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SUMMARY
We consider the task-oriented modeling of the differential
kinematics of nonholonomic mobile manipulators (NMMs).
A suitable NMM Jacobian is defined that relates the available
input commands to the time derivative of the task variables,
and can be used to formulate and solve kinematic control
problems. When the NMM is redundant with respect to
the given task, we provide an extension of two well-known
redundancy resolution methods for fixed-base manipulators
(Projected Gradient and Task Priority) and introduce a
novel technique (Task Sequencing) aimed at improving
performance, e.g., avoiding singularities. The proposed
methods are applied then to the specific case of image-based
visual servoing, where the NMM image Jacobian combines
the interaction matrix and the kinematic model of the mobile
manipulator. Comparative numerical results are presented for
two case studies.

KEYWORDS: Mobile manipulators; Visual servoing;
Kinematic control; Redundancy resolution.

1. Introduction
A mobile manipulator consists of an articulated arm mounted
on a mobile platform. Since this mechanical arrangement
combines the dexterity of the former with the workspace
extension of the latter, it is clearly appealing for many
applications, and, in particular, for service robotics.1,2 The
locomotion of the platform is typically obtained through
wheels; however, legs (as in walking robots) or gas-jet
actuators (for free-flying space robots) are also used. In
this paper, we shall focus on the case of wheeled mobile
manipulators.

Most wheeled vehicles are subject to nonholonomic con-
straints arising from the rolling without slipping of the wheels
on the ground.3 These constraints restrict the admissible
generalized velocities and thus the instantaneous mobility
of the platform, but do not affect the global accessibility of
its configuration space, which is still guaranteed through
suitable maneuvering with a reduced set of independent
velocity commands (the so-called pseudovelocities). On
the other hand, fixed-base manipulators are kinematically
unconstrained systems, in that arbitrary joint velocities can
be imposed at each configuration; at the end-effector level, a
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loss of instantaneous mobility is only experienced at singular
configurations.

A nonholonomic mobile manipulator (NMM) is obtained
when the platform providing mobility to the manipulator base
is a nonholonomic vehicle. The resulting structure clearly
inherits the constraint on the admissible platform velocities—
instantaneous mobility in the configuration space is still
limited. However, the number of degrees of freedom (dofs) is
also increased, typically yielding kinematic redundancy with
respect to standard tasks, such as end-effector placement.
This means that in general the instantaneous mobility is not
constrained at the task level, in spite of the nonholonomic
nature of the system. Moreover, the extra dofs can be used
to optimize performance criteria and/or to perform auxiliary
operations in addition to the primary task.

The study of task-oriented differential kinematics of
NMMs has been addressed in the literature following two
basic approaches. The first is simply to add the nonholonomic
constraints to the relationship between the task velocities
and the NMM generalized velocities, resulting in an implicit
kinematic model that focuses on the instantaneous loss of
mobility.4,5 Alternatively, we have proposed in ref. [6] a
more efficient formulation that explicitly maps the available
command inputs (platform pseudovelocities and manipulator
joint velocities) to the achievable task velocities; see also
refs. [7, 8].

There are two conceptually different problems that can be
formulated on the basis of the NMM differential kinematics.
The first is kinematic inversion, i.e., generating velocity
commands that realize an assigned task trajectory, provided
that the initial task error is zero. If the NMM is kinematically
redundant with respect to a given task, a redundancy
resolution problem has to be addressed, which can be solved
by appropriately extending techniques originally proposed
for fixed-base manipulators.9 The resulting methods are
based either on task space augmentation4,10,11 or on local
optimization of cost functions.6,12

Similarly to what is done for single-body mobile robots
or fixed-base manipulators, the second use of the NMM
differential kinematics is to devise kinematic control
schemes. In this framework, the velocity commands are
actually considered as control inputs, and they are designed
so as to achieve trajectory tracking or set-point regulation at
the task level by combining a feedforward and a feedback
action. The presence of the latter allows to recover nonzero
initial task errors as well as counteract model perturbations,
including numerical drifts.
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The separation between kinematic and dynamic issues
entailed by kinematic control approaches is based on
the idea that, for a fully actuated mechanical system,
any differentiable velocity profile can be realized by an
appropriate force/torque controller. It is, therefore, possible
to first design velocity commands on the basis of the
differential kinematic model, and then compute (e.g., by
feedback linearization and backstepping13) the dynamic-
level inputs that track these commands. Under the assumption
that the momentum of the mobile manipulator is limited (i.e.,
its velocity and/or inertia are low), this decoupled approach
will typically result in reasonable actuator demands. In the
presence of kinematic redundancy, it is also possible to
include the optimization of dynamic performance criteria
within a kinematic control problem, e.g., see ref. [14].

When robots operate in unstructured environments (as
can be expected for mobile manipulators), it is essential
to include exteroceptive sensory information in the control
loop. In particular, the use of visual feedback from an
onboard camera guarantees accurate positioning, robustness
to calibration uncertainties, and reactivity to environmental
changes.15,16 A powerful approach is represented by visual
servoing, i.e., the specification of a robotic task in terms of
image features extracted from a target object and their use for
controlling the robot/camera motion through the scene. Two
basic approaches have been proposed to deal with visual
tasks, namely position-based visual servoing (PBVS) and
image-based visual servoing (IBVS).16,17

In PBVS, the image features are processed in order to
estimate the relative 3D pose between the camera and the
target, which is then used as an error signal for controlling
the motion of the robot/camera system toward its desired
goal.18 In IBVS, the error is directly computed in terms of
the features, whose motion on the image plane is related to
the velocity twist of the camera via the interaction matrix.
The advantages of IBVS over PBVS are the following:
(i) a 3D model of the target is not needed; (ii) performance
is robust with respect to perturbations of the robot/camera
models, in particular, to calibration errors19; (iii) it is easier
to devise feature-based motion strategies aimed at keeping
the target always in the field of view of the camera.20

However, there are also some drawbacks to be considered.
Apart from situations where the interaction matrix loses rank
during the motion, local minima of the task error function21

may be encountered when trying to impose an (unfeasible)
independent motion to a large number of image features.22

Moreover, the feature depths are unknown in a pure IBVS
setting, and must be estimated during servoing in order to
compute the interaction matrix (a common choice is to simply
use their constant value at the desired pose). Thus, only local
stability can be guaranteed for most IBVS schemes.23

To alleviate some of the above problems, a number
of hybrid schemes have been recently proposed.24−26 In
these methods, 3D information (usually obtained from
epipolar geometry) is used to control a subset of the camera
configuration vector, while the remaining dofs are regulated
through an IBVS scheme.

