by induction on the structure of the elements of the sort.
Hence, given a modelM of the action theoryD, it is straightforward to introduce domains
for the new sorts that satisfy the characterizing predicate, the domain closure axioms, and
the unique name axioms for the sort, by proceeding by induction on the structure of the
elements forced by the characterizing predicate, and then establishing the extension of the
newly defined predicates/functions for the sort.2

162 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

Appendix B. Proof of Theorem 1—Equivalence between theDo’s for Golog
programs

In this section, we prove Theorem 1, i.e., the equivalence of the original definition of
Do and the new one given in this paper, in the more general language which includes
procedures. To simplify the presentation of the proof, we use the same symbols to denote
terms and elements of the domain of interpretation; the meaning will be clear from the
context.

B.1. Alternative definitions of Trans and Final

For proving the following results, it is convenient to reformulate the definitions ofTrans
andFinal:
• Trans(δ, s, δ′, s′) ≡ ∀T .[. . .⊃ T (δ, s, δ′, s′)], where. . . stands for the conjunction

of the universal closure of the following implications:

Poss(a[s], s) ⊃ T (a, s,nil,do(a[s], s)),
φ[s] ⊃ T (φ?, s,nil, s),

T (δ, s, δ′, s′) ⊃ T (δ;γ, s, δ′;γ, s′),
Final(γ, s)∧ T (δ, s, δ′, s′) ⊃ T (γ ; δ, s, δ′, s′),

T (δ, s, δ′, s′) ⊃ T (δ | γ, s, δ′, s′),
T (δ, s, δ′, s′) ⊃ T (γ | δ, s, δ′, s′),
T (δvx, s, δ

′, s′) ⊃ T (πv.δ, s, δ′, s′),

T (δ, s, δ′, s′) ⊃ T (δ∗, s, δ′; δ∗, s′),
T
(
δ
Pi(Et)
[Env:Pi(Et)], s, δ

′, s′
) ⊃ T ({Env; δ}, s, δ′, s′),

T
({Env; δP EvPEt[s]}, s, δ′, s′

) ⊃ T ([Env: P(Et)], s, δ′, s′).
• Final(δ, s) ≡ ∀F.[. . . ⊃ F(δ, s)], where . . . stands for the conjunction of the

universal closure of the following implications:

True⊃ F(nil, s),

F (δ, s)∧ F(γ, s) ⊃ F(δ;γ, s),
F (δ, s) ⊃ F(δ | γ, s),
F (δ, s) ⊃ F(γ | δ, s),
F (δvx , s) ⊃ F(πv.δ, s),

True⊃ F(δ∗, s),

F
(
δ
Pi(Et)
[Env:Pi(Et)], s

) ⊃ F({Env; δ}, s),
F
({Env; δP EvPEt [s], s

) ⊃ F([Env: P(Et)], s).

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 163

Theorem B.1. With respect to Golog programs, the definitions above areequivalentto the
ones given in Section7 of the paper.

Proof. To prove this equivalence, consider first the following general results, which are a
direct consequence of the Tarski–Knaster fixpoint theorem [40]. If

S(Ex) ≡ ∀Z.[[∀Ey.Φ(Z, Ey)⊃Z(Ey)] ⊃Z(Ex)] (B.1)

andΦ(Z, Ey) is monotonic, i.e.,

∀Z1,Z2.[∀Ey.Z1(Ey)⊃Z2(Ey)] ⊃ [∀Ey.Φ(Z1, Ey)⊃Φ(Z2, Ey)],
then we get the following consequences21

S(Ex) ≡ Φ(S, Ex), (B.2)

S(Ex) ≡ ∀Z.[[∀Ey.Z(Ey)≡Φ(Z, Ey)] ⊃Z(Ex)]. (B.3)

