
Query Containment Using Views
(extended abstract)?

Diego Calvanese1, Giuseppe De Giacomo1, Maurizio Lenzerini1,
Moshe Y. Vardi2

1 Università di Roma “La Sapienza”
Dip. di Informatica e Sistemistica
via Salaria 113, 00198 Roma, Italy

lastname@dis.uniroma1.it

2 Department of Computer Science
Rice University, P.O. Box 1892

Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

1 Introduction

Querying is the fundamental mechanism for extracting information from a
database. Besides the basic task of query answering, i.e., evaluating a query
over a database, data and knowledge representation systems should support
other reasoning services related to querying. One of the most important is query
containment, i.e., verifying whether for all databases the answer to a query is a
subset of the answer to a second query. Checking containment of queries is crucial
in several contexts, such as query optimization, query reformulation, knowledge-
base verification, information integration, integrity checking, and cooperative
answering [18, 12, 4, 6, 21, 7, 13, 20]. Obviously, query containment is also useful
for checking equivalence of queries, i.e., verifying whether for all databases the
answer to a query is the same as the answer to another query. The main results
on query containment are summarized in [10].

In several data management tasks, such as data integration [17], data ware-
housing, and mobile computing, the data of interest are only accessible through
a given set of views. In other words, we would like to access a database, but
we have only information about the data satisfying the views. In such a setting,
query processing comes in a different form with respect to the traditional frame-
work. Instead of considering a query over of a given database, one should take
into account that the query is now processed by relying only on the information
about the data satisfying the views. We call this kind of processing view-based

query processing [8].
Analogously to the traditional setting, also in the context of view-based query

processing, the need arises of checking containment between queries. In this
context, containment of queries should be determined relative to the set of views,
as already noted in the literature [19]. Such form of containment, called view-

based query containment, is the subject of this paper.
To the best of our knowledge, the first paper dealing with view-based query

containment is [19], where the problem, called “relative containment”, is studied
for variants of conjunctive queries and views.

? This extended abstract reports work that has been published in the Proceedings of
the 22nd ACM Symposium on Principles of Database Systems (PODS 2003).



Although previous work on view-based query containment considered only
the case of queries expressed in the alphabet of the database (base alphabet), we
show here that the problem comes in various forms, depending on whether each
of the two queries is expressed over the base alphabet, or the alphabet of the view
names (view alphabet). The first contribution of this paper is a thorough analysis
of view-based query containment. In particular, we discuss several semantics of
containment for all the possible forms, and we study their mutual relationships.
The second contribution is a study of view-based query containment in two
specific contexts: conjunctive queries in relational databases, and regular path
queries in semistructured databases [5, 14, 2]. For both conjunctive and two-way
regular path queries and views [8], we provide techniques and complexity bounds
for the different variants of view-based query containment. In establishing the
results for 2RPQs, we make use of the known connection between view-based
query answering and constraint satisfaction [9, 11].

2 Preliminaries

We consider databases and view extensions as finite relational structures. Let
Θ be an alphabet of relation symbols, each with an associated arity. A finite

relational structure (or simply structure) R over Θ is a pair (∆R, ·R), where ∆R

is a finite domain and ·R is a function that assigns to each relation symbol in
r ∈ Θ a relation rR, also denoted by r(R), of the appropriate arity over ∆R.
Given a query QΘ over Θ, we denote by QΘ(R) the result of evaluating QΘ

over R. Note that we explicitly annotate queries with the alphabet over which
they are defined. Given two structures R1 and R2 over Θ, we use R1 ⊆ R2

to denote that r(R1) ⊆ r(R2), for each r ∈ Θ. A query QΘ is monotone if
QΘ(R1) ⊆ QΘ(R2) whenever R1 ⊆ R2.

Let Σ be a finite alphabet of relation symbols, fixed once and for all, called
base alphabet. A database is a structure over Σ. Consider a database that is ac-
cessible only through a collection of views V, and suppose we want to answer a
query over the database only on the basis of our knowledge on the views. Specifi-
cally, the collection of views is represented by a finite set V of view symbols, each
denoting a relation. Each view symbol V ∈ V has an associated view definition

V Σ , which is a query over Σ. A V-extension E is a structure over V.