In most works on visual servoing it is assumed, sometimes
implicitly, that the camera has full mobility, which means that
its velocity twist may be arbitrarily specified at nonsingular

configurations (see, e.g., refs. [20, 27]). The visual servoing
problem is usually formulated and solved in terms of the
camera motion, which is then executed by the robot arm.
However, this strategy may not be convenient in general,
and, in particular, for two conceptually opposite cases. The
first is when the dimension of the visual task exceeds the
motion dofs of the camera, e.g., when a 6-dimensional task
is specified for a camera/robot system having less than 6
dofs. In this case, a solution that directly relates feature
velocities to the actual dofs of the robot and solves the
visual servoing problem at that level is computationally
more advantageous. For instance, this is what has been
done for nonholonomic mobile robots with an onboard
fixed camera in ref. [28]. The second case occurs when the
visual task is underdimensioned with respect to the camera
dofs, so that there are an infinity of camera motions which
achieve the task. In addition, the robot manipulator may
be itself redundant for the camera positioning task. This
distributed redundancy is better exploited in an integrated
way at the level of the robot dofs, where it can be effectively
used for optimizing configuration-dependent criteria, such as
singularity indices, distance from obstacles, or dynamic cost
functions.

As a result, with the exception of special situations (6-dof
robots executing 6-dimensional tasks), the visual servoing
problem should be addressed in terms of velocity commands
to the robot, as opposed to the camera velocity twist. This
is particularly true for NMMs, which typically possess a
redundant number of dofs with respect to the required
task. Since the nonholonomy of the platform implies that
there are less velocity commands available than generalized
coordinates, the concept of redundancy should be properly
defined. In the literature, these aspects have been rarely
considered; one exception is ref. [29], where the case of
a car-like robot carrying a 3R manipulator with a camera
mounted on the end-effector was considered. While that work
shares the same formulation as ours, it differs in the fact that
kinematic redundancy is not addressed.

In this paper, the general class of NMMs is considered.
Along the lines of ref. [6], we first introduce a task-oriented
differential kinematic model which maps the robot velocity
commands to the task velocities and can therefore be used for
kinematic inversion as well as kinematic control (Section 2).
Based on the introduced NMM Jacobian and with reference
to the case of kinematic redundancy, we revisit classical
inversion/control techniques such as the Projected Gradient
(PG) and the Task Priority (TP) methods9,30, and present
a novel Task Sequencing (TS) strategy, which introduces
an additional “artificial” redundancy in the control problem
(Section 3). The proposed framework is then applied in
Section 4 to the case of visual tasks for NMMs carrying
a camera on the end-effector of the arm (eye-in-hand
configuration). In particular, by defining the image features
as task variables, we compute the NMM image Jacobian
and show that it does not depend on the mobile platform
configuration — a relevant property which allows us to
design IBVS schemes based on the previous kinematic
control developments. Essential to this step is also the
use of a recently developed online estimation algorithm
for the feature depths.31 The design methodology and the
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performance of the resulting IBVS schemes are illustrated
with two case studies, by considering a two-wheeled
differentially-driven platform (with unicycle kinematics)
carrying, respectively, a 3R (elbow-type) and a 2R (polar)
manipulator arm with an eye-in-hand camera (Section 5).

2. Kinematic Modeling of NMMs
Consider a robotic system made of a nonholonomic mobile
platform carrying a manipulator. Let the configuration
vector be q = [qT

p qT
m]T, where qp ∈ R

np and qm ∈ R
nm are

the generalized coordinates of the platform and of the
manipulator, respectively. Assume that the task is described
in terms of a vector r of s scalar variables. Possible choices for
r include the position/orientation of the NMM end-effector in
a positioning task, or the location of image features in a visual
task. The task variables r are related to the configuration
variables q of the NMM by the kinematic map

r = f (qp, qm), r ∈ R
s . (1)

The kinematic model of the nonholonomic mobile platform
can be expressed as the driftless system

q̇p = G(qp)up, up ∈ R
p, p < np, (2)

where up are the platform velocity commands (pseudove-
locities) and the columns of G(qp) span the admissible
velocity space at each platform configuration. On the other
hand, the manipulator arm is a kinematically unconstrained
system, i.e., vector q̇m can be arbitrarily specified at any arm
configuration. Thus, we set

q̇m = um, um ∈ R
nm, (3)

where um are the manipulator joint velocity commands.
By differentiating Eq. (1) w.r.t. time, and using Eq. (2), we

get

ṙ = ∂f

∂qp
q̇p + ∂f

∂qm
q̇m = Jp(q)G(qp)up + Jm(q)um

= [Jp(q)G(qp) Jm(q)]

[
up

um

]
= J (q)u, (4)

where u = [uT
p uT

m]T ∈ R
p+nm . Equation (4) is the task-

oriented kinematic model of the NMM, relating the
instantaneous mobility of whole mobile manipulator to the
velocity of the task variables. The s × (p + nm) matrix J in
Eq. (4) will be simply referred to as the NMM Jacobian for the
given task. However, strictly speaking, some elements of J

are not partial derivatives, due to the nonholonomic constraint
entailed by Eq. (2). Note that, due to the nonholonomy of the
platform, the total number of available commands is always
less than the number of the NMM generalized coordinates.

The operational advantage of this formulation is that
J can be used just as a standard Jacobian matrix in all
classical problems addressed for fixed-base manipulators,
like kinematic inversion, singularity analysis, or kinematic

control. Hereafter, we shall focus on the latter — see ref. [6]
for an overview of other problems.

3. Kinematic Control for NMMs
Assume that a reference signal rd is specified for the task
variables r . If rd = rd (t), one has a tracking problem,
whereas a regulation problem is assigned when rd is
constant. In the following, we shall use u as the control
input for the NMM, assuming that low-level (direct)
controllers are in charge of imposing the corresponding
velocities to the platform/manipulator system, complying
at a fast scale with the NMM dynamics—a classical
approach known as kinematic control. Therefore, we design
kinematic control laws using the task-oriented differential
kinematics (4), which should now be viewed as the input–
output representation of a driftless control system.

3.1. The nonredundant case
Consider first the case p + nm = s, in which the NMM
Jacobian is square. Outside singularities, we can realize any
task velocity by setting

u = J−1(q)ṙ . (5)

The problem reduces then to choosing ṙ in such a way that
the control problem is solved.