Now it is easy to see that the above definition ofTransandFinal can be rewritten as (B.1)
and that the resultingΦ is indeed monotonic (in particular it is syntactically monotonic
since the predicate variablesT andF do not occur in the scope of any negation). Thus,
by the Tarski–Knaster fixpoint theorem, the above definitions can be rewritten in the form
of (B.3). Once in this form it is easy to see that forGologprograms they are equivalent to
those introduced in Section 7.2
B.2. Do1 is equivalent to Do2

Let Do1 be the original definition ofDo in [20] extended withDo1(nil, s, s′) def= s′ = s
and Do([Env : P(Et)], s, s′) def= Do({Env;P(Et)}, s, s′), and Do2 the new definition in
terms ofTransandFinal. Also, we do not allow procedure calls for which no procedure
definitions are given.

Lemma B.1. For every modelM of C, there existδ1, s1 . . . δn, sn such thatM |= Trans(δi,
si, δi+1, si+1) for i = 1, . . . , n− 1 if and only ifM |= Trans∗(δ1, s1, δn, sn).

Proof. (⇒) By induction onn. If n = 1, thenM |= Trans∗(δ1, s1, δ1, s1) by definition
of Trans∗. If n > 1, then by induction hypothesisM |= Trans∗(δ2, s2, δn, sn), and since
M |= Trans(δ1, s1, δ2, s2), we getM |= Trans∗(δ1, s1, δn, sn) by definition ofTrans∗.

(⇐) Let R be the relation formed by the tuples(δ1, s1, δn, sn) such that there exist
δ1, s1 . . . δn, sn andM |= Trans(δi, si, δi+1, si+1) for i = 1, . . . , n− 1. It is easy to verify
that

(i) for all δ, s, (δ, s, δ, s) ∈R;
(ii) for all δ, s, δ′, s′, δ′′, s′′, M |= Trans(δ, s, δ′, s′) and (δ′, s′, δ′′, s′′) ∈ R implies

(δ, s, δ′′, s′′) ∈R. 2
21 In fact, (B.2) is only mentioned in passing and not used in the proof.

164 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

Lemma B.2. For every modelM of C, M |= Do1(δ, s, s
′) implies that there existδ1, s1,

. . . , δn, sn such thatδ1 = δ, s1 = s, sn = s′, M |= Final(δn, sn), andM |= Trans(δi, si ,
δi+1, si+1) for i = 1, . . . , n− 1.

Proof. We prove the lemma by induction on the structure of the program. We only give
details for the most significant cases.

(1) a (atomic action).M |= Do1(a, s, s
′) iff M |= Poss(a[s], s) and s′ = do(a[s], s).

ThenM |= Trans(a, s,nil,do(a[s], s)), and hence the thesis.
(2) δ;γ (sequence).M |= Do1(δ;γ, s, s′) iff M |= Do1(δ, s, s

′′) andM |= Do1(γ, s
′′,

s′). Then by induction hypothesis:
(i) there existδ1, s1 . . . , δk, sk such thatδ1= δ, s1= s, sk = s′′,M |= Final(δk, sk)

andM |= Trans(δi, si , δi+1, si) for i = 1, . . . , k − 1;
(ii) there existγk, sk . . . , γn, sn such thatγ1= γ , sk = s′′, sn = s′,M |= Final(γn, sn)

andM |= Trans(γi, si , γi+1, si) for i = k, . . . , n− 1.
SinceTransitself is closed under the assertions in its definition we have that:M |=
Trans(δi, si , δi+1, si+1) impliesM |= Trans(δi;γ, si, δi+1;γ, si+1). MoreoverM |=
Final(δk, sk) and M |= Trans(γk, sk, γk+1, sk+1) implies M |= Trans(δk;γk, sk,
γk+1, sk+1). Similarly in the casek = nwe have that, sinceFinal is also closed under
the assertions in its definitionM |= Final(δk, sk) andM |= Final(γk, sk) implies
M |= Final(δk;γk, sk). Hence the thesis.

