
Automata-Theoretic Foundations of FOND Planning for LTLf and LDLf Goals

Giuseppe De Giacomo
Univ. Roma “La Sapienza”, Italy

degiacomo@dis.uniroma1.it

Sasha Rubin
Univ. Napoli “Federico II”, Italy

sasha.rubin@unina.it

Abstract
We study planning for LTLf and LDLf temporally
extended goals in nondeterministic fully observ-
able domains (FOND). We consider both strong
and strong cyclic plans, and develop foundational
automata-based techniques to deal with both cases.
Using these techniques we provide the computa-
tional characterization of both problems, separating
the complexity in the size of the domain specifica-
tion from that in the size of the formula. Specifi-
cally we establish them to be EXPTIME-complete
and 2EXPTIME-complete, respectively, for both
problems. In doing so, we also show 2EXPTIME-
hardness for strong cyclic plans, which was open.

1 Introduction
We study planning in fully observable nondeterministic do-
mains (FOND) [Ghallab et al., 2004; Geffner and Bonet,
2013] for temporally extended goals expressed in LTLf and
its extension LDLf . We consider two variants of planning:
in FONDunr, plans are guaranteed to produce traces that sat-
isfy the goal; in FONDfair, this is guaranteed only in fair en-
vironments [Daniele et al., 1999; Pistore and Traverso, 2001;
Cimatti et al., 2003; Sardiña and D’Ippolito, 2015].

Linear temporal logic on finite traces (LTLf) has been used
extensively in AI [Bacchus and Kabanza, 2000; Baier and
McIlraith, 2006; De Giacomo and Vardi, 2013], as well as
in other areas of computer science such as in business pro-
cess modeling [van der Aalst et al., 2009]. In Planning, no-
tably, LTLf can be used for expressing trajectory constraints
in PDDL 3.0 [Gerevini et al., 2009].

Linear dynamic logic on finite traces (LDLf) [De Giacomo
and Vardi, 2013] is a proper extension of LTLf by regular
expressions. It can capture procedural constraints on execu-
tions, as in [Fritz and McIlraith, 2007; Baier et al., 2008],
which are typically expressed as regular expressions that must
be fulfilled by traces. The logics LTLf /LDLf are also used to
express non-Markovian rewards/goals in extensions of MDPs
[Camacho et al., 2017a; Brafman et al., 2018].

In this paper we make a careful study of the complexity
of solving FONDunr and FONDfair. We observe that from re-
sults in literature, reviewed below, it is easy to see that both
of these are in 2EXPTIME. However, such results blur the

distinction between the domain specification (typically large)
and the goal (typically small). In our analysis we want to
distinguish these two source of complexity, i.e., the domain
complexity and the goal complexity.

FOND Planning. One way to see that FONDunr planning
is solvable in 2EXPTIME is to reduce it to reactive synthe-
sis. Reactive Synthesis is a problem that is deeply related to
planning in fully observable nondeterministic domains. It can
be seen as a generalization of planning in non-deterministic
domains, where both the goal and the domain are represented
as formulas. Reactive synthesis for LTLf /LDLf formulas is
2EXPTIME-complete [De Giacomo and Vardi, 2015].

For the upper bound, observe that FONDunr with
LTLf /LDLf goals is polynomially reducible to reactive syn-
thesis for LTLf /LDLf goals. Indeed, we can polynomially
represent the domain specification in terms of LTLf for-
mulas expressing preconditions and effects. This gives the
2EXPTIME upper bound. However, this reduction does not
allow one to study the domain/goal complexities since it com-
piles both the domain and the goal into a single formula.

For the lower bound, observe that LTLf /LDLf reactive syn-
thesis is polynomially reducible to FONDunr planning in a very
simple domain that allows all actions and has all possible
nondeterministic effects. This establishes that FONDunr with
LTLf /LDLf goals is also 2EXPTIME-hard.

FOND planning in fair environments. Turning to the
2EXPTIME upper bound for FONDfair, we note that fairness
is a property that requires the analysis of traces that are infi-
nite. Hence we cannot reduce FONDfair directly to LTLf /LDLf

synthesis. That said, we can indeed reduce it to LTL/LDL syn-
thesis, i.e., synthesis on infinite traces, which is 2EXPTIME-
complete [Pnueli and Rosner, 1989].1 However, synthesis
still appears to be prohibitive in the infinite-trace setting, not
so much for the 2EXPTIME-completeness, but for the diffi-
culties of finding good algorithms for automata determiniza-
tion, a crucial step in the solution, see, e.g., [Fogarty et al.,
2013]. Fortunately, efficient techniques for solving FONDfair
for LTLf /LDLf goals have been proposed in [Camacho et al.,
2017b], where a sound and complete translation into an expo-

1We remark that LDL on infinite traces [Vardi, 2011] can be seen
as a clean version of standard formalisms used in verification such
as Intel ForSpec [Armoni et al., 2002] and the standard PSL [Eisner
and Fisman, 2006]. The synthesis techniques developed in [Pnueli
and Rosner, 1989] immediately extends to LDL on infinite traces.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4729

nentially larger FONDfair problem for the standard reachabil-
ity goal has been presented, implemented and experimented
in practice. This compilation not only gives the 2EXPTIME
upper bound, but better algorithms. However, it still blurs the
complexity coming from the domain and that coming from
the LTLf /LDLf goal since it compiles both the domain and the
LTLf /LDLf goal into the domain. The existence of matching
lower bounds has been open until now.2