For a tracking problem, one simply sets in Eq. (5)

ṙ = ṙd + K(rd − r) = ṙd + Ke, (6)

where K > 0 is a (diagonal) gain matrix and e ∈ R
s is the

task error. For a regulation problem, where ṙd = 0, we let

ṙ = Ke. (7)

In both cases, the closed-loop system is described by

ė = −Ke, (8)

so that exponential convergence to zero is achieved for each
component of the task error.

For regulation tasks, it is also possible to use, in place of
Eqs. (5) and (7), the computationally lighter expression

u = J T(q)Ke, (9)

which still guarantees asymptotic (but no longer exponential)
convergence of the task error to zero.32

3.2. The redundant case
Assume now that p + nm > s, so that the NMM Jacobian
matrix has more columns than rows. Since the number of
velocity commands (i.e., of dofs) exceeds the dimension of
the task, we say that the NMM is kinematically redundant
with respect to the given task.1 To compute velocity

1 One may also define a static redundancy property, which occurs
when the number of generalized coordinates of the NMM exceeds
the dimension of the task (np + nm > s). Clearly, due to the



134 Image-based visual servoing schemes

commands u that realize a given task velocity ṙ , it is
possible to extend redundancy resolution methods originally
developed for standard manipulators9, using the NMM
Jacobian in Eq. (4) as a starting point.

In the classical Projected Gradient (PG) method, all
solutions of Eq. (4) are expressed as

u = J †(q)ṙ + (I − J †(q)J (q))u0, (10)

where J † is the unique pseudoinverse of the NMM Jacobian,
I − J †J is the orthogonal (and symmetric) projection
operator into the null-space of J , N (J ), and u0 ∈ R

p+nm

is an arbitrary vector usually chosen so as to optimize a
given criterion H (q). In general, J † can be computed from
the Singular Value Decomposition of J . If rank (J ) = s, it is
J † = J T (JJ T )−1.34

In Eq. (10), we shall use again Eq. (6) or, respectively,
Eq. (7), depending on the tracking or regulation nature of the
problem. The closed-loop system will be described as before
by the task error dynamics ė = −Ke, with the additional
presence of an internal dynamics which is unobservable at
the output level, i.e., in the task space.

For fixed-base manipulators, q̇ and u coincide, and one
can directly set u0 = ±α∇qH (q) in Eq. (10), where α > 0
is a suitable stepsize in the direction of the gradient of H .
Care is required when devising a similar scheme in the NMM
case, because the available command vector u has a lower
dimension than q̇. By differentiating H (q) w.r.t. time and
using Eqs. (2–3), we have

Ḣ = ∂H (q)

∂qp
G(qp)up + ∂H (q)

∂qm
um

= ∇T
q H (q)

[
G(qp) 0

0 I

] [
up

um

]
.

Therefore, the choice of u0 that locally realizes the best
improvement of H (q) is

u0 = ± α

[
GT(qp) 0

0 I

]
∇qH (q). (11)

In the neighborhood of singular points of the NMM
Jacobian, the use of the PG method (10) may result in very
high velocity commands which cannot be realized by the low-
level actuator controllers. One way to deal with this problem
is to use the Task Priority (TP) technique.30 The idea is to
reorder the task vector r into µ subtasks (r1, . . . , rµ), each of
dimension si (i = 1, . . . , µ, with

∑
si = s), and to consider

ri as a task with higher priority than rj if i < j . This is
associated to a task-oriented partition of the NMM Jacobian

nonholonomy of the system, kinematic redundancy implies static
redundancy but the opposite is not true. Static redundancy in NMMs
is relevant, e.g., when searching for collision-free configurations in
motion planning problems with obstacles.33

in Eq. (4) of the form⎡⎢⎣ ṙ1
...

ṙµ

⎤⎥⎦ =

⎡⎢⎣J1(q)
...

Jµ(q)

⎤⎥⎦ u.

The TP method is formulated in such a way that, whenever J

is rank deficient, the lowest priority tasks are relaxed while
correctly executing those with highest priority.

For illustration, consider a regulation problem in which
the task r is partitioned in µ = 2 subtasks:[

ṙ1

ṙ2

]
=

[
J1(q)
J2(q)

]
u. (12)

By solving the first set of s1 equations, we get

u = J
†
1 ṙ1 + (I − J

†
1 J1)u0, (13)

where ṙ1 = K1(r1d − r1) = K1e1, with K1 > 0. If rank J1 =
s1 throughout the motion, Eq. (13) ensures that the primary
task variables r1 converge exponentially to their desired
values. The auxiliary command u0 can be chosen so as to
minimize the weighted norm of the secondary task error, i.e.,
the scalar function

H2(q) = 1

2
eT

2 K2e2 = 1

2
(r2d − r2)TK2(r2d − r2), K2 > 0.

(14)

The time derivative of Eq. (14) is

Ḣ2 = −eT
2 K2ṙ2 = −eT

2 K2J2u

= −eT
2 K2J2J

†
1 K1e1 − eT

2 K2J2(I − J
†
1 J1)u0.

By using the symmetry of I − J
†
1 J1, we conclude that the

choice

u0 = (I − J
†
1 J1)J T

2 K2e2 (15)

provides the maximum reduction of H2, subject to the
satisfaction of the primary task. By plugging Eq. (15) into
Eq. (13), and using the idempotency of I − J

†
1 J1, we can

write the TP kinematic control law as

u = J
†
1 K1e1 + (I − J

†
1 J1)J T

2 K2e2. (16)

The generalization of Eq. (16) to tracking problems is
straightforward but computationally more cumbersome.9

Different options for interchanging transpose and
pseudoinverse of the involved Jacobians and the convergence
properties of the associated schemes have been considered
in ref. [30].

3.3. Task sequencing for regulation problems
For regulation problems, an alternative way to drive all
the task variables to their set-points is to follow a Task
Sequencing (TS) approach. The idea is to process the µ
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subtasks one at a time. The s1 subtask variables r1 are
regulated first, then the s2 subtask variables r2 are driven
toward their desired value without changing r1, then the
s3 subtask variables r3 are brought to their desired value
without changing r1 and r2, and so on. With this approach, an
“artificial” redundancy is introduced in the kinematic control
process: in particular, the degree of redundancy during the
execution of the sequence will be p + nm − s1 in the first
phase, p + nm − (s1 + s2) in the second phase, and so on.
In the last phase, the redundancy degree will be back to its
(possibly zero) original value p + nm − s ≥ 0. This method
applies to NMMs that are either redundant or nonredundant
w.r.t. the task.