(3) δ∗ (iteration).M |= Do1(δ
∗, s, s′) iff M |= ∀P.[. . .⊃ P(s, s′)] where. . . stand for

the following two assertions:
(i) ∀s.P (s, s);
(ii) ∀s, s′, s′′.Do1(δ, s, s

′′)∧ P(s′′, s′)⊃ P(s, s′).
Consider the relationQ defined as the set of pairs(s, s′) such that: there exist
δ1, s1 . . . , δn, sn with δ1 = δ∗, s1 = s, sn = s′, M |= Final(δn, sn) and M |=
Trans(δi, si , δi+1, si) for i = 1, . . . , n−1. To prove the thesis, it is sufficient to show
thatQ satisfies the two assertions (i) and (ii).
(i) Let δ1= δn = δ∗, s1 = sn = s; sinceM |= Final(δ∗, s), it follows that for alls,

(s, s) ∈Q.
(ii) By the first induction hypothesis (the induction on the structure of the program):

M |= Do1(δ, s, s
′′) implies that there existδ1, s1 . . . , δk, sk such thatδ1 =

δ, s1 = s, sk = s′′, M |= Final(δk, sk) andM |= Trans(δi, si , δi+1, si+1) for
i = 1, . . . , k − 1. This implies thatM |= Trans(δi; δ∗, si, δi+1; δ∗, si+1) for
i : 2, . . . , k − 1. Moreover, we must also haveM |= Trans(δ∗, s1, δ2; δ∗, s2).

By the second induction hypothesis (rule induction forP), we can assume
that there existγk, sk . . . , γn, sn such thatγk = δ∗, sk = s′′, sn = s′, M |=
Final(γn, sn) andM |= Trans(γi, si , γi+1, si+1) for i = k, . . . , n− 1.

Now observe thatFinal(δk, sk) and Trans(γk, sk, γk+1, sk+1) implies that
Trans(δk;γk, sk, γk+1, sk+1). Thus, we get that (ii) holds forQ.

Hence the thesis.
(4) {Env; δ} (procedures).M |=Do1({Env; δ}, s, s′) iff

M |= ∀P1, . . . ,Pn. [Φ ⊃Do1(δ, s, s
′)],

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 165

where

Φ =
[

n∧
i=1

∀Ex, s, s′.Do1(δi
Evi
Ex , s, s

′)⊃ Pi(Ex, s, s′)
]
. (B.4)

To get the thesis, it suffices to prove it for the case:

M |= ∀P1, . . . ,Pn. [Φ ⊃ Pi(Ex, s, s′)] (B.5)

and then apply the induction argument on the structure of the program considering
as base casesnil, a, φ?, andP(Et).

Consider the relationsQi defined as the set of tuples(Ex, s, s′) such that there exist
δ1, s1 . . . , δn, sn with δ1 = {Env;Pi(Ex)}, 22 s1 = s, sn = s′, M |= Final(δn, sn) and
M |= Trans(δi, si , δi+1, si) for i = 1, . . . , n− 1. To prove the thesis it is sufficient to
show that eachQi satisfies (is closed under) the assertion (B.4).

Recall thatDo1(Pi(Ex)), s, s′) def= Pi(Ex, s, s′) wherePi is a free predicate variable.
This means that for any variable assignmentσ , M,σP1,...,Pn

Q1,...,Qn |= Do1(Pi(Ex), s, s′)
implies(Ex, s, s′) ∈Qi , i.e., there existδ1, s1 . . . , δn, sn with δ1= {Env;Pi(Ex)}, s1=
s, sn = s′, M |= Final(δn, sn) andM |= Trans(δi, si, δi+1, si) for i = 1, . . . , n− 1.
Hence by induction on the structure of the program, considering as base casesnil,
a, φ? andP(Et), we have thatM,σP1,...,Pn

Q1,...,Qn |= Do1(δi
Evi
Ex , s, s

′) implies that there

exist δ1, s1 . . . , δn, sn with δ1 = {Env; δi EviEx }, s1 = s, sn = s′, M |= Final(δn, sn)
andM |= Trans(δi, si, δi+1, si) for i = 1, . . . , n − 1. Now considering thatM |=
Trans({Env; δi EviEx }, s1, δ2, s2) implies M |= Trans([Env : Pi(Ex)], s1, δ2, s2) implies
M |= Trans({Env;Pi(Ex)}, s1, δ2, s2), we get that(Ex, s, s′) ∈Qi . 2

Lemma B.3. For all Gologprogramsδ and situationss:

Final(δ, s)⊃Do1(δ, s, s).