Our contribution. We study the complexity of planning
for LTLf /LDLf goals separating the analysis wrt the domain
and the goal. For the upper bounds, we develop simple, di-
rect and elegant automata-based techniques to deal both with
FONDunr and FONDfair for LTLf /LDLf goals. Using these
techniques we separate the domain and goals as sources of
complexity, and characterize both problems as EXPTIME in
the size of domain specification (expressed compactly, e.g.,
as in PDDL) and as 2EXPTIME in the size of the LTLf /LDLf

goal. For the lower bounds, we observe that EXPTIME-
hardness in the size of the domain already holds for reach-
ability goals [Rintanen, 2004]. For FONDunr, 2EXPTIME-
hardness in the size of the goal comes from the mentioned
reduction from LTLf synthesis, and here we extend this re-
duction to show 2EXPTIME-hardness also for FONDfair. We
actually strengthen this characterization by showing that the
smallest plan/strategy fulfilling an LTLf goal may indeed
need memory that is doubly-exponential in the size of the
goal. This result applies to FONDfair as well as to FONDunr.
Finally, we develop a tight correspondence between solv-
ing FONDfair with LTLf /LDLf goals and solving probabilistic
planning problems with LTLf /LDLf goals, analogous to the
well-known one for reachability goals [Rintanen, 2004].

2 Automata, LTLf and LDLf

Linear-time Temporal Logic over finite traces (LTLf) has the
same syntax as standard LTL, but is interpreted over finite
traces (instead of infinite traces). For instance, the formula
3G where G is a Boolean formula expresses that eventually
G holds. Linear Dynamic Logic (LDLf) is a proper exten-
sion of LTLf that is able to capture full regular expressions
over traces. We refer to [De Giacomo and Vardi, 2013] for
more details. Here, we focus on the property that: for every
LTLf /LDLf formula ϕ there is a nondeterministic finite word
automata (NFA) that accepts the traces τ that satisfy ϕ, and
the size of the NFA is at most exponential in the size of the
formula [De Giacomo and Vardi, 2013]. Such an NFA, as any
NFA, can be transformed, e.g., by the well-known subset con-
struction [Rabin and Scott, 1959], into a deterministic finite
state automaton (DFA), which is in general exponential in the
NFA, though in many cases the resulting DFA is comparable
to, if not smaller (after minimization) than the original NFA
[Tabakov and Vardi, 2005].

2An alternative way of studying the complexities separately is
to reduce to model checking variants of ATL∗ [Alur et al., 2002].
However, we would get into the same difficulties as for LTL synthesis
mentioned above. Hence, here we follow a different path.

3 FOND Planning with LTLf /LDLf Goals
Following [Geffner and Bonet, 2013], a nondeterministic do-
main is a tuple D = (2F ,A, s0, δ, α) where: F is a set of
fluents (atomic propositions); A is a set of actions (atomic
symbols); 2F is the set of states; s0 is the initial state (initial
assignment to fluents); α(s) ⊆ A represents action precon-
ditions; (s, a, s′) ∈ δ with a ∈ α(s) represents action effects
(including frame assumptions). Such a domain is assumed to
be represented compactly (e.g. in PDDL), hence we consider
the size of the domain as the cardinality ofF , i.e., logarithmic
in the number of states.

Intuitively, a nondeterministic domain evolves as follows:
from a given state s, the agent chooses an action a ∈ α(s),
after which the environment chooses a successor state s′ with
(s, a, s′) ∈ δ. The agent can choose its action based on the
history of states so far (i.e., the agent has full observation).

We now define what it means to solve a planning prob-
lem on D. A trace of D is a finite or infinite sequence
s0, a0, s1, a1, · · · where s0 is the initial state, and ai ∈ α(si)
and si+1 = δ(si, ai) for each si, ai in the trace. A strategy (or
plan) is a partial function f : (2F)+ → A such that for every
u ∈ (2F)+, if f(u) is defined then f(u) ∈ α(last(u)), i.e.,
it selects applicable actions. If f(u) is undefined, we write
f(u) = ⊥. A trace τ is generated by f , or simply an f -trace,
if (i) if s0, a0, · · · si, ai is a prefix of τ then f(s0s1 · · · si) =
ai, and (ii) if τ is finite, say τ = s0, a0, . . . , an−1, sn, then
f(s0s1 · · · sn) = ⊥.

Given a domain D and a LTLf /LDLf goal formula ϕ over
atoms F ∪ A, a strategy f is a strong solution to D for goal
ϕ if every f -trace of D is finite and satisfies ϕ. The FONDunr
problem takes as input D and ϕ, and decides if there exists a
strong solution toD for goal ϕ. In case such a strategy exists,
we are also interested in computing one.