Consider for simplicity the case of µ = 2 subtasks, and
assume p + nm = s = s1 + s2, i.e., the nonredundant case
for the global task. Define the two-phase task sequence⎧⎪⎨⎪⎩

ṙI = ṙ1 = K1e1, t ∈ [0, T1]

ṙII =
[

0
ṙ2

]
=

[
0

K2e2

]
, t ∈ [T1, T2],

where Ti (i = 1, 2) denotes the time of completion of task
i, i.e., such that a suitable termination condition is reached.2

This leads to the kinematic control scheme{
uI = J

†
1 K1e1 + (I − J

†
1 J1)u0, t ∈ [0, T1]

uII = (I − J
†
1 J1)J T

2 K2e2, t ∈ [T1, T2],
(17)

where u0 can be chosen as in Eq. (11) for optimization
purposes.

In this basic version, the first task variable r1 is no longer
controlled during the second phase, so that its value may
drift, e.g., due to linearization errors (recall that we are using
the Jacobian matrix which is a mapping between tangent
spaces). One way to counteract this effect is to replace the
second-phase control law in Eq. (17) with

uII = (I − J
†
1 J1)J T

2 K2e2 + J
†
1 K1e1, t ∈ [T1, T2],

i.e., by adding a feedback term aimed at rejecting
perturbations on e1. This second phase of the TS approach
becomes then identical to the TP method (16), with the
notable difference that e1 is already very small as a result
of the first phase.

The extension these formulas to the case µ > 2 and/or
p + nm > s (redundant case) is straightforward. It is also
easy to prove that the TS strategy guarantees convergence of
the task variables to their set-point (within an arbitrarily small
tolerance), provided that the Jacobian of stacked subtasks
J̄i = [J T

1 J T
2 . . . J T

i ]T has full rank during the ith phase of the
sequence.

The potential advantage of the TS kinematic control
strategy over the classical approach which tries to drive all
task variables simultaneously to their set-point rests on the

2 For instance, the termination condition ||rid − ri(Ti)|| < ε, for a
given ε > 0, will result in an arbitrarily small final error. Finite-
time convergence to the set-point can be easily obtained by using a
terminal controller35 to define each phase of the task sequence.

artificial redundancy introduced in all but the last phase of the
sequence. This can be used to optimize performance indices,
and, in particular, to stay away from singular configurations
(see Section 5.2). Finally, we mention that a somewhat related
TS concept has been proposed in ref. [36], where a layered
controller architecture reactively builds and executes a stack
of subtasks arising as part of a given (visual) task.

4. Image-Based Visual Servoing for NMMs
We apply next our approach to the particular case of visual
tasks, leading to an IBVS method for NMMs. For this, we
recall first the common modeling assumptions of pin-hole
cameras.

4.1. Camera model
With reference to Fig. 1, consider a world reference frame
FO : {O;

−→
X O,

−→
Y O,

−→
Z O} and the moving frame FC :

{OC;
−→
X C,

−→
Y C,

−→
Z C} associated to a pin-hole camera, with

ZC coincident with the camera optical axis. The image
plane, perpendicular to the optical axis, lies at a distance
λ (the focal length) from OC, and is endowed with a 2D
reference frame FI : {OI ; −→u , −→v } with axes parallel to

−→
X C

and
−→
Y C, respectively. In the following, we will assume that

all quantities are expressed in the camera frame FC, unless
otherwise stated.

An image feature is any real-valued quantity associated to a
selected geometric primitive (e.g., the coordinates of a point,
the area of an ellipse, the angular coefficient of a line, etc.)
in the image plane. Given a generic vector of features f ∈ R

k ,
the velocity twist [V T

c ωT
c ]T ∈ R

6 of the camera (expressed
in its own frame) is mapped to ḟ by a k × 6 matrix Jf (f, χ)
called the interaction matrix

ḟ = Jf (f, χ)

[
Vc

ωc

]
,

where χ is a vector representing 3D information associated
to f . It is possible to determine the interaction matrix for
many features of interest, see ref. [15] for the case of
lines, planes, and circles, and refs. [37, 38] for the set of
image moments. In the case of a 3D point feature P with

XO

YO

ZO

XC

YC

u
v P

p

optical axis

O

projection ray

image plane
OI

ZC

OC

Fig. 1. World and camera frame definitions.
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homogeneous coordinates P̄ = [X Y Z 1]T, its projection
in the image plane is a 2D point feature p with homogeneous
normalized coordinates p̄ = [p̄u p̄v 1]T = [X/Z Y/Z 1]T.
The corresponding coordinates in pixels are denoted as
p̃ = [p̃u p̃v 1]T = Ap̄, where A is a nonsingular matrix
containing the camera internal parameters, i.e.,

A =
⎡⎣λku −λku/ tan δ u0

0 λkv/ sin δ v0

0 0 1

⎤⎦ ,

with [u0 v0]T the coordinates of the principal point (in pixels),
λ the focal length (in meters), ku and kv the magnifications
in the −→u and −→v directions (in pixel/meters), and δ the
angle between these axes. Assuming that matrix A is known,
i.e., that the camera internal parameters are calibrated, it
is possible to transform the measured point p̃ back to
p̄ = A−1p̃. In this ‘normalized’ space it is easy to derive
the expression of the interaction matrix for a single point
feature (see ref. [16] for an explicit derivation):

[
˙̄pu

˙̄pv

]
=

⎡⎢⎣− 1

Z
0

p̄u

Z
p̄up̄v − (

1 + p̄2
u

)
p̄v

0 − 1

Z

p̄v

Z
1 + p̄2

v −p̄up̄v −p̄u

⎤⎥⎦[
Vc

ωc

]

= Jf (p̄, Z)

[
Vc

ωc

]
. (18)

Note that, in the case of a point feature, the 3D information
included in vector χ reduces simply to the point depth
Z, which is an unknown parameter in the classical IBVS
framework. In view of this, many proposed servoing schemes
rely on some approximation of the actual value of Z (e.g.,
the constant value at the desired pose Zd ). Alternatively, we
propose in ref. [31] an online algorithm for estimating Z

during motion under the assumption that the target is fixed.
In particular, by taking x̂ = [p̂u p̂v 1/Ẑ]T as the current
estimation of the partially unknown state x = [p̄u p̄v 1/Z]T

and y = [p̄u p̄v]T as the measured output on the image plane,
the update law takes the form of a nonlinear observer

˙̂x = α(̂x, y)

[
Vc

ωc

]
+ β (̂x, y, Vc, ωc), (19)

where suitable α(·) and β(·) guarantee that ||x(t) − x̂(t)||
goes to zero exponentially, as long as the camera is moving
with a nonzero linear velocity Vc. Thanks to this result, we
will assume that the actual value of Z of each point feature is
reconstructed online and made available during the servoing
task.