We consider views to be sound [3, 15], i.e., we model a situation where the
extension of the views provides a subset of the results of applying the view
definitions to the database. Formally, given a set of views V and a database B,
we use VΣ(B) to denote the V-extension E such that V (E) = V Σ(B), for each
V ∈ V. We say that a V-extension E is sound wrt a database B if E ⊆ VΣ(B).
In other words, for a view V ∈ V, all the tuples in V (E) must appear in V Σ(B),
but V Σ(B) may contain tuples not in V (E). A set of views V is non-constraining

if each V-extension is sound wrt some database, i.e., for each V-extension E
there exists a database B such that E ⊆ VΣ(B). Intuitively, all extensions of
non-constraining views are admissible, since they are sound wrt some database.



Given a set of views V, a V-extension E , and a query QΣ , the set of certain

answers to QΣ wrt V and E is the set of tuples t of objects such that t ∈ QΣ(B),
for every database B that is consistent with V and E , i.e., such that E ⊆ VΣ(B).
View-based query answering consists in deciding whether a given tuple of objects
is a certain answer to Q wrt V and E . Given a set of views V and a query QΣ ,
we denote by certQΣ ,V the query that, for every V-extension E , returns the set
of certain answers to QΣ wrt V and E .

We consider the case of conjunctive queries over relational databases, in par-
ticular, standard conjunctive queries without equalities and without constants.
Such queries are monotone and that every set of such views is non-constraining.

We also consider the case of regular path queries over semistructured
databases. A semistructured database is a finite graph whose nodes represent
objects and whose edges are labeled by elements from Σ [5, 1]. An edge from
node x to node y labeled by r represents the fact that relation r holds between
the object x and the object y. Note that a semistructured database can be viewed
as a structure B over the set Σ of binary relational symbols.

A regular-path query (RPQ) over an alphabet Θ of binary relation symbols
is expressed as a regular expression or a finite-state automaton over Θ. When
evaluated on a structure R over Θ, an RPQ computes the set of pairs of objects
connected in R by a path in the regular language defined by the RPQ. We
consider two-way regular-path queries (2RPQs) [8], which extend RPQs with
the inverse operator. Formally, let Θ± = Θ ∪ {r− | r ∈ Θ} be the alphabet
including a new symbol r− for each r in Θ. Intuitively, r− denotes the inverse of
the binary relation r. If q ∈ Θ±, then we use q− to mean the inverse of q, i.e., if q

is r, then q− is r−, and if q is r−, then q− is r. 2RPQs are expressed by means of
regular expressions or finite-state automata over Θ±, whose language is different
from the language consisting only of the empty word ε. When evaluated on a
structure R over Θ, a 2RPQ QΘ computes the set QΘ(R) of pairs of objects
connected in R by a semipath that conforms to the regular language L(QΘ).
A semipath in R from x to y (labeled with q1 · · · qn) is a sequence of the form
(y0, q1, y1, . . . , yn−1, qn, yn), where n ≥ 0, y0 = x, yn = y, and for each yi−1, qi, yi,
we have that qi ∈ Θ±, and, if qi = r then (yi−1, yi) ∈ r(R), and if qi = r− then
(yi, yi−1) ∈ r(R). We say that a semipath (y0, q1, . . . , qn, yn) conforms to QΘ if
q1 · · · qn ∈ L(QΘ). Observe that 2RPQs (resp., RPQs) are monotone and that
every set of 2RPQ (resp., RPQ) views is non-constraining.

Given two queries QΘ
1

and QΘ
2

over the same alphabet Θ, QΘ
1

is contained in

QΘ
2

, denoted QΘ
1
⊆ QΘ

2
, if for every structure R over Θ, we have that QΘ

1
(R) ⊆

QΘ
2

(R). In this paper we consider query containment relative to a set of views.
In particular, we study the notion of view-based query containment of a query

QΘ1

1
in a query QΘ2

2
wrt a set of views V, denoted by QΘ1

1
⊆V QΘ2

2
, where each

Θi is either Σ or V. The semantics of this notion depends on Θ1 and Θ2, i.e.,
the alphabets over which the two queries are expressed, and will be discussed for
the various cases in the next sections. The complexity results we provide refer
to two specific settings: conjunctive queries, where both queries and views are
conjunctive, and 2RPQs, where both queries and views are 2RPQs.



3 View-based containment of QΣ

1
in QΣ

2

The first problem we address is view-based containment between two queries
over the base alphabet. This is the problem originally studied in [19].

Definition 1. QΣ
1
⊆V QΣ

2
if for every database B, and for every V-extension E

with E ⊆ V(B), we have certQΣ

1
,V(E) ⊆ certQΣ

2
,V(E).

Observe that in this definition we consider only V-extensions that are sound wrt
some database. It turns out that, w.l.o.g., we can drop this requirement.