Relationship with reachability goals. In the classical set-
ting the goal has the form 3G, where G is a propositional
formula over atoms F (i.e., the objective is to reach a do-
main state satisfying G). This form of planning has been
thoroughly studied in literature under the name conditional
planning with full observability, e.g., [Rintanen, 2004]. Typ-
ically such plans are represented as conditional trees. Alter-
natively we can compute a universal plan [Schoppers, 1987],
i.e., a memoryless policy that given the current state returns
the action to do. The two kind solutions have the same com-
putational cost, although algorithms for universal plans are
typically less efficient. Note that for reachability goals 3G it
is guaranteed that if a strong solution exists there is one which
is memoryless (i.e., a memoryless policy). This is not true for
general LTLf /LDLf goals, which is why we consider plans to
be (memoryfull) strategies. Solving FONDunr for goals of the
form 3G is known to be EXPTIME-complete in the size of
the domain [Rintanen, 2004].

Automata-theoretic solution. Next, we use automata-
theoretic techniques to solve FONDunr planning for
LTLf /LDLf goals, Algorithm 1 (for simplicity, com-
plexities in parenthesis are wrt explicit representation of
domain D, i.e., in the number of states).

Algorithm 1: FONDunr for LDLf /LTLf goals
Given LTLf /LDLf domain D and goal ϕ

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4730

1: Compute DFA corresponding to D (poly)
2: Compute NFA for ϕ (exp)
3: Determinize NFA to DFA (exp)
4: Compute product with DFA of D (poly)
5: Solve DFA game (poly)
6: Return winning strategy if it exists

The various steps are described in detail below.
Nondeterministic domains as automata. In Step 1 we

transform the nondeterministic domainD = (2F ,A, s0, δ, α)
into an automaton AD recognizing all its traces, defined as
AD = (2F∪A, (2F ∪ {sinit}), sinit, %, F) with: alpha-
bet 2F∪A (actions A include dummy start action); states
2F ∪ {sinit}; initial dummy state sinit; final states
F = 2F (all states of the domain are final); transitions
%(s, [a, s′]) = s′ with a ∈ α(s) and (s, a, s′) ∈ δ, and
%(sinit, [start , s0]) = s0. For convenience we use the no-
tation [a, s′] to stand for {a} ∪ s′. Note that in the automaton
AD we consider actions as further fluents in the alphabet.

A critical observation is that AD is a DFA. This is because
in order to progress, the automaton reads both the action and
its effect. In particular, the nondeterminism in the environ-
ment (which is devilish) is not translated into a nondetermin-
ism in the automaton (which is angelic).
Example 1 Consider the following simplified version of
the classical Yale shooting domain [Hanks and McDermott,
1986], where we have that the turkey is either alive or not and
the actions are either shoot and wait with the obvious effects,
though with a gun that may be faulty. In particular, shooting
with a (supposedly) working gun may either result in killing
the turkey or in the turkey remaining alive and the discovery
that the gun is not working properly. However shooting (with
care) with a gun that does not work properly makes it work
and kills the turkey. The domain D is as follows:

not a
wa,w

shoot

wait wait/shoot

a,
not w

shoot
shoot

Its corresponding DFA AD is:

not a
wa,w

shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
start, a, w

a
not w

shoot, a, not w shoot, not a, w

DFA Game on the product automaton Step 4 of the al-
gorithm forms the DFA AD × Aϕ for the product of AD and
Aϕ (the final states are the product of the final states). Traces
in the product come from D, while the final states are de-
termined by Aϕ. To solve the FONDunr we solve a certain
game (Step 5) on the DFA AD × Aϕ where the objective of
the player is to reach a final state of AD × Aϕ, i.e., a state
that deems the trace from D as satisfying the LTLf /LDLf for-
mula ϕ. Such a game is called a DFA game. Solving such
games amounts to finding an agent strategy that is winning,
i.e., ensures the reachability objective no matter how the envi-
ronment behaves. Before looking at DFA games, we consider
a couple of examples.

Example 2 Continuing our example, consider a standard
reachability goal 3¬a. A corresponding DFA A3¬a is as fol-
lows (actually any reachability goal 3G withG propositional
has an analogous structure):

A3¬a

10

true

not alive

alive

The product DFA is: AD ×A3¬a is:

not a
w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
0 start, a, w

a
not w

0

shoot, a, not w shoot, not a, w

A winning strategy (a plan) is:
init, 0 → start
a, w, 0 → shoot

a,¬w, 0 → shoot
¬a,w, 1 → ⊥

Notice that as this example shows AD and AD × A3G are
identical except for the final states, which for AD × A3G

are only those where G holds. In other words the states are
functionally dependent on those of D and we do not need
additional memory to store them explicitly. This is not the
case for general LTLf /LDLf goals.

Example 3 For the goal 32¬a a corresponding DFA is:

10

not a

not a

a

a

while the product AD ×A32¬a is

not a
w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
0 start, a, w

a
not w

0

shoot, a, not w shoot, not a, w

A winning strategy is:
init, 0 → start
a, w, 0 → shoot

a,¬w, 0 → shoot
¬a,w, 1 → ⊥

One question arises: do we need to determinize the au-
tomaton for the formula in the above construction?3 In fact
we cannot use NFA’s directly, because of a basic mismatch:

– NFA (being based on angelic nondeterminism) have per-
fect foresight, or clairvoyance, while

– strategies must be runnable: depend only on the past, not
the future, and hence can handle only devilish nondeter-
minism.