4.2. Visual servoing tasks
We formulate the image-based visual servoing problem for
an NMM by choosing as task variables r the vector f =
[p̄u1 p̄v1 . . . p̄uk p̄vk]T ∈ R

2k of the coordinates of k point
features in the image plane. Therefore, the task dimension is
s = 2k.

The NMM image Jacobian Jimage (ie., the differential
mapping between the velocity commands u and the features

velocity ḟ at a given robot configuration) is simply the
specific Jacobian of this task in Eq. (4). However, the
computation is simplified by observing that

Jimage = JvJc, (20)

where:

– the 6 × (p + nm) matrix Jc gives the linear and angular
velocity pair (Vc, ωc) of the camera mounted on the end-
effector, in response to the NMM commands u[

Vc

ωc

]
= Jc(q)u;

– the 2k × 6 interaction matrix Jv is the stack of k Jacobians
Jf of the form (18), each one accounting for one point
feature

ḟ = Jv(f, Z)

[
Vc

ωc

]
=

⎡⎢⎣Jf1 (f1, Z1)
...

Jfk
(fk, Zk)

⎤⎥⎦ [
Vc

ωc

]
, (21)

being Z = [Z1 . . . Zk]T ∈ R
k the vector of the depths

associated to the k feature points.

4.2.1. Derivation of Jc. For a fixed-base manipulator arm,
the pair (Vc, ωc) is related to q̇ through the geometric (basic)
Jacobian Jg .32 For an NMM, this velocity twist is obtained
from a suitable camera-oriented NMM Jacobian Jc according
to the method of Section 2. In the eye-in-hand case, the
velocity twist of the camera coincides with the linear and
angular velocity of the NMM end-effector.

Hence, we choose the six-dimensional intermediate task
vector

rc = [tx ty tz φ1 φ2 φ3]T = [tT(q) φT(q)]T, (22)

describing the position and orientation of the camera w.r.t.
FO , where φ represents a minimal parametrization of the
camera orientation by Euler angles. Similarly to Eq. (4), we
can compute the linear and angular velocity of the NMM
end-effector by[

V

ω

]
=

[
I 0
0 T (φ)

] [
ṫ

φ̇

]
=

[
I 0
0 T (φ)

] [
JtpG Jtm

JφpG Jφm

]
u,

(23)

where T (φ) is the transformation matrix between φ̇ and the
camera angular velocity ω, and Jtp = ∂t/∂qp, Jtm = ∂t/∂qm,
Jφp = ∂φ/∂qp, Jφm = ∂φ/∂qm. By means of the rotation
matrix Rc, representing the orientation of FC with respect to
FO , the pair (V, ω) is then expressed in the camera frame
FC. We get[

Vc

ωc

]
=

[
RT

c (q) 0
0 RT

c (q)

] [
I 0
0 T (φ)

]
[
Jtp(q)G(qp) Jtm(q)

Jφp(q)G(qp) Jφm(q)

]
u = Jc(qm)u. (24)
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It is worth noting that the Jacobian Jc does not depend
on the platform absolute position/orientation qp, but only
on the manipulator variables qm. The proof of this property,
reported in the Appendix, exploits the fact that the velocity
twist (Vc, ωc) of the camera is expressed in the moving
camera frame, and it would not hold if other reference frames
were used (e.g., world or platform frames). As a result, the
computation of Jc(qm) is independent of the mobile base
absolute localization, which is typically obtained from noisy
and possibly unreliable data processing algorithms (such as
dead-reckoning). Examples of Jc are given in Section 5.

4.2.2. NMM image Jacobian. The final NMM image
Jacobian is the 2k × (p + nm) matrix obtained by combining
Eqs. (21) and (24) as

ḟ = Jv(f, Z)Jc(qm)u = Jimage(f, Z, qm)u. (25)

Note that the absolute position/orientation of the platform
is still encoded in the values of f and Z upon which Jv

depends. However, as explained in Section 4.1, f is measured
directly on the image plane and Z is obtained from the
processing of visual cues, see Eq. (19). Thus, the platform
configuration qp is completely removed from our control
problem. Once the NMM image Jacobian is available, any
of the kinematic control methods presented in Section 3
can be used to fulfill visual servoing tasks assigned to the
NMM.

Some additional considerations on the singularities of
Jimage are in order. Even when both Jv and Jc are full rank
(which is usually the case), matrix Jimage may still be ill-
conditioned, i.e., its smallest singular value may be very close
to zero. In this case, a motion generation scheme based on
inversion or pseudoinversion would require extremely large
velocities in response to small task errors.

The NMM image Jacobian can actually lose rank when
g = dimR(Jc) − dim(R(Jc) ∩ N (Jv)) < 2k, R(Jc) being
the range space of matrix Jc. When this condition is
encountered, it is not possible to impose an arbitrary
(controlled) motion to all features on the image plane, but
only to a subset of dimension g. In turn, any choice for this
subset of g features will constrain the motion of the remaining
2k − g ones.

This problem cannot be avoided even if we reach a
condition whereN (Jv) = 0, e.g., by selecting a number 2k >

6 of features so that R(Jv) = 6, while keeping p + nm > 2k

(the NMM is still redundant for the visual task). Indeed,
since in any case, rank Jimage ≤ 6, the setS = {ḟ ∈ R

2k| ḟ /∈
R(Jimage)} will have dimension dS ≥ 2k − 6, and thus there
will still be dS independent feature motions unrealizable by
any motion of the camera (see ref. [22] for a more thorough
analysis).

On the other hand, a convenient way to deal with k � 6
features is to consider some higher-level image descriptors
such as the generalized image moments (area, barycenter,
principal axes, etc.). By a proper choice of six of these
moments, or of combinations of them, it is possible to derive
a 6 × 6 interaction matrix with good decoupling properties
among the linear and angular velocities of the camera.37,38

Fig. 2. Unicycle platform with a 3R elbow-type manipulator.