Proof. It is easy to show thatDo1(δ, s, s) is closed with respect to the implications in the
inductive definition ofFinal. 2
Lemma B.4. For all Gologprogramsδ, δ′ and situationss, s′:

Trans(δ, s, δ′, s′)∧Do1(δ
′, s′, s′′)⊃Do1(δ, s, s

′′).

Proof. The property we want to prove can be rewritten as follows:

Trans(δ, s, δ′, s′)⊃Φ(δ, s, δ′, s′)
with

Φ(δ, s, δ′, s′) def= ∀s′′.Do1(δ
′, s′, s′′)⊃Do1(δ, s, s

′′).

22 To be more precise, the variablesxi in Pi(Ex) should be read asnameOf(xi) thus converting situation calculus
objects/actions variables into suitable program terms (see Appendix A).

166 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

Hence it is sufficient to show thatΦ is closed under the implications that inductively define
Trans. Again, we only give details for the most significant cases.

(1) Implication for primitive actions. We show thatPoss(a[s], s) ⊃ Φ(a[s], s,nil,
do(a[s], s)), i.e.:

Poss(a[s], s)⊃ ∀s′′.Do1(nil,do(a[s], s), s′′)⊃Do1(a, s, s
′′).

SinceDo1(nil, s, s′) def= s′ = s, this reduces toPoss(a[s], s)⊃ Do1(a, s, do(a, s)),
which holds by the definition ofDo1.

(2) First implication for sequences. We have to showΦ(δ, s, δ′, s′)⊃ Φ(δ;γ, s, δ′, s′),
i.e.:

∀s′′.[Do1(δ
′, s′, s′′)⊃Do1(δ, s, s

′′)] ⊃
∀s′′.Do1(δ

′;γ, s′, s′′)⊃Do1(δ;γ, s, s′′).
By contradiction. Suppose that there is a modelM such thatM |= ∀s′′.Do1(δ

′, s′,
s′′) ⊃ Do1(δ, s, s

′′), andM |= Do1(δ
′;γ, s′, sc) and M |= ¬Do1(δ;γ, s, sc) for

somesc . This means thatM |= Do1(δ
′, s′, st) ∧ Do1(γ, st , sc) for somest , but

M |= ∀t .¬Do1(δ, s, t) ∨ ¬Do1(γ, t, sc). SinceM |= Do1(δ
′, s′, st) impliesM |=

Do1(δ, s, st), we have a contradiction.
(3) Second implication for sequences. We have to showFinal(δ, s) ∧Φ(γ, s, γ ′, s′)⊃

Φ(δ;γ, s, γ ′, s′), i.e.:

Final(δ, s)∧ ∀s′′.[Do1(γ
′, s′, s′′)⊃Do1(γ, s, s

′′)] ⊃
∀s′′.Do1(γ

′, s′, s′′)⊃Do1(δ;γ, s, s′′).
By contradiction. Suppose that there is a modelM such thatM |= Final(δ, s),
M |= ∀s′′.Do1(γ

′, s′, s′′) ⊃ Do1(γ, s, s
′′), andM |= Do1(γ

′, s′, sc)—thus M |=
Do1(γ, s, sc)—andM |= ¬Do1(δ;γ, s, sc) for somesc . The latter means thatM |=
∀t .¬Do1(δ, s, t)∨¬Do1(γ, t, sc). SinceM |= Final(δ, s) impliesM |=Do1(δ, s, s)

by Lemma B.3, thenM |= ¬Do1(γ, s, sc), contradiction.
(4) Implication for iteration. We have to showΦ(δ, s, δ′, s′)⊃Φ(δ∗, s, δ′; δ∗, s′), i.e.:

∀s′′.[Do1(δ
′, s′, s′′)⊃Do1(δ, s, s

′′)] ⊃
∀s′′.Do1(δ

′; δ∗, s′, s′′)⊃ Do1(δ
∗, s, s′′).