To see the problem, let’s look again at our example.
Example 4 Let us consider again 32¬a. An NFA for
A32¬a is:

10

not a

not a

true

3After all, for deterministic domains we don’t need to deter-
minize in order to check for the existence of a domain trace that
satisfies an LTLf /LDLf goal [De Giacomo and Vardi, 2013].

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4731

The product AD ×A32¬a is:

not a
w
0

not a
w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
0 start, a, w

a
not w

0

shoot, a, not w shoot, not a, w

wait/shoot,
not a, w

shoot, not a, w

shoot, not a, w

The transition (shoot, not alive, working) may change or not
the NFA A32¬a state to final. If we give this choice to the
environment we give it too much power since it may force
looping in a non-final state forever without realizing that we
have fulfilled our goal. If we give the choice to the agent then
we are giving it clairvoyance, which is unrealistic.

So, before applying the product we need to determinize the
NFA for the LTLf /LDLf formula. Unfortunately the resulting
DFA can be exponential in the NFA, though is not in many
cases (we briefly return to this point in the conclusion).

DFA Games. DFA games have been used for LTLf /LDLf

synthesis [De Giacomo and Vardi, 2015], and seamlessly ap-
ply to our case. For disjoint sets F and A, a DFA game
G = (2F∪A, S, sinit, %, F) has: alphabet 2F∪A; states S; ini-
tial state sinit; partial transition function % : S× 2F∪A → S;
and final states F . The game evolves as follows: from a cur-
rent state s, the agent chooses an action a ∈ A (for which
%(s, [a,E]) is defined for some E), then the environment sets
the fluent values E, and then the game moves to the state
%(s, [a,E]). The evolution ends, and is won by the agent, if
a state of F is reached. A strategy in G is a partial function
f : (2F)∗ → A. We recast the notions of trace and f -trace to
DFA games. A strategy is winning if each f -trace in G starting
in the initial state is finite and terminates in F .

To compute winning strategies in DFA games we define the
universal preimage for a ∈ A, X ⊆ S: PreA(a,X) = {s ∈
S | ∀E ∈ 2F , if s′ = %(s, [a,E]) then s′ ∈ X}. A state
s is in PreA(a,X) if from s and action a, all possible ef-
fects E chosen by the environment result in a state of X . Let
PreC (X) = {s ∈ S : ∃a ∈ A, s ∈ PreA(a,X)}. The
winning region Win of a DFA game G, i.e., states from which
the agent has a winning strategy, is characterized by least-
fixpoint, Win = µX.F ∪ PreC (X), which can be computed
by the following algorithm:

– Win1 = F (the final states of G);
– Wini+1 = Wini ∪ PreC (Wini);
– Win =

⋃
i≤|S|Wini.

Note: computing Win is linear in the number of states of G.
If the initial state sinit is in Win , we can extract a winning

strategy as follows: define ω : Win \ F → 2A as mapping
s ∈ Wini+1 \Wini to the set of all a ∈ A such that s ∈
PreA(a,Wini). Every way of restricting ω(s) to return only
one action (chosen arbitrarily) gives a winning strategy for G.

Correctness. To see that Algorithm 1 is correct, note that
there is a tight correspondence between strategies in D and
strategies in AD × Aϕ. It is straightforward to see that a

strong solution to D corresponds to a winning strategy in the
DFA Game AD ×Aϕ, and vice versa.

Notice that the algorithm for solving DFA games generates
memoryless strategies for the DFA game, which include in the
state the status of the formula. These strategies correspond to
memoryfull strategies in the original domain D (the memory
being the states of the DFA for the goal).

Complexity analysis. For the upper bounds, generate the
states of D explicitly and apply Alg. 1, and for the lower
bounds consider hardness of standard FONDunr [Rintanen,
2004] and LTLf synthesis [De Giacomo and Vardi, 2015]:

Theorem 1 Solving FONDunr for LTLf /LDLf goals is:

– EXPTIME-complete in the size of the domain;
– 2EXPTIME-complete in the size of the goal.

It is interesting to observe that if the goal is a reachability goal
of the form 3G then the cost wrt the goal becomes polyno-
mial (since it amounts to propositional evaluation). Moreover
if for a given LTLf /LDLf goals the determinization step does
not cause a state explosion (which, as mentioned, is often the
case) the complexity wrt the goal is EXPTIME.

4 FOND Planning in Fair Environments
Consider nondeterministic domainsD = (2F ,A, s0, δ, α) (as
before) although now assume a fair environment [Cimatti et
al., 2003; Daniele et al., 1999; Pistore and Traverso, 2001;
Geffner and Bonet, 2013; Sardiña and D’Ippolito, 2015].
Such a system evolves as before except the environment is as-
sumed to satisfy a fairness assumption, which says (roughly
speaking) that if an action a is applied in a state s again and
again, then every possible effect will eventually happen.

Formally, a (finite or infinite) trace τ = s0, a0, s1, a1, . . .
of D is fair if for every (s, a) that occurs infinitely often in τ ,
if (s, a, s′) ∈ δ then also (s, a, s′) occurs infinitely often in τ .
Note, in particular, that every finite trace is fair.

Given a nondeterministic domainD and an LTLf /LDLf for-
mula ϕ, a strategy f is a fair solution in D for goal ϕ if every
fair f -trace of D starting in the initial state is finite and satis-
fies ϕ. Note that strategy f does not impose any constraints
on infinite traces that are unfair.