5. Case Studies
The task-oriented kinematic modeling of NMMs and the
proposed design of associated IBVS kinematic control
laws are illustrated by means of two case studies in which
the mobile platform is a two-wheeled differentially-driven
vehicle with unicycle kinematics. In the first case, the
platform carries a 3R spatial manipulator with eye-in-hand
camera and the NMM is redundant for the chosen visual task.
In the second case study, a simpler 2R polar manipulator is
considered and the NMM is nonredundant w.r.t. the given
task. We shall see how the TP and TS strategies are effective
in avoiding singularities during visual servoing. Recall that
the feature depths needed to compute the interaction matrix
are estimated online through the nonlinear observer (19)
presented in detail in ref. [31]. Numerical simulations were
performed in Webots.3 Video clips showing the 3D motion of
the NMMs in the different cases are available at the website
http://www.dis.uniroma1.it/˜labrob/research/NMM Visual
Servoing.html.

5.1. Unicycle platform with 3R arm
5.1.1. Kinematic modeling. Consider an NMM made of a
platform with unicycle kinematics carrying a 3R elbow-
type manipulator arm, as shown in Fig. 2. For this robot,
the configuration vector is q = [qT

p qT
m]T ∈ R

6 with qp =
[x y θ]T ∈ R

3 and qm = [q1 q2 q3]T ∈ R
3.

The kinematic model of the unicycle is described by

q̇p =
⎡⎣cos θ 0

sin θ 0
0 1

⎤⎦ [
v

ω

]
= G̃(qp)̃up, (26)

where v and ω are the linear and angular velocity of the
platform, and θ is its absolute orientation in the Cartesian
plane. In order to obtain an homogeneous representation for
the NMM commands, it is useful to rewrite Eq. (26) in terms
of the actuated angular velocities up = [φ̇R φ̇L]T of the right

3 Webots is a commercial mobile robot simulation software
developed by Cyberbotics Ltd. (http://www.cyberbotics.com). Its
simulation engine automatically takes into account the presence of
image noise as well as motion disturbances.
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and left wheel of the platform. This is done by means of the
invertible transformation

ũp = Mup =

⎡⎢⎣
ρ

2

ρ

2
ρ

w
− ρ

w

⎤⎥⎦ up,

where ρ is the wheel radius and w is the axle length, leading to

q̇p = G̃(qp)Mup = G(qp)up.

For the manipulator, we take q̇m = um as explained in
Section 2. Hence, the velocity command input has dimen-
sion p + nm = 5.

With these settings, we obtain the following 6 × 5 matrix
Jc

Jc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
(

1
2ws1 − dc1 − l3c23 − l2c2

)
w

ρ
(
l3c23 + 1

2ws1 + dc1 + l2c2
)

w
−l2c2 − l3c23 0 0

ρ(2d c123 − 2dc123 + ws123 − ws123)

4w

ρ(ws123 − ws123 + 2dc123 − 2d c123)

4w
0 −l2c3 − l3 −l3

ρ(wc123 + wc123 + 2ds123 + 2d s123)

4w

ρ(wc123 + wc123 − 2d s123 − 2ds123)

4w
0 l2s3 0

0 0 0 1 1

−ρc23

w

ρc23

w
−c23 0 0

ρs23

w
−ρs23

w
s23 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where sijk and cijk stand for sin(qi + qj + qk) and
cos(qi + qj + qk), and s123, c123 stand for sin(q1 − q2 −
q3), cos(q1 − q2 − q3), respectively. Following the analysis
developed in ref. [6], it can be shown that this Jacobian is
always full rank except when the second link is aligned with
the vertical direction, i.e., q2 = ±π/2, where the rank of Jc

drops to 4. Note that the presence of an offset d 	= 0 between
the platform center and the manipulator base (see Fig. 2) is
crucial for deleting some of the singularities that affect the
manipulator taken alone. For the NMM geometric data, we
have set h = 0.13, d = 0.15, l1 = 0.1, l2 = 0.15, l3 = 0.1,
ρ = 0.1, and w = 0.25 (all units are [m]).

5.1.2. Task description. As visual task, we consider the
problem of regulating the position on the image plane of
k = 2 point features taken from a fixed target. The features
are extracted from two (red) markers placed on a cubic target,
as shown in Fig. 3. The cube has sides of 0.1 [m], and the
two markers are positioned at a distance of 0.03 [m] from
their closest edges.

Fig. 3. A view of the target with the two markers.

The cube location in the scene can be described as follows.
Consider a frame FR:{OR;

−→
X R,

−→
Y R,

−→
Z R} centered on the

platform and aligned with the platform heading, i.e., with

⎧⎪⎪⎨⎪⎪⎩
OR = [x y 0]T

−→
X R = [cos θ sin θ 0]T

−→
Y R = [− sin θ cos θ 0]T

−→
Z R = [0 0 1]T.

The pose of the target (pt, Rz(αt )) ∈ SE(3) can then be
expressed with respect to frame FR. Vector pt points to the
center of the cube, while Rz(αt ) is the 3 × 3 rotation matrix of
an angle αt around the world z-axis. When αt = 0, the cube
face with the markers is parallel to the plane (

−→
Y R,

−→
Z R) and

looks toward −−→
X R. As initial conditions, we have chosen{

pt (t0) = [1.149 − 0.392 0.314]T [m]
αt (t0) = 0.2473 [rad]

for the NMM (with respect to the fixed cube target) and⎧⎨⎩q1(t0) = 0
q2(t0) = 0.57
q3(t0) = −0.57

for the manipulator joint angles (in [rad]). As a result, the
initial position of the point features on the image plane is

f (t0) = [74.61 −10.12 66.07 −3.5]T,

while their desired reference position is

fd = [10.5 −37.53 −18.94 −17.55]T.

As s = 2k = 4, the complete 4 × 5 NMM image Jacobian
is computed as

ḟ =
[
Jf1 (f1, Z1)
Jf2 (f2, Z2)

]
Jc(qm)u = Jimage(f, Z, qm)u.
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Fig. 4. Snapshots of the visual servoing task with the PG method.

The single degree of kinematic redundancy is used to avoid
the singularities of Jc. This is obtained by minimizing the
cost function

H1(q) = 1

cos2 q2
,

which goes to infinity at the singularities q2 = ±π/2. For
redundancy resolution, we adopted the PG method (10) with
the control gain matrix K = 0.2 · I2×2 in Eq. (7) and a
stepsize α = 1 in Eq. (11), evaluated for H = H1(q) and
using the negative sign.