By contradiction. Suppose that there is a modelM such thatM |= ∀s′′.Do1(δ
′, s′,

s′′) ⊃ Do1(δ, s, s
′′), and M |= Do1(δ

′; δ∗, s′, sc) and M |= ¬Do1(δ
∗, s, sc) for

somesc . SinceM |= Do1(δ
′; δ∗, s′, sc) implies M |= Do1(δ

′, s′, st)—thusM |=
Do1(δ, s, st)—andM |= Do1(δ

∗, st , sc), andM |= Do1(δ, s, st) andM |= Do1(δ
∗,

st , sc) imply M |=Do1(δ
∗, s, sc), contradiction.

(5) Implication for contextualized procedure calls. We have to show that

Φ
({

Env; δi EviEt[s]
}
, s, δ′, s′

)⊃Φ([Env: Pi(Et)], s, δ′, s′).
It suffices to prove that:

Do1
({

Env; δi EviEt[s]
}
, s, s′

)⊃Do1([Env: Pi(Et)], s, s′).

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 167

We proceed by contradiction. Suppose that there exists an modelM such that
M |= Do1({Env; δi EviEt[s]}, s, s′) andM |= ¬Do1([Env;Pi(Et)], s, s′), for someEt , s and

s′. That is:

M |= ∀P1, . . . ,Pn.
[
Ψ ⊃Do1

(
δi
Evi
Et [s], s, s

′)], (B.6)

M |= ∃P1, . . . ,Pn. [Ψ ∧ ¬Pi(Et[s]), s, s′)], (B.7)

whereΨ = [∧n
i=1∀Exi, s, s′.Do1(δi

Evi
Exi , s, s

′) ⊃ Pi(Exi, s, s′)]. Then by (B.7) there

exists a variable assignment such thatM,σ |= Ψ andM,σ |= ¬Pi(Et[s], s, s′), which
impliesM,σ |= ¬Do1(δ

Evi
Et[s], s, s

′), which contradicts (B.6).
(6) Implication for programs within an environment. We have to show

Φ
(
δ
Pi(Et)
[Env:Pi(Et)], s, δ

′, s′
)⊃Φ({Env; δ}, s, δ′, s′).

It suffices to prove that:

Do1
(
δ
Pi(Et)
[Env:Pi(Et)], s, s

′)⊃Do1({Env; δ}, s, s′).
This can be done by induction on the structure of the programδ consideringnil, a,
φ?, and[Env′ : P(Et)] as base cases (such programs do not make use ofEnv). 2

Lemma B.5. For every modelM of C, if there existδ1, s1 . . . δn, sn such thatδ1= δ, s1= s,
sn = s′, M |= Final(δn, sn) andM |= Trans(δi, si , δi+1, si+1) for i = 1, . . . , n − 1, then
M |=Do1(δ, s, s

′).

Proof. By induction onn. If n = 1, thenFinal(δ, s) ⊃ Do1(δ, s, s) by Lemma B.3. If
n > 1, then by induction hypothesisM |= Do1(δ2, s2, s

′), hence by applying Lemma B.4,
we get the thesis.2

With these lemmas in place we can finally prove the wanted result:

Theorem 1. For each Golog programδ:

C |= ∀s, s′.Do1(δ, s, s
′)≡Do2(δ, s, s

′).