Relationship with FONDfair for reachability goals. When
the goal is 3G we get the standard form for FONDfair, which
is known to be EXPTIME-complete in the size of the set of
fluents F [Rintanen, 2004]. There is an equivalent defini-
tion of solving FONDfair for reachability goals that can be
expressed in the temporal logic CTL [Daniele et al., 1999;
Pistore and Traverso, 2001; Cimatti et al., 2003]. It captures
the intuition that the agent can ensure that, if the goal has not
yet been reached, then should the environment ever choose
to co-operate, the goal could be reached. Informally, a strat-
egy f is a strong-cyclic solution forG if every state reachable
using f can be extended, again using f , to a terminal state sat-
isfying G. Equivalence between strong-cyclic solutions and
fair solutions is discussed in [Sardiña and D’Ippolito, 2015].

Relationship with Probabilistic Planning. We now show
how to give a probabilistic interpretation to fair solutions.
This connection has been noted for reachability goals [Rin-
tanen, 2004]. A probabilistic domain (including initial state)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4732

is a tuple Dp = (2F ,A, s0, p, α) where: F is a set of flu-
ents (atomic propositions); A is a set of actions; 2F is the set
of domain states; s0 is the initial state (initial assignment to
fluents); ∅ 6= α(s) ⊆ A represents action preconditions (we
assume no dead-ends); and p : 2F × A → Dbn(2F) maps
pairs (s, a) with a ∈ α(s) to a probability distribution on do-
main states. Such a system evolves (forever) as follows: from
a given state s, the agent chooses an action a ∈ α(s), after
which the environment chooses a successor state s′ according
to the distribution p(s, a).

A strategy for a probabilistic domain is a total function
f : (2F)+ → A such that for every u ∈ (2F)+ we have
that f(u) ∈ α(last(u)). A strategy f induces a probability
distribution Prf,Dp

over the set of all infinite traces of Dp

[Puterman, 2005]. Thus, for a measurable set X of infinite
traces, we write Prf,Dp

(X) for the probability of the set of
f -traces in Dp that are in X (all our sets are seen to be mea-
surable). An infinite trace of Dp is fair if for every (s, a)
that occurs infinitely often in τ , if p(s, a)(s′) > 0 then also
(s, a, s′) occurs infinitely often in τ . A strategy is finite-state
if it is induced by a finite-state Moore machine. If f is finite-
state, writing R for the set of fair f -traces of Dp, we have
Prf,Dp

(R) = 1 [Kemeny and Snell, 1976].
We now describe how to translate fair domains to prob-

abilistic domains. Given a FONDfair D define a probabilis-
tic domain Dp as follows: add a fluent done, and an action
win! that has no preconditions, and its effects are to make
the fluent done true; add ¬done to the precondition of ev-
ery other action; replace δ with any probability distribution
p : 2F × A → Dbn(2F) such that p(s, a)(s′) > 0 iff
(s, a, s′) ∈ δ. Given a finite trace τ of D that ends in a state
s, define the infinite trace ext(τ) = τ · (win! · s)ω of Dp.
Observe that ext(τ) is fair in Dp. For a set X of finite traces
of D, define the set ext(X) = {ext(τ) : τ ∈ X} of infinite
traces of Dp.

We say that an infinite trace τ ofDp satisfies an LTLf /LDLf

formula ϕ if τ = ext(τ ′) for some finite trace τ ′ of D, and τ ′
satisfies ϕ. Let [ϕ] denote the set of infinite traces of Dp sat-
isfying ϕ. There is a tight correspondence between strategies
in D and in Dp.

Theorem 2 Let D be a nondeterministic domain, ϕ an
LTLf /LDLf formula, and consider finite-state strategies f in
D and g in Dp that correspond. Then, f is a fair solution to
D for goal ϕ iff Prg,Dp([ϕ]) = 1.

Proof. Left to Right: Suppose f is a fair solution. Let R
be the set of all fair f -traces in D starting in the initial state.
By assumption, all traces in R are finite and satisfy ϕ, thus
ext(R) ⊆ [ϕ]. Let R′ be the set of fair g-traces. By remark
above, Prg,Dp(R′) = 1. Since Prg,Dp(·) is monotone, it
is sufficient to prove that R′ ⊆ ext(R). So, aiming for a
contradiction, let τ ∈ R′ \ ext(R). But τ is an infinite trace
that doesn’t mention win!, and thus (by definition of g,Dp) is
also an f -trace. Moreover, since τ is fair in Dp it is also fair
in D. This contradicts that every fair f -trace in D is finite.

Right to Left: Suppose Prg,Dp
([ϕ]) = 1 and τ is an f -trace

of D starting in the initial state that does not satisfy ϕ. If τ is
finite then Prg,Dp

({ext(τ)}) > 0 contradicting the assump-
tion that Prg,Dp

([ϕ]) = 1. If τ is infinite then τ is also a fair

g-trace in Dp. Thus, it reaches a bottom strongly-connected
component C of the finite-state Markov chain induced by Dp

and g. In no state ofC is done true. Thus, every infinite trace
of Dp that reaches C does not satisfy ϕ. But the probability
of reaching C is non-zero, contradicting Prg,Dp

([ϕ]) = 1.