Proposition 1. QΣ
1

⊆V QΣ
2

if and only if for every V-extension E, we have

certQΣ

1
,V(E) ⊆ certQΣ

2
,V(E).

Note that the condition in the proposition above is actually the definition of
relative containment in [19]. Intuitively, the condition in the proposition suffices,
since for each extension E that is not contained in V(B) for some database B,
certQiΣ,V(E) becomes trivial and returns all possible tuples of objects in E .

One could also compare the two queries only wrt extensions that correspond
exactly to the evaluation of the views over some database. Formally, this notion
corresponds to checking whether, for all databases B, we have certQΣ

1
,V(V(B)) ⊆

certQΣ

2
,V(V(B)). It turns out that such a notion is equivalent to view-based query

containment.

Proposition 2. certQΣ

1
,V(V(B)) ⊆ certQΣ

2
,V(V(B)) for every database B, if and

only if QΣ
1
⊆V QΣ

2
.

The computational complexity characterization of view-based query contain-
ment of QΣ

1
in QΣ

2
for conjunctive queries has been provided in [19].

Theorem 1 ([19]). Checking QΣ
1

⊆V QΣ
2

is ΠP
2

-complete for conjunctive

queries.

For 2RPQs, by exploiting the characterization of QΣ
1

⊆V QΣ
2

, in terms of
constraint satisfaction [11], we get the following result.

Theorem 2. Checking QΣ
1

⊆V QΣ
2

is NEXPTIME-complete for 2RPQs and

RPQs.

4 View-based containment of QV

1
in QΣ

2

We now study view-based containment of a query QV
1

expressed on the view
alphabet in a query QΣ

2
expressed on the base alphabet. Intuitively, we want to

check whether, for all view extensions that are sound wrt some database, the
evaluation of QV

1
yields a subset of the certain answers of QΣ

1
.

Definition 2. QV
1
⊆V QΣ

2
if for every database B, and for every V-extension E

with E ⊆ V(B), we have QV
1
(E) ⊆ certQΣ

2
,V(E).



Again, the above definition considers only V-extensions that are sound wrt
some database. However, as for the case of previous section, it turns out that we
can drop this requirement w.l.o.g.

Proposition 3. QV
1

⊆V QΣ
2

if and only if for every V-extension E we have

QV
1
(E) ⊆ certQΣ

2
,V(E).

As for the case of Section 3, one could also conceive a different notion of
containment of QV

1
in QΣ

2
, namely: for every database B, QV

1
(V(B)) is a subset

of certQΣ

2
,V(V(B)). Generally speaking this notion may differ from the one un-

derlying our definition of view-based containment. However it turns out that, if
QV

1
is monotone, the two notions are equivalent.

Proposition 4. Let QV
1

be monotone. Then, QV
1
⊆V QΣ

2
if and only if for all

databases B, we have QV
1
(V(B)) ⊆ certQΣ

2
,V(V(B)).

Interestingly, it turns out that, if both queries QV
1

and QΣ
2

are monotone, the
condition in the proposition above is equivalent to a simpler condition, namely:
for every database B we have that QV

1
(V(B)) ⊆ QΣ

2
(B). This is stated in the

following proposition.

Proposition 5. Let QV
1

and QΣ
2

be monotone. Then, QV
1
⊆V QΣ

2
if and only if

for every database B, we have QV
1
(V(B)) ⊆ QΣ

2
(B).

Since conjunctive queries are monotone, the above theorem implies that, for
conjunctive queries, checking QV

1
⊆V QΣ

2
simply amounts to checking whether

for every B, QV
1
(V(B)) ⊆ QΣ

2
(B). This is equivalent to substituting the view

symbols appearing in QV
1

with the corresponding view definitions, thus getting
a new query QΣ

1
over the base alphabet Σ, and then checking QΣ

1
⊆ QΣ

2
.

Theorem 3. Checking QV
1
⊆V QΣ

2
is NP-complete for conjunctive queries.

Now we turn to the problem of checking whether QV
1
⊆V QΣ

2
in the setting

of 2RPQs. As for the case of conjunctive queries, since 2RPQs are monotone,
checking view-based containment of QV

1
in QΣ

2
reduces to checking whether for

every B, QV
1
(V(B)) ⊆ QΣ

2
(B). Again, this is equivalent to substituting views with

their definitions, thus getting a new query QΣ
1

, and then checking QΣ
1
⊆ QΣ

2
.

Theorem 4. Checking QV
1
⊆V QΣ

2
is PSPACE-complete for 2RPQs and RPQs.