Proof. (⇒) by Lemmas B.2 and B.1; (⇐) by Lemmas B.1 and B.5.2
References

[1] G.R. Andrews, F.B. Schneider, Concepts and notations for concurrent programming, ACM Comput.
Surveys 15 (1) (1983) 3–43.

[2] M.E. Bratman, D.J. Israel, M.E. Pollack, Plans and resource-bounded practical reasoning, Comput.
Intelligence 4 (1988) 349–355.

[3] A.J. Bonner, M. Kifer, Concurrency and communication in transaction logic, in: Proc. Joint International
Conference and Symposium on Logic Programming (JICSLP), Bonn, Germany, 1996, pp. 142–156.

[4] J. De Bakker, E. De Vink, Control Flow Semantics, MIT Press, Cambridge, MA, 1996.
[5] X.J. Chen, G. De Giacomo, Reasoning about nondeterministic and concurrent actions: A process algebra

approach, Artificial Intelligence 107 (1) (1999) 63–98.

168 G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169

[6] G. De Giacomo, Y. Lespérance, H.J. Levesque, Reasoning about concurrent execution, prioritized interrupts,
and exogenous actions in the situation calculus, in: Proc. IJCAI-97, Nagoya, Japan, 1997, pp. 1221–1226.

[7] G. De Giacomo, H.J. Levesque, An incremental interpreter for high-level programs with sensing, in:
Cognitive Robotics—Papers from the 1998 AAAI Fall Symposium, Orlando, FL, Technical Report FS-
98-02, AAAI Press, Menlo Park, CA, 1998, pp. 28–34.

[8] M. Dixon, Embedded computation and the semantics of programs, Ph.D. Thesis, Department of Computer
Science, Stanford University, Stanford, CA, 1991. Also appeared as Xerox PARC Technical Report SSL-
91-1.

[9] G. De Giacomo, E. Ternovskaia, R. Reiter, Nonterminating processes in the situation calculus, in: Proc.
AAAI-97 Workshop on Robots, Softbots, Immobots: Theories of Action, Planning and Control, Providence,
RI, 1997.

[10] R.M. van Eijk, F.S. de Boer, W. van der Hoek, J.-J.Ch. Meyer, Information-passing and belief revision in
multi-agent systems, in: J.P. Müller, M.P. Singh, A.S. Rao (Eds.), Proc. ATAL-98, Paris, 1998, pp. 75–89.

[11] M. Fisher, A survey of Concurrent MetateM—The language and its applications, in: D.M. Gabbay,
H.J. Ohlbach (Eds.), Temporal Logic—Proc. First International Conference, Lecture Notes in Artificial
Intelligence, Vol. 827, Springer, Berlin, 1994, pp. 480–505.

[12] M. Gelfond, V. Lifschitz, Representing action and change by logic programs, J. Logic Programming 17
(1993) 301–327.

[13] C.C. Green, Theorem proving by resolution as a basis for question-answering systems, in: Machine
Intelligence, Vol. 4, Edinburgh University Press, Edinburgh, 1969, pp. 183–205.

[14] V. Gupta, R. Jagadeesan, V.A. Saraswat, Computing with continuous change, Sci. Comput. Programming 30
(1998) 3–50.

[15] M. Hennessy, The Semantics of Programming Languages, Wiley, New York, 1990.
[16] K.V. Hindriks, F.S. de Boer, W. van der Hoek, J.-J.Ch. Meyer, A formal semantics for an abstract agent

programming language, in: M.P. Singh, A. Rao, M.J. Wooldridge (Eds.), Proc. ATAL-97, Lecture Notes in
Artificial Intelligence, Vol. 1365, Springer, Berlin, 1998, pp. 215–229.

[17] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, Englewood Cliffs, NJ, 1985.
[18] D. Leivant, Higher order logic, in: Handbook of Logic in Artificial Intelligence and Logic Programming,

Vol. 2, Clarendon Press, Oxford, 1994, pp. 229–321.
[19] Y. Lespérance, M. Jenkin, K. Tam, Reactivity in a logic-based robot programming framework, in: Cognitive

Robotics—Papers from the 1998 AAAI Fall Symposium, Orlando, FL, Technical Report FS-98-02, AAAI
Press, Menlo Park, CA, 1998, pp. 98–105.