Along the lines of [Brafman et al., 2018] we can use this
theorem to reduce solving FONDfair with LTLf /LDLf goals to
solving MDPs, i.e., take the product of the DFA Aϕ with Dp

to get an equivalent MDP Aϕ × Dp with reachability goal
G, and use standard MDP planners to decide “almost sure
reachability”, i.e., if there is a policy π ensuring the proba-
bility of reaching G is equal to 1. On the other hand, almost
sure reachability can be solved by a nested fixpoint construc-
tion [de Alfaro et al., 2007], which we use in our automata-
theoretic technique.

Automata-theoretic solution. We give a direct automata-
theoretic technique for solving FONDfair for LTLf /LDLf

(again, complexities are wrt explicit representation of D).

Algorithm 2: FONDfair for LDLf /LTLf goals
Given LTLf /LDLf domain D and goal ϕ
1: Compute DFA corresponding to D (poly)
2: Compute NFA for ϕ (exp)
3: Determinize NFA to DFA (exp)
4: Compute product with DFA of D (poly)
5: Solve fair DFA game (poly)
6: Return winning strategy if one exists

The steps are the same as for FONDunr, except that the result-
ing game is a fair DFA game instead of a DFA game.

Fair DFA Games. A fair DFA game G consists of the same
components as a DFA game (2F∪A, S, sinit, %, F). However,
the notion of winning is different: a strategy f is winning for
the fair DFA game G if every fair f -trace starting in the initial
state terminates in a state of F . The idea for winning such
games is that the agent should remain in a “safe area” from
which it is possible to cooperatively reach the final state.

We already defined the universal preimage, we now define
the existential preimage PreE (a, Y) for a ∈ A and Y ⊆ S
as: {s ∈ S | ∃E ∈ 2F , ∀s′, if s′ = %(s, [a,E]) then s′ ∈
Y }. Let PreAE(X,Y) = {s ∈ S : ∃a ∈ A. s ∈
PreA(a,X) ∩ PreE (a, Y)} and define two nested fixpoints,
a greatest (for safety) and least (for reachability):

Safe = νX.µY.F ∪ PreAE(X,Y).

This gives rise to a nested fixpoint computation: X0 =
S (all states of G); Xi+1 = µY.F ∪ PreAE(Xi, Y);
Safe =

⋂
i≤|S|Xi; where µY.F ∪ PreAE(Xi, Y) is com-

puted as Yi,1 = F ; Yi,j+1 = Yi,j ∪ PreAE(Xi, Yi,j);
Yi =

⋃
j≤|S| Yi,j . Note. Computing Safe is quadratic in

the number of states of G.
We can stratify Safe according to when a state en-

ters the least fixpoint: Reach1 = F , Reachj+1 =
Reachj ∪ PreAE(Safe,Reachj). Note that Safe =
∪j≤|S|Reachj . Define ω : Safe \ F → 2A as mapping
s ∈ Reachj+1 \ Reachj to the set of all a ∈ A such that
∃E.%(s, [a,E])∈Reachj .

Theorem 3 For a state s ∈ S, we have s ∈ Safe iff there is a
winning strategy for the fair DFA game G starting in state s.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4733

Proof (sketch). Left to Right: Let f : Safe \ F → A be
a function, restricting ω(s), i.e., such that f(s) ∈ ω(s). Let
Gf be the DFA formed from G by keeping transitions of the
form (s, [f(s), E], s′), i.e., Gf is the game in which the player
commits to playing f . We use the following properties of
s ∈ Safe: (i) every path from s in Gf is in Safe until it reaches
F , (ii) there is a path from s in Gf that reaches F .

So, let τ be a fair f -trace in G. Then τ is a trace in Gf with
the following property (?): if s, s′ are in the same strongly
connected component of Gf and τ visits s infinitely often
then τ visits s′ infinitely often (indeed, induct on the length
n of the shortest path from s to s′: if n = 0 we are done; if
n > 0 then there is an edge (s, [f(s), E], t) in Gf such that
the length from t to s is < n, but by fairness t is visited in-
finitely often). Thus, τ eventually reaches a bottom strongly
connected component C of Gf (since Gf is finite). By (i) and
(?) C ⊆ Safe , and by (ii) and (?) C ∩ F 6= ∅. Thus, by (?)
the trace τ reaches F , as required.

Right to Left: We can stratify the complement of Safe ac-
cording to when a state is thrown out of the greatest fixpoint.
E.g., if s ∈ X0 \ X1 then there s cannot reach F , and if
s ∈ X1 \X0 then s cannot reach F without the environment
moving to a state that cannot reach F , etc. In other words,
from s 6∈ Safe , no matter what the strategy f is, after finitely
many steps a trace will visit a state from which there is no
path to F . Thus there are fair f -traces that never visit F .

Correctness and complexity analysis. As before, correct-
ness follows from the tight correspondence between strate-
gies in D and strategies in AD × Aϕ. Regarding complex-
ity, our automata-theoretic technique gives us that solving
FONDfair for LTLf /LDLf goals is in EXPTIME wrt the do-
main and 2EXPTIME wrt the goal. These bounds are tight:

Theorem 4 Solving FONDfair for LTLf /LDLf goals is:

– EXPTIME-complete in the size of the domain;
– 2EXPTIME-complete in the size of the goal.