5.1.3. Simulation results. In Fig. 4, four snapshots taken
during the execution of the visual servoing task are shown. In
each picture, the small upper-left window shows the current
image acquired by the camera, while the lower-left window
shows the same image after the feature extraction process. In
the same window, two stationary (green) dots represent the
desired positions of the features.

The left plot in Fig. 5 shows the path followed by the two
feature points on the image plane, starting from the circular
markers and ending at the triangle markers. As expected, due

to the task decoupling properties of the PG method (with
diagonal K), and since no singularities were encountered
during visual servoing, the features move on the straight
line connecting their initial positions to their goals. The time
evolution of H1(q) in the right part of Fig. 5 confirms that
the NMM has been kept away from singular configurations.
Finally, the velocity commands of the NMM during the
servoing are shown in Fig. 6. For the platform, we reported
the ũp commands instead of the up, since linear and angular
velocities have a more direct interpretation. We observe that
the requested task motion is executed by distributing effort
among both the platform and the manipulator.

5.2. Unicycle platform with 2R arm
5.2.1. Kinematic modeling. In this second case study, the
NMM has the same previous platform but uses a 2R polar
manipulator on board for carrying the camera, see Fig. 7.
Note that this arrangement may cover the interesting situation
of a wheeled mobile robot equipped with a pan-tilt camera
(whose two dofs can be modeled as manipulator joints). In
this case, we have qp = [x y θ]T, qm = [q1 q2]T, and thus
q ∈ R

5, while the actual commands are u = [φ̇R φ̇L q̇1 q̇2]T ∈
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Fig. 5. PG method. Left: Motion of point features f1 (solid blue line) and f2 (dashed red line). Right: Constrained minimization of index
H1(q).
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Fig. 6. NMM control commands with the PG method. Left: Linear velocity v (solid blue line) and angular velocity ω (dashed red line) of
the platform. Right: Arm joint velocities q̇1 (solid blue line), q̇2 (dashed red line), and q̇3 (dotted green line).

Fig. 7. Unicycle platform with a 2R polar manipulator.

R
4. The geometric data of this NMM are the same as in

Section. 5.1 (eliminating the third link).
The associated 6 × 4 matrix Jc is

Jc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ

(
dc1 + w

2
s1 − l2c2

)
w

ρ

(
dc1 + w

2
s1 + l2c2

)
w

−l2c2 0

ρ(2d c12 − 2dc12 + ws12 − ws12)

4w

ρ(−2d c12 + 2dc12 + ws12 − ws12)

4w
0 −l2

ρ

(
ds12 + d s12 + 1

2
wc12 + 1

2
wc12

)
2w

ρ

(
− ds12 − d s12 + 1

2
wc12 + 1

2
wc12

)
2w

0 0

0 0 0 1

−ρc2

w

ρc2

w
−c2 0

ρs2

w
−ρs2

w
s2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with sij = sin(qi + qj ), cij = cos(qi + qj ), sij = sin(qi −
qj ), and cij = cos(qi − qj ). It can be shown that this matrix
has always full rank.

Fig. 8. A situation where the NMM image Jacobian is close to a
singularity.

5.2.2. Task description. As in the previous case study, we
choose to regulate the position of k = 2 point features,
obtaining a 4 × 4 NMM image Jacobian. This NMM is no
longer redundant for the given task, and visual servoing can
be obtained using the scheme (5) with Eq. (7). However,
inversion of the square NMM image Jacobian does not yield
in general good results, since this matrix easily becomes
ill-conditioned during the servoing task as discussed in

Section 4.2.2. Consider, for example, the situation shown in
Fig. 8, corresponding to the following initial conditions and
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Fig. 9. Snapshots of the visual servoing task with the TP method.

desired position of the two point features:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt (t0) = [0.3956 −0.453 0.2334]T [m]

αt (t0) = −0.8571 [rad]

q1(t0) = −0.7025 [rad]

q2(t0) = −0.1368 [rad]

f (t0) = [93.09 −12.02 65.57 6.17]T

fd = [16.31 −8.85 −17.33 13.63]T.

Matrix Jimage is very close to a singularity and its inversion
will generate very large velocity commands for the NMM.
However, the two 2 × 4 blocks J1 and J2 in

Jimage =
[
J1

J2

]
=

[
Jf1Jc

Jf2Jc

]
,

which are associated to the positioning task of each single
point feature, are well-conditioned in this configuration;
in fact, the smallest singular values are σ (Jimage) = 0.16,
σ (J1) = 198.75, and σ (J2) = 196.01, respectively. This

implies that the robotic system is too constrained to impose an
arbitrary velocity to both features, although it is still possible
to move them individually. Therefore, it is interesting to test
the performance of the TP and TS methods as they are mainly
intended for cases when the (visual) task cannot be directly
realized as a whole.

5.2.3. Simulation results. The TP method (12) has been
applied with K1 = 3 and K2 = 0.02, and choosing r1 = f1,
i.e., the primary task is the regulation of the lower-right point
feature, and r2 = f2.

Figure 9 shows the motion of the NMM during visual
servoing. In this case, the TP method is able to realize the
task without encountering any singularity, but the motion of
f2 is no more on a straight line, as can be seen from Fig. 10.
This is a direct consequence of the fact that regulation of f2

is addressed as a secondary task, and thus combined feature
motions that would not be realizable are handled by relaxing
the constraints on f2. Nonetheless, the norm of the error on
the second feature ‖e2(t)‖ = ‖f2(t) − f2d‖ is still decreasing
(right plot in Fig. 10).
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Fig. 10. TP method. Left: Motion of point features f1 (solid blue line) and f2 (dashed red line). Right: Task errors norms ||e1|| (solid blue
line) and ||e2|| (dashed red line) versus time.
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Fig. 11. Singularity analysis during the visual task. Left: Time evolution of the smallest singular value σ (Jimage). Right: Smallest singular
values σ (J1) (solid blue line) and σ (J2) (dashed red line).

In Fig. 11, we report the evolution of the smallest singular
values σ (Jimage), σ (J1), and σ (J2) during the servoing task.
Note that matrix Jimage remains always close to singularity,
while J1 and J2 are well conditioned throughout the motion.
This confirms that a direct inversion of Jimage would not have
provided satisfactory results. The velocity commands for the
platform and the manipulator are shown in Fig. 12.

For comparison, we have applied also the TS method (17)
and performed the visual task in two phases, achieving two
degrees of redundancy during the first phase. In the reported
simulation, we have chosen again r1 = f1 as the subtask to be
realized during the first phase, and r2 = f2 as the completing
subtask for the second phase. In order to keep the target as
much as possible in front of the NMM, redundancy in the
first phase has been used for minimizing the cost function

HT S(q) = 1

2
q2

1 .