[20] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, R.B. Scherl, GOLOG: A logic programming language for
dynamic domains, J. Logic Programming 31 (1997) 59–84.

[21] F. Lin, R. Reiter, State constraints revisited, J. Logic Comput. 4 (5) (1994) 655–678.
[22] F. Lin, R. Reiter, How to progress a database, Artificial Intelligence 92 (1997) 131–167.
[23] J.W. Lloyd, Foundations of Logic Programming, 2nd edn., Springer, Berlin, 1987.
[24] J. McCarthy, P. Hayes, Some philosophical problems from the standpoint of artificial intelligence, in:

Machine Intelligence, Vol. 4, Edinburgh University Press, Edinburgh, 1969.
[25] R. Milner, Communication and Concurrency, Prentice Hall, Englewood Cliffs, NJ, 1989.
[26] H.R. Nielson, F. Nielson, Semantics with Applications: A Formal Introduction, Wiley, New York, 1992.
[27] G. Plotkin, A structural approach to operational semantics, Technical Report DAIMI-FN-19, Computer

Science Department, Aarhus University, Denmark, 1981.
[28] D. Pym, L. Pryor, D. Murphy, Processes for plan-execution, in: Proc. 14th Workshop of the UK Planning

and Scheduling Special Interest Group, 1995.
[29] A.S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable language, in: W. van der Velde,

J.W. Perram (Eds.), Agents Breaking Away, Lecture Notes in Artificial Intelligence, Vol. 1038, Springer,
Berlin, 1996, pp. 42–55.

[30] A.S. Rao, M.P. Georgeff, An abstract architecture for rational agents, in: B. Nebel, C. Rich, W. Swartout
(Eds.), Proc. 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR-
92), Cambridge, MA, Morgan Kaufmann, San Mateo, CA, 1992, pp. 439–449.

[31] R. Reiter, The frame problem in the situation calculus: A simple solution (sometimes) and a completeness
result for goal regression, in: Artificial Intelligence and Mathematical Theory of Computation: Papers in
Honor of John McCarthy, Academic Press, New York, 1991, pp. 359–380.

G. De Giacomo et al. / Artificial Intelligence 121 (2000) 109–169 169

[32] R. Reiter, Proving properties of states in the situation calculus, Artificial Intelligence 64 (1993) 337–351.
[33] R. Reiter, Natural actions, concurrency and continuous time in the situation calculus, in: Proc. 5th

International Conference on Principles of Knowledge Representation and Reasoning (KR-96), Cambridge,
MA, Morgan Kaufmann, San Mateo, CA, 1996, pp. 2–13.

[34] R. Reiter, Knowledge in action: Logical foundation for describing and implementing dynamical systems, In
preparation.

[35] V.A. Saraswat, M. Rinard, Concurrent constraint programming, in: Proc. 17th ACM Symposium on
Principles of Programming Languages, 1990, pp. 232–245.

[36] S. Shapiro, Y. Lespérance, H.J. Levesque, Specifying communicative multiagent systems, in: W. Wobcke,
M. Pagnucco, C. Zhang (Eds.), Agents and Multi-Agent Systems—Formalisms, Methodologies, and
Applications, Lecture Notes in Artificial Intelligence, Vol. 1441, Springer, Berlin, 1998, pp. 1–14.

[37] J.R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, MA, 1967.
[38] Y. Shoham, Agent-oriented programming, Artificial Intelligence 60 (1993) 51–92.
[39] C. Stirling, Modal and temporal logics for processes, in: Logics for Concurrency: Structure versus Automata,

Lecture Notes in Computer Science, Vol. 1043, Springer, Berlin, 1996, pp. 149–237.
[40] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955) 285–309.