Proof (sketch). It remains to argue the lower bounds.
EXPTIME-hardness wrt the domain comes EXPTIME-
hardness of FONDfair for standard reachability goals. Also,
2EXPTIME-hardness wrt the goal follows from 2EXPTIME-
hardness wrt the goal of FONDunr. Indeed, let D be a non-
deterministic domain and ϕ an LTLf goal. Build a planning
domain D′ which simulates D but has an additional counter
that increases with every action until it reaches 2|F| + 1, at
which point no action is available. Let f be a strong solution
to D. Note that every f -trace visits each state of D at most
once (for otherwise there would be an infinite f -trace). Thus,
f is also a fair solution to D′ for ϕ. Conversely, let g be a
fair solution to D′ for g. Then every fair g-trace is finite and
satisfies ϕ. But all traces of D′ are fair and finite. Thus g is a
strong solution to D.

Actually, we can strengthen this and give lower bounds on
the solution memory:

Theorem 5 Memory for strategies solving FONDunr and
FONDfair for LTLf (and hence LDLf) goals may be required
to be doubly-exponential in the size of the goal.

Proof (sketch). We present the proof for fair solutions (it can
be adapted to strong solutions). Following [Kupferman and
Vardi, 2005; Schewe, 2006], we consider the language Ln:
{{0, 1,#}∗ ·#·w ·#·{0, 1,#}∗ ·$·w ·#·#∗ | w ∈ {0, 1}n}
A word is in Ln iff the suffix of length n that comes after the
$ appears somewhere before the $. The smallest DFA that ac-
cepts Ln has at least 22

n

states [Chandra et al., 1981]. This
is because reaching the marker $, the DFA should remember
the possible set of words in {0, 1}n that have appeared be-
fore. We can specify Ln with an LTLf formula ΦLn

of length
quadratic in n. The formula ΦLn

makes sure that there is only
one $ in the word and that eventually there exists a position
in which # is true and the i-th letter from this position, for
1 ≤ i ≤ n, agrees with the i-th letter after the $, namely:
[¬$U($ ∧ ◦(0 ∨ 1) ∧ ◦2(0 ∨ 1) ∧ · · ·◦n((0 ∨ 1) ∧ ◦2#)]
∧3[# ∧

∧
1≤i≤n(◦i0 ∧2($ ⊃ ◦i0) ∨ ◦i1 ∧2($ ⊃ ◦i1))]

Define a planning domain with actions step,
accept, reject, and fluents Stop, 0, 1,#, $. Initially
¬Stop,¬Accepted,¬Rejected hold. The precondition of
step is ¬Stop, and its nondeterministic effects make one of
0, 1, # $ true (and the rest false) and, simultaneously, either
Stop or ¬Stop. The precondition of accept (resp. reject) is
Stop, and its effect is Accepted (resp. Rejected). The goal is:

(ΦLn
⊃ 3Accepted) ∧ (¬ΦLn

⊃ 3Rejected).

While ¬Stop holds (as it does initially), the only possible
action is step. By fairness, eventually Stop holds and the ac-
tions accept and reject can be used to set either Accepted or
Rejected to be true. The goal requires that if the produced
trace is in Ln (resp. not in Ln) then the agent played accept
(resp. reject). Intuitively, to win, the strategy needs to memo-
rize all possible words of length 2n, hence it cannot be smaller
than 22

n

. In particular, a winning strategy executed in the do-
main becomes a DFA for recognizing Ln but this cannot be
smaller than 22

n

.

5 Conclusions
We conclude by observing that DFA games with or without
fairness can be seen as variants of FONDfair and FONDunr prob-
lems for reachability goals. Hence, heuristics, knowledge and
solvers developed by the planning community for the latter
can immediately be applied. This is a crucial point for effec-
tiveness and scalability of the techniques.

We remark that although the 2EXPTIME bound is high,
in many cases the actual complexity is much smaller, e.g.,
it is polynomial for 3G, i.e., for reachability of a proposi-
tional goalG. Moreover, often the determinization step in the
technique, which is in general exponential, is not needed if
the automaton corresponding to the formula is already deter-
ministic. This is, e.g., the case for the LTLf formulas used
in declarative business process modeling [van der Aalst et
al., 2009], which are Boolean combinations of patterns that
correspond to very small deterministic automata. Also, even
when determinization cannot be avoided, it is often the case
that it does not produce an exponential blow-up as shown in
[Tabakov and Vardi, 2005]. Finally, the experiments in [Ca-
macho et al., 2017b] confirm experimentally actual feasibility
in spite of 2EXPTIME-completeness.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4734

References
[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and

Orna Kupferman. Alternating-time temporal logic. J. of
the ACM, 49(5):672–713, 2002.

[Armoni et al., 2002] Armoni et al. The ForSpec temporal
logic: A new temporal property-specification language. In
TACAS, 2002.

[Bacchus and Kabanza, 2000] Fahiem Bacchus and Frodu-
ald Kabanza. Using temporal logics to express search con-
trol knowledge for planning. Artif. Intell., 116(1-2):123–
191, 2000.

[Baier and McIlraith, 2006] Jorge A. Baier and Sheila A.
McIlraith. Planning with first-order temporally extended
goals using heuristic search. In Proc. of AAAI, 2006.