5 View-based containment of QΣ

1
in QV

2

We address the problem of view-based containment between a query over the
base alphabet and a query over the view alphabet.

Definition 3. QΣ
1

⊆V QV
2

if for every database B, and for every V-extension

E ⊆ V(B), we have certQΣ

1
,V(E) ⊆ QV

2
(E).



Again in this definition we consider only V-extensions that are sound
wrt some database. However, we can drop this requirement w.l.o.g. for non-
constraining views.

Proposition 6. Let V be a set of non-constraining views. Then, QΣ
1

⊆V QV
2

if

and only if for every V-extension E, we have certQΣ

1
,V(E) ⊆ QV

2
(E)

For conjunctive queries, we know that certQΣ

1
,V coincides with the maxi-

mally contained rewriting of QΣ
1

wrt V, which is a possibly exponential union
of conjunctive queries, each of linear size in QΣ

1
[16]. To check non-containment

certQΣ

1
,V 6⊆ QV

2
, we have to guess a conjunctive query in the maximal rewriting

of QΣ
1

, and verify that it is not contained in QV
2
. Hence we get the following

upper bound.

Theorem 5. Checking QΣ
1
⊆V QV

2
is in ΠP

2
for conjunctive queries.

Whether this bound is tight is an open problem.
In the setting of 2RPQs, by exploiting again the characterization in terms of

constraint satisfaction [11], we get the following result.

Theorem 6. Checking QΣ
1

⊆V QV
2

is NEXPTIME-complete for 2RPQs and

RPQs.

In fact, the lower bound proof shows that checking QΣ
1
⊆V QV

2
is NEXPTIME-

complete even for fixed V and QΣ
1

.

One could also compare the two queries only wrt extensions that correspond
exactly to the evaluation of the views over some database. Formally, this corre-
sponds to checking whether, for every database B, we have that certQΣ

1
,V(V(B))

is a subset of QV
2
(V(B)). Such a notion differs from QΣ

1
⊆V QV

2
, even for

non-constraining views and monotone queries. Indeed, consider Σ = {R},
V = {V1, V2} with V Σ

1
= V Σ

2
= R, and queries QΣ

1
= R and QV

2
= V2. It is

easy to see that, for every database B we have certQΣ

1
,V(V(B)) ⊆ QV

2
(V(B)).

However, the V-extension E with V1(E) = {(c, d)} and V2(E) = ∅ is such that
(c, d) ∈ certQΣ

1
,V(E) but (c, d) 6∈ QV

2
(E), thus showing that QΣ

1
6⊆V QV

2
.

Since the two versions of containment differ, the question arises on whether
we are able to check containment of QΣ

1
in QV

2
only for those V-extensions that

correspond to the evaluation of the view definitions over some database. To this
purpose we can exploit the following proposition.

Proposition 7. Let QV be monotone, and let QΣ be the query over Σ obtained

by substituting in QV the view symbols with the corresponding view definitions.

Then, for every database B, we have QV(V(B)) = certQΣ ,V(V(B)).

Observe that, in general, it is not true that, for every V-extension E , we
have QV(E)) = certQΣ ,V(E). For example, consider Σ = {R}, the set of views
V = {V1, V2} with V Σ

1
= V Σ

2
= R, and the V-extension E with V1(E) = {(a, b)}

and V2(E) = ∅. Then, for the query QV = V2, we have that QV(E) = ∅, while
certQΣ ,V(E) = {(a, b)}.



By Proposition 7, if QV
2

is monotone, we can check whether for every database
B we have that certQΣ

1
,V(V(B)) ⊆ QV

2
(V(B)), by checking whether for every

database B we have that certQΣ

1
,V(V(B)) ⊆ certQΣ

2
V(V(B)), where QΣ

1
is the

query obtained from QV
1

by expanding view symbols with their definitions.
By Proposition 2, this can be done by checking whether QΣ

1
⊆V QΣ

2
(cf. Sec-

tion 3), and therefore the problem is ΠP
2

-complete for conjunctive queries, and
NEXPTIME-complete for 2RPQs and RPQs.

6 View-based containment of QV

1
in QV

2

The last form of view-based query containment is when the two queries are over
the view alphabet.

Definition 4. QV
1

⊆V QV
2

if for every database B, and for every V-extension

E ⊆ V(B), we have QV
1
(E) ⊆ QV

2
(E).