Denoting by uHT S
the expression (11) evaluated for H =

HT S(q), the command sequence is implemented as follows:

I. uI = J
†
1 K1e1 + (I − J

†
1 J1)uHT S

, until ||e1|| ≤ ε1 and
HT S(q) ≤ ε2, where ε1 = 1 and ε2 = 0.001;

II. uII = (I − J
†
1 J1)J T

2 K2e2 + J
†
1 K1e1, until the end of the

servoing task.

In Fig. 13, four snapshots of the NMM motion are
shown. In particular, the frame at t = 4.8 s in the sequence

corresponds to the end of the first phase. The NMM is able
to regulate the feature positions by keeping the target in front
of the platform, thanks to the optimization of HT S(q) during
the first phase. The motion of the features in the image plane
is shown in Fig. 14, where the switching point between the
two phases is indicated on the motion of f2. Note that feature
f1 never switches, as its desired value is reached at the end
of the first phase and then kept during the second phase. The
velocity commands shown in Fig. 15 have a discontinuity at
the switching time (vertical dashed line), but are considerably
smaller than those produced by the TP method.

6. Conclusions
For manipulators carried by mobile platforms whose
instantaneous velocity is restricted by nonholonomic
constraints, we have followed a kinematic modeling
approach that is based on the task to be performed. The
main outcome is that the mobility of a nonholonomic mobile
manipulator in performing a task is fully entailed in a matrix,
the NMM Jacobian, that relates feasible velocity commands
to task velocities. This matrix can been used for singularity
analysis, redundancy resolution, and kinematic control, just
like the classical Jacobian of fixed-base manipulators.

Two standard redundancy resolution methods (Projected
Gradient and Task Priority) have been generalized to NMMs,
taking care of the way the gradient of a configuration-
dependent criterion is mapped into the available velocity
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Fig. 12. NMM control commands with the TP method. Left: Linear velocity v (solid blue line) and angular velocity ω (dashed red line) of
the platform. Right: Arm joint velocities q̇1 (solid blue line) and q̇2 (dashed green line).
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Fig. 13. Snapshots of the visual servoing task with the TS method.

–20 0 20 40 60 80 100

–60

–40

–20

0

20

40

60
Switching point 

Fig. 14. TS method. Motion of point features f1 (solid blue line)
and f2 (dashed red line), with switching point of the latter.

commands. We have also proposed the novel method of
Task Sequencing, which introduces additional degrees of
redundancy through the time decomposition of a regulation

task in a sequence of phases. This turns out to be an efficient
way for handling tasks prone to singularities.

As a relevant application of the proposed framework, the
image-based visual servoing problem for NMMs equipped
with an eye-in-hand camera was considered. By taking the
point features in the image plane as task variables, the
associated NMM image Jacobian is conveniently obtained
by composing the usual interaction matrix of visual servoing
with an intermediate, camera-related NMM Jacobian. All
methods based on the use of the NMM (image) Jacobian
distribute the control effort among the platform and the
manipulator velocity commands. The numerical results on
two case studies have shown the good performance of
the proposed visual servoing control laws, including the
optimization of a cost function during task execution and the
avoidance of potential singularities on ill-conditioned tasks.

We are currently implementing the proposed visual
servoing schemes on the wheeled mobile robot MagellanPro,
equipped with a pan-tilt camera (seen as a special 2R polar
arm). Future work in visual servoing for NMMs will also
explore the use of different sets of features, such as lines,
ellipses, or generalized moments, and focus on the case of
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Fig. 15. NMM control commands with the TS method. Left: Linear velocity v (solid blue line) and angular velocity ω (dashed red line) of
the platform. Right: Arm joint velocities q̇1 (solid blue line) and q̇2 (dashed red line).
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tracking a moving object (e.g., a ball) by estimating online
its depth and velocity.

Appendix
In order to show that Jc is independent of qp, let Rzi

(α) be the
3 × 3 rotation matrix of angle α about the absolute z-axis or
about the joint axes (z0, . . . , znm−1) (following the Denavit–
Hartenberg convention) of the manipulator arm, and [x y h]T

be the position of the platform reference point expressed in
FO (h is the constant platform height). We have

t =
⎡⎣tx

ty
tz

⎤⎦ =
⎡⎣x

y

h

⎤⎦ + Rz(θ)e(qm) (27)

where θ is the platform orientation and e(qm) is the vector
pointing from the platform reference point to the camera on
the end-effector. Assume that the nonholonomic mobile base
is a rigid body that can move with a linear velocity v only
along the direction of its orientation θ (this is the case of
most wheeled mobile platforms, like those with unicycle or
car-like kinematics).

Differentiating Eq. (27), we get⎡⎣ṫx
ṫy
ṫz

⎤⎦ =
⎡⎣cos θ

sin θ

0

⎤⎦ v + Rz(θ)ė + ŵz(θ̇)Rz(θ)e,

where

ŵz(θ̇) =
⎡⎣0 −θ̇ 0

θ̇ 0 0
0 0 0

⎤⎦
is the skew-symmetric matrix associated to the angular
velocity [0 0 θ̇ ]T. The orientation of frame FC w.r.t. frame
FO is given by the rotation matrix

Rc = Rz(θ)R0Rz0 (q1) . . . Rznm−1 (qnm
)Re,

where Rzk
(qk), k ∈ {0, 1, . . . , nm − 1} are the rotations

associated to the nm joints of the manipulators arm, R0

represents the constant orientation of the manipulator first
joint axis w.r.t. the platform frame, and Re is the constant
orientation between the camera frame FC and the frame
located at the arm end-effector. Therefore, the expression
of the end-effector linear velocity in the camera frame

Vc = RT
c ṫ =

RT
e RT

znm−1
(qnm

) . . . RT
z0

(q1)RT
0

⎛⎝⎡⎣v

0
0

⎤⎦ + ė + ŵz(θ̇)e

⎞⎠
is independent from qp = [x y θ]T, having used the property
RT

z (θ)ŵz(θ̇ )Rz(θ) = ŵz(θ̇ ). Similar arguments can be used
to prove independence of the angular velocity ωc from qp.
This result is a direct consequence of having expressed the
camera linear/angular velocity in the camera frame, and it

would not hold in different frames, as, e.g., the world or the
platform frame.
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