[Baier et al., 2008] Jorge A. Baier, Christian Fritz, Meghyn
Bienvenu, and Sheila A. McIlraith. Beyond classical plan-
ning: Procedural control knowledge and preferences in
state-of-the-art planners. In AAAI, 2008.

[Brafman et al., 2018] Ronen I. Brafman, Giuseppe De Gia-
como, and Fabio Patrizi. LTLf /LDLf non-markovian re-
wards. AAAI, 2018.

[Camacho et al., 2017a] Alberto Camacho, Oscar Chen,
Scott Sanner, and Sheila A. McIlraith. Non-markovian re-
wards expressed in LTL: guiding search via reward shap-
ing. In SOC, pages 159–160, 2017.

[Camacho et al., 2017b] Alberto Camacho, Eleni Triantafil-
lou, Christian Muise, Jorge A. Baier, and Sheila McIl-
raith. Non-deterministic planning with temporally ex-
tended goals: LTL over finite and infinite traces. In AAAI,
2017.

[Chandra et al., 1981] A. K. Chandra, D. C. Kozen, and L. J.
Stockmeyer. Alternation. J. of the ACM, 28(1), 1981.

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore,
Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Arti-
ficial Intelligence, 1–2(147), 2003.

[Daniele et al., 1999] Marco Daniele, Paolo Traverso, and
Moshe Y. Vardi. Strong cyclic planning revisited. In ECP,
pages 35–48, 1999.

[de Alfaro et al., 2007] Luca de Alfaro, Thomas A. Hen-
zinger, and Orna Kupferman. Concurrent reachability
games. Theor. Comput. Sci., 386(3):188–217, 2007.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI, 2013.

[De Giacomo and Vardi, 2015] Giuseppe De Giacomo and
Moshe Y. Vardi. Synthesis for LTL and LDL on finite
traces. In IJCAI, 2015.

[Eisner and Fisman, 2006] Cindy Eisner and Dana Fisman.
A practical introduction to PSL. Springer, 2006.

[Fogarty et al., 2013] Seth Fogarty, Orna Kupferman,
Moshe Y. Vardi, and Thomas Wilke. Profile trees for
Büchi word automata, with application to determinization.
In GandALF, 2013.

[Fritz and McIlraith, 2007] Christian Fritz and Sheila A.
McIlraith. Monitoring plan optimality during execution.
In ICAPS, 2007.

[Geffner and Bonet, 2013] Hector Geffner and Blai Bonet. A
Coincise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool, 2013.

[Gerevini et al., 2009] Alfonso Gerevini, Patrik Haslum,
Derek Long, Alessandro Saetti, and Yannis Dimopoulos.
Deterministic planning in the fifth international planning
competition: PDDL 3 and experimental evaluation of the
planners. Artificial Intelligence, 173(5-6):619–668, 2009.

[Ghallab et al., 2004] Malik Ghallab, Dana S. Nau, and
Paolo Traverso. Automated planning – Theory and Prac-
tice. Elsevier, 2004.

[Hanks and McDermott, 1986] Steve Hanks and Drew V.
McDermott. Default reasoning, nonmonotonic logics, and
the frame problem. In AAAI, 1986.

[Kemeny and Snell, 1976] John G. Kemeny and James Lau-
rie Snell. Finite markov chains, undergraduate texts in
mathematics. Springer, 1976.

[Kupferman and Vardi, 2005] Orna Kupferman and
Moshe Y. Vardi. From linear time to branching time.
ACM Trans. Comput. Log., 6(2):273–294, 2005.

[Pistore and Traverso, 2001] Marco Pistore and Paolo
Traverso. Planning as model checking for extended goals
in non-deterministic domains. In IJCAI, 2001.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of a reactive module. In POPL, 1989.

[Puterman, 2005] Martin L. Puterman. Markov Decision
Processes: Discrete Stochastic Dynamic Programming.
Wiley, 2005.

[Rabin and Scott, 1959] Michael O. Rabin and Dana Scott.
Finite automata and their decision problems. IBM J. Res.
Dev., 3:114–125, April 1959.

[Rintanen, 2004] Jussi Rintanen. Complexity of planning
with partial observability. In ICAPS, 2004.

[Sardiña and D’Ippolito, 2015] Sebastian Sardiña and
Nicolás D’Ippolito. Towards fully observable non-
deterministic planning as assumption-based automatic
synthesis. In IJCAI, 2015.

[Schewe, 2006] Sven Schewe. Synthesis for probabilistic en-
vironments. In ATVA, 2006.

[Schoppers, 1987] Marcel J. Schoppers. Universal plans for
reactive robots in unpredictable environments. In IJCAI,
1987.

[Tabakov and Vardi, 2005] Deian Tabakov and Moshe Y.
Vardi. Experimental evaluation of classical automata con-
structions. In LPAR, 2005.

[van der Aalst et al., 2009] W. van der Aalst, M. Pesic, and
H. Schonenberg. Declarative Workflows: Balancing Be-
tween Flexibility and Support. Computer Science - R&D,
23(2):99–113, 2009.

[Vardi, 2011] Moshe Y. Vardi. The rise and fall of linear time
logic. In GandALF, 2011.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4735