Analogously to the previous case, for non-constraining views, we can drop
w.l.o.g. the requirement to consider only V-extensions that are sound wrt some
database. Therefore, if views are non-constraining, checking view-based contain-
ment reduces to checking containment of the two queries over the view alphabet.

Theorem 7. Checking QV
1
⊆V QV

2
is NP-complete for conjunctive queries, and

PSPACE-complete for 2RPQs and RPQs.

It is interesting to observe that, even for non-constraining views and mono-
tone queries, checking QV

1
⊆V QV

2
is not equivalent to checking whether, for every

database B, we have that QV
1
(V(B)) ⊆ QV

2
(V(B)). Indeed, consider Σ = {R},

V = {V1, V2}, with V1
Σ = R and V2

Σ = R, and queries QV
1

= V1 and QV
2

= V2.
It is easy to see that for every database B, we have QV

1
(V(B)) ⊆ QV

2
(V(B)).

However, the V-extension E with V1(E) = {(a, b)} and V2(E) = ∅ shows that
QV

1
6⊆V QV

2
.

Since the two versions of containment differ, the question arises on whether we
are able to check the condition that for each database B, QV

1
(V(B)) ⊆ QV

2
(V(B)).

It turns out that this is equivalent to substituting view symbols with their
definitions in both queries, thus getting new queries QΣ

1
and QΣ

2
, and then

checking QΣ
1

⊆ QΣ
2

. It follows that checking whether, for each database B,
QV

1
(V(B)) ⊆ QV

2
(V(B)), is NP-complete for conjunctive queries, and PSPACE-

complete for 2RPQs and RPQs.

7 Conclusions

We have presented a thorough analysis of view-based query containment, show-
ing that the problem comes in various forms, depending on whether each of
the two queries is expressed over the base alphabet or the alphabet of the view
names. The results presented here also allow us to carry out an analysis of prop-
erties of rewritings of queries. In particular, they allow to check for perfectness
(vs. exactness) of a rewriting [9, 11].



References

1. S. Abiteboul. Querying semi-structured data. In Proc. of ICDT’97, pages 1–18,
1997.

2. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from Relations to
Semistructured Data and XML. Morgan Kaufmann, 2000.

3. S. Abiteboul and O. Duschka. Complexity of answering queries using materialized
views. In Proc. of PODS’98, pages 254–265, 1998.

4. S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query
caching and optimization in distributed mediator systems. In Proc. of ACM SIG-
MOD, pages 137–148, 1996.

5. P. Buneman. Semistructured data. In Proc. of PODS’97, pages 117–121, 1997.
6. P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and

optimization technique for unstructured data. In Proc. of ACM SIGMOD, pages
505–516, 1996.

7. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description
logic framework for information integration. In Proc. of KR’98, pages 2–13, 1998.

8. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Query processing
using views for regular path queries with inverse. In Proc. of PODS 2000, pages
58–66, 2000.

9. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query
processing and constraint satisfaction. In Proc. of LICS 2000, pages 361–371, 2000.

10. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based
query answering and query containment over semistructured data. In G. Ghelli
and G. Grahne, editors, Revised Papers of the 8th International Workshop on
Database Programming Languages (DBPL 2001), volume 2397 of LNCS, pages
40–61. Springer, 2002.

11. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query
containment. In Proc. of PODS 2003, 2003.

12. S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and K. Shim. Optimizing queries
with materialized views. In Proc. of ICDE’95, 1995.

13. M. F. Fernandez, D. Florescu, A. Levy, and D. Suciu. Verifying integrity constraints
on web-sites. In Proc. of IJCAI’99, pages 614–619, 1999.

14. D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the World-Wide
Web: A survey. SIGMOD Record, 27(3):59–74, 1998.

15. G. Grahne and A. O. Mendelzon. Tableau techniques for querying information
sources through global schemas. In Proc. of ICDT’99, volume 1540 of LNCS,
pages 332–347. Springer, 1999.

16. A. Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

17. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002,
pages 233–246, 2002.

18. A. Y. Levy and Y. Sagiv. Semantic query optimization in Datalog programs. In
Proc. of PODS’95, pages 163–173, 1995.

19. T. D. Millstein, A. Y. Levy, and M. Friedman. Query containment for data inte-
gration systems. In Proc. of PODS 2000, pages 67–75, 2000.

20. T. Milo and D. Suciu. Index structures for path expressions. In Proc. of ICDT’99,
volume 1540 of LNCS, pages 277–295. Springer, 1999.

21. A. Motro. Panorama: A database system that annotates its answers to queries
with their properties. J. of Intelligent Information Systems, 7(1), 1996.